Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (164)

Search Parameters:
Keywords = novel tank test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1025 KB  
Article
Distinct Swimming Behavioral Phenotypes Following Serotonin and Dopamine Transporter Modulation in the Adult Zebrafish Novel Tank Diving Test (NTT)
by Amaury Farías-Cea, Lisandra Pérez, Cristóbal Leal, Kerim Segura, Valentina Hernández, Caridad Atiés-Pérez, Luis Miguel Martínez, Martin Hödar-Salazar, Miguel Reyes-Parada, Ramón Sotomayor-Zárate, Francisca Rojas-Hidalgo, Marcela Julio-Pieper, Javier A. Bravo, Dasiel O. Borroto-Escuela and Patricio Iturriaga-Vásquez
Pharmaceuticals 2025, 18(12), 1807; https://doi.org/10.3390/ph18121807 - 27 Nov 2025
Viewed by 128
Abstract
Background/Objective: Serotonin and dopamine are key neurotransmitters involved in regulating mood, anxiety, and locomotor activity. Specific transporters mediate their reuptake, SERT and DAT, making them targets for drugs such as Fluoxetine and Methylphenidate. Zebrafish (Danio rerio), due to their genetic and [...] Read more.
Background/Objective: Serotonin and dopamine are key neurotransmitters involved in regulating mood, anxiety, and locomotor activity. Specific transporters mediate their reuptake, SERT and DAT, making them targets for drugs such as Fluoxetine and Methylphenidate. Zebrafish (Danio rerio), due to their genetic and neurochemical similarity to humans, serve as a valuable model for studying the behavioral effects of these drugs. This study aimed to compare the behavioral phenotypes induced by SERT and DAT blockers in adult zebrafish using the Novel Tank Diving Test (NTT), thereby generating a swimming profile for drugs acting on these monoamine transporters that can be utilized in drug discovery and behavior. Methods: Adult zebrafish were administered Fluoxetine or Methylphenidate and subjected to the NTT. Behavioral endpoints measured included bottom-dwelling time (anxiety-like behavior), swimming velocity (locomotor activity), and transitions to the upper zone (exploratory behavior). Results: Fluoxetine treatment significantly reduced bottom-dwelling behavior, increased transitions to the upper zone, and decreased erratic swimming, indicating reduced anxiety and enhanced exploration. In contrast, Methylphenidate administration led to prolonged bottom-dwelling and reduced exploration, suggesting increased anxiety-like behavior and decreased exploration. These findings highlight distinct behavioral profiles resulting from selective modulation of serotonergic and dopaminergic pathways. Conclusions: The study demonstrates that SERT and DAT blockades produce divergent behavioral effects in adult zebrafish, with Fluoxetine exhibiting anxiolytic and exploratory-promoting actions. At the same time, Methylphenidate induces anxiety-like and less exploratory behaviors. These results underscore the utility of zebrafish as a valuable translational model for neuropharmacological research and drug discovery, providing insights into the differential impact of serotonergic and dopaminergic modulation on behavior. Full article
(This article belongs to the Special Issue Application of Zebrafish Model in Pharmacology and Toxicology)
Show Figures

Figure 1

24 pages, 1040 KB  
Article
Quantile Modelling of the Moderating Role of Renewable and Nuclear Energy in the Transportation and Environmental Sustainability Nexus
by Hafiz Muhammad Asif, Yunfeng Gao and Mian Gohar Rahman Zafar
Sustainability 2025, 17(23), 10541; https://doi.org/10.3390/su172310541 - 25 Nov 2025
Viewed by 136
Abstract
This study examines the moderating effects of renewable and nuclear energy on the relationship
between transportation index (air and land) and environmental sustainability
from 1995 to 2022 across the top 27 polluting countries. The study employed a series
of pre-estimation tests, along with [...] Read more.
This study examines the moderating effects of renewable and nuclear energy on the relationship
between transportation index (air and land) and environmental sustainability
from 1995 to 2022 across the top 27 polluting countries. The study employed a series
of pre-estimation tests, along with the novel Method of Moments Quantile Regression
(MMQR), to estimate heterogeneous effects across the lower, middle, and upper quantiles of
environmental sustainability. The MMQR results indicate that environmental sustainability
is hampered by transportation, whereas renewable and nuclear energy promote it. The
moderation effect model shows that both renewable and nuclear energy development mitigate
the negative environmental externality from the transportation sector. The controlling
factors, GDP and inflation, are found to be harmful for environmental sustainability, while
trade openness is found to be favourable. The robustness findings using Driscoll and Kray
standard errors (DKse) yielded similar results; nonetheless, the magnitude of the coefficient
varies substantially. Thus, think tanks and policymakers are recommended to integrate
renewable and nuclear energy into the transportation sector’s energy portfolio to mitigate
its negative environmental impacts. Full article
Show Figures

Figure 1

18 pages, 1437 KB  
Article
Three Non-Invasive Tests Reveal Anxiety-like Responses During Food Anticipation in Rainbow Trout
by André Barany, Miguel Gómez-Boronat, Lisbeth Herrera-Castillo, María J. Delgado, Nuria de Pedro, Ana M. Larrán and Esther Isorna
Fishes 2025, 10(11), 564; https://doi.org/10.3390/fishes10110564 - 5 Nov 2025
Viewed by 369
Abstract
Anxiety-like behavior in fish is commonly assessed using non-invasive behavioral paradigms such as the Light/Dark preference, Novel Tank, and Open Field tests. In this study, we validated these three assays in rainbow trout (Oncorhynchus mykiss), a species of commercial relevance, to [...] Read more.
Anxiety-like behavior in fish is commonly assessed using non-invasive behavioral paradigms such as the Light/Dark preference, Novel Tank, and Open Field tests. In this study, we validated these three assays in rainbow trout (Oncorhynchus mykiss), a species of commercial relevance, to characterize their anxiety-related responses. To explore behavioral changes associated with feeding anticipation and satiety, we implemented a feeding schedule consisting of two daily meals and conducted behavioral tests at specific times before and after feeding. Trout exhibited clear patterns of scototaxis, geotaxis, and thigmotaxis, consistent with anxiety-like behavior described in other teleosts. Our results showed a significant increase in anxiety-like responses before feeding, coinciding with food anticipatory activity observed prior to expected feeding schedules, which diminished after food intake, as evidenced by each test individually. Moreover, multivariate analysis combining parameters from all three tests improved discrimination between anxious and relaxed fish. The behavioral states before and after feeding resembled anxiety-like and anxiolytic conditions reported in other species, supporting that food anticipatory activity reflects an anxious state in rainbow trout as well. These findings endorse using a multi-test behavioral battery to assess anxiety-like states and provide a framework for studying neurobiological mechanisms of emotional regulation related to feeding in teleosts. Full article
(This article belongs to the Special Issue Fish Health and Welfare in Aquaculture and Research Settings)
Show Figures

Figure 1

19 pages, 2685 KB  
Article
Eco-Friendly Synthesis of Silver Nanoparticles Using Lespedeza capitata Extract: Antioxidant and Anti-Inflammatory Properties in Zebrafish (Danio rerio)
by Roxana Delia Chitiala, Ionut Iulian Lungu, Andreea-Maria Mitran, Ioana Mita-Baciu, Ion Brinza, Cornelia Mircea, Anisoara Nistor, Monica Hancianu, Radu Iliescu, Lucian Hritcu and Oana Cioanca
Int. J. Mol. Sci. 2025, 26(21), 10693; https://doi.org/10.3390/ijms262110693 - 3 Nov 2025
Viewed by 363
Abstract
Silver nanoparticles (AgNPs) were synthesized using a modified literature method involving aqueous AgNO3 (3 mM) and plant extract (LCE) at a constant ratio, under alkaline conditions and controlled temperature. The nanoparticles were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), zeta potential [...] Read more.
Silver nanoparticles (AgNPs) were synthesized using a modified literature method involving aqueous AgNO3 (3 mM) and plant extract (LCE) at a constant ratio, under alkaline conditions and controlled temperature. The nanoparticles were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), zeta potential analysis and scanning transmission electron microscopy (STEM). The UV-Vis spectra displayed a broad absorption band around 450 nm, indicative of polydispersity, while DLS revealed a hydrodynamic diameter of 90.3 nm with a polydispersity index of 0.3366. Zeta potential values suggested reduced electrostatic stability compared with previously reported plant-derived AgNPs, although STEM images confirmed predominantly spherical, well-dispersed nanoparticles with sizes between 15 and 20 nm. Functional assays in zebrafish demonstrated the biological relevance of AgNPs. In scopolamine-induced models of cognitive and behavioral deficits, AgNPs treatment significantly improved memory and locomotor activity, as assessed by the Y-Maze, Novel Tank Diving Test and Novel Object Recognition Test. Full article
(This article belongs to the Special Issue Bioactive Compounds in Microbial Communities and Non-Target Organisms)
Show Figures

Figure 1

17 pages, 1916 KB  
Article
Examination of Social Behavior and Cognition in Clownfish (Amphiprion ocellaris): Relationship to Artificial Rearing of Juveniles
by Guodong Wang, Jixiang Liu, Jifang Yang, Song Ma, Zi Wang, Yunlong He, Xiaohan Li, Wenhui Yin, Xinyu Li, Jiahao Li, Kefeng Xu, Chong Wang and Weiqi Xu
Fishes 2025, 10(11), 549; https://doi.org/10.3390/fishes10110549 - 30 Oct 2025
Viewed by 400
Abstract
The overexploitation of wild populations for the marine ornamental trade necessitates optimized captive breeding, particularly for iconic species like the clownfish Amphiprion ocellaris. This study investigated the social behavior and cognitive abilities of juvenile clownfish in relation to artificial rearing practices. Using [...] Read more.
The overexploitation of wild populations for the marine ornamental trade necessitates optimized captive breeding, particularly for iconic species like the clownfish Amphiprion ocellaris. This study investigated the social behavior and cognitive abilities of juvenile clownfish in relation to artificial rearing practices. Using modified three-tank tests, we assessed social preference and cognition ability in two size groups: Small-bodied Group (SG: 2.0–2.5 cm) and Large-bodied Group (LG: 3.5–4 cm). The results indicated that clownfish have the following: (a) Strong Social Preference: Both SG and LG exhibited significant preference for areas near conspecifics (SPI > 0), with SG showing significantly higher SPI values than LG. (b) Developmental Stage Differences: SG demonstrated a stronger tendency to cluster tightly near conspecifics. LG showed wider exploration patterns and greater movement. (c) Cognition Ability: SG showed renewed interest towards a novel fish after habituation to a familiar fish, while LG displayed a stronger preference for the familiar fish. These findings suggest that clownfish juveniles possess advanced sociality and basic cognition ability. Furthermore, the observed shift in social interaction preference with developmental stages informs optimal timing for grading practices to minimize artificial rearing stress. This study provides some behavioral insights for optimizing large-scale artificial rearing protocols for clownfish, reducing pressure on wild populations. Full article
Show Figures

Figure 1

33 pages, 5246 KB  
Article
Mechanisms Underlying the Cognitive Benefits of Solanum macrocarpon Leaf n-Butanol Extract: Acetylcholinesterase Inhibition and Oxidative Stress Modulation
by Ion Brinza, Ibukun Oluwabukola Oresanya, Ilkay Erdogan Orhan, Hasya Nazlı Gök, Lucian Hritcu and Razvan Stefan Boiangiu
Plants 2025, 14(21), 3283; https://doi.org/10.3390/plants14213283 - 27 Oct 2025
Viewed by 477
Abstract
This study investigates the neuroprotective and anxiolytic effects of Solanum macrocarpon L. leaf n-butanol extract (SMB) in a zebrafish model of scopolamine (SCOP; 100 μM)-induced cognitive and behavioral impairments. SCOP, a muscarinic receptor antagonist, is commonly used to mimic memory deficits and anxiety-like [...] Read more.
This study investigates the neuroprotective and anxiolytic effects of Solanum macrocarpon L. leaf n-butanol extract (SMB) in a zebrafish model of scopolamine (SCOP; 100 μM)-induced cognitive and behavioral impairments. SCOP, a muscarinic receptor antagonist, is commonly used to mimic memory deficits and anxiety-like behaviors associated with neurodegenerative conditions. Zebrafish were chronically exposed to SMB at concentrations of 1, 3, and 6 mg/L. Behavioral assessments included anxiety-related paradigms, such as novel tank diving (NTT), novel approach (NA), and light–dark transition (LD) tests, as well as cognitive assays, including the Y-maze and novel object recognition (NOR) tests. SMB significantly mitigated SCOP-induced anxiety-like behaviors and cognitive deficits in a dose-dependent manner. Biochemical analyses demonstrated that SMB inhibited acetylcholinesterase (AChE) overactivity, indicating restoration of cholinergic function. Furthermore, SMB enhanced the activity of endogenous antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) and significantly reduced oxidative stress biomarkers, including malondialdehyde (MDA) and protein carbonyls. These findings suggest that SMB may exert neuroprotective effects through modulation of cholinergic signaling and oxidative stress. Overall, SMB represents a promising phytotherapeutic candidate for mitigating cognitive and anxiety-related symptoms linked to oxidative damage. Further investigations are warranted to characterize its active constituents and assess long-term efficacy and safety in models of neurodegeneration. Full article
(This article belongs to the Special Issue Phytochemical Compounds and Antioxidant Properties of Plants)
Show Figures

Figure 1

19 pages, 2287 KB  
Review
Hydrogen Adsorbents in the Vacuum Layer of Liquid Hydrogen Containers: Materials and Applications
by Meng Yu, Yang Wu, Jiake Wu, Yongxiang Zhu, Xiangjun Yu and Long Jiang
Hydrogen 2025, 6(4), 89; https://doi.org/10.3390/hydrogen6040089 - 15 Oct 2025
Viewed by 588
Abstract
Hydrogen serves as a key clean-energy carrier, with the main hurdles lying in safe, efficient transport and storage (gas or liquid) and in end-use energy conversion. Liquid hydrogen (LH), as a high-density method of storage and transportation, presents cryogenic insulation as its key [...] Read more.
Hydrogen serves as a key clean-energy carrier, with the main hurdles lying in safe, efficient transport and storage (gas or liquid) and in end-use energy conversion. Liquid hydrogen (LH), as a high-density method of storage and transportation, presents cryogenic insulation as its key technical issues. In LH storage tanks, the performance of high vacuum multilayer insulation (HVMLI) will decline due to hydrogen release and leakage from the microscopic pores of steel, which significantly destroy the vacuum layer. The accumulation of residual gases will accelerate thermal failure, shorten the service life of storage tanks and increase safety risks. Adsorption is the most effective strategy for removing residual gases. This review aims to elucidate materials, methods, and design approaches related to hydrogen storage. First, it summarizes adsorbents used in liquid hydrogen storage tanks, including cryogenic adsorbents, metal oxides, zeolite molecular sieves, and non-volatile compounds. Second, it explores experimental testing methods and applications of hydrogen adsorbents in storage tanks, analyzing key challenges faced in practical applications and corresponding countermeasures. Finally, it proposes research prospects for exploring novel adsorbents and developing integrated systems. Full article
Show Figures

Figure 1

24 pages, 3937 KB  
Article
Chronic Administration of Calendula officinalis Ethanolic Extract Mitigates Anxiety-like Behavior and Cognitive Impairment Induced by Acute Scopolamine Exposure in Zebrafish
by Lucia-Florina Popovici, Ion Brinza, Simona Oancea and Lucian Hritcu
Pharmaceuticals 2025, 18(10), 1483; https://doi.org/10.3390/ph18101483 - 2 Oct 2025
Cited by 1 | Viewed by 686
Abstract
Background/Objectives: Scopolamine (SCO) is widely employed as a pharmacological model of anxiety and amnesia in both rodents and zebrafish, the latter representing a valuable translational model in neuropsychopharmacology. The present study aimed to evaluate the neuroprotective and antioxidant potential of chronic administration of [...] Read more.
Background/Objectives: Scopolamine (SCO) is widely employed as a pharmacological model of anxiety and amnesia in both rodents and zebrafish, the latter representing a valuable translational model in neuropsychopharmacology. The present study aimed to evaluate the neuroprotective and antioxidant potential of chronic administration of an ethanolic extract from Calendula officinalis flowers (CEE). Methods: Adult zebrafish (n = 10/group, both sexes) were exposed to CEE at concentrations of 1, 3, and 10 mg/L, administered daily for 22 consecutive days. After the initial 7-day pretreatment period, fish were challenged with SCO (100 μM, immersion for 30 min) followed by behavioral testing, including the Novel Tank Diving Test, Light/Dark Test, Novel Approach Test, Y-Maze, and Novel Object Recognition. Subsequently, brain homogenates were analyzed for acetylcholinesterase (AChE) activity, antioxidant enzymes (superoxide dismutase—SOD, catalase—CAT, glutathione peroxidase—GPx), reduced glutathione (GSH), protein carbonyls, and malondialdehyde (MDA). Results: Chronic CEE administration significantly attenuated scopolamine-induced anxiety-like behaviors and improved spatial memory (Y-maze) and recognition memory (NOR), as well as reduced anxiety-like behavior in the SCO-induced zebrafish model. Biochemical analyses revealed that CEE restored AChE activity, enhanced the activity of SOD, CAT, and GPx, and increased GSH levels, while concomitantly reducing protein oxidation and lipid peroxidation. The most pronounced effects were observed at 3 mg/L, which nearly normalized both behavioral and biochemical parameters. Conclusions: The CEE exerted anxiolytic and procognitive effects in zebrafish through combined cholinergic and antioxidant mechanisms. These findings highlight its translational potential as a promising candidate for the prevention and treatment of anxiety-related and cognitive disorders. Full article
Show Figures

Graphical abstract

19 pages, 2150 KB  
Article
Molecular and Phenotypic Characterization of Prototheca Species Isolates Associated with Bovine Mastitis Cases in Chile
by Jaime Rodriguez, Paulina Sepúlveda-García, Nivia Canales, Matías Goddard, Carlo Cornuy, Álvaro G. Morales, Luis Collado and Armin Mella
Animals 2025, 15(19), 2869; https://doi.org/10.3390/ani15192869 - 30 Sep 2025
Viewed by 595
Abstract
Background: Bovine mastitis caused by Prototheca spp. is the most significant animal disease of algal origin, with an increasing number of cases reported worldwide. Currently, there is no effective treatment, so control requires the culling of infected animals. In Chile, information is limited, [...] Read more.
Background: Bovine mastitis caused by Prototheca spp. is the most significant animal disease of algal origin, with an increasing number of cases reported worldwide. Currently, there is no effective treatment, so control requires the culling of infected animals. In Chile, information is limited, and a discrepancy remains in the literature regarding the Prototheca species involved in bovine mastitis. Methods: This study aimed to molecularly type and phenotypically characterize Prototheca isolates associated with bovine mastitis in Chile. Sixty-six Prototheca isolates obtained from individual bovine mastitis milk samples and bulk tank milk samples were analyzed through cytochrome b gene (cytb) sequencing, Random Amplified Polymorphic DNA–Polymerase Chain Reaction (RAPD-PCR) analysis, and phenotypic evaluation (morphology, antimicrobial susceptibility, and biofilm formation). Results: Sixty-five isolates were identified as P. bovis and one as P. ciferrii, marking the first report of the latter in bovine mastitis in Chile. RAPD analysis revealed a high genetic diversity in P. bovis. All strains exhibited resistance to the antibiotics tested from the Fluoroquinolone, β-lactam, and sulfonamide groups; however, 100% of the strains showed susceptibility to aminoglycosides, with gentamicin standing out as a potential therapeutic option. Most P. bovis strains formed weak (81.5%, 53/65) or moderate (15.4%, 10/65) biofilms, which could favor the persistence of infection. Conclusions: These findings provide novel insights into the molecular and phenotypic characteristics of Prototheca spp. in Chile, highlighting the predominance of P. bovis, the emergence of P. ciferri, and the implications for antimicrobial management and disease control. Full article
Show Figures

Figure 1

14 pages, 2465 KB  
Article
Experimental Performance and Techno-Economic Analysis of an Air Conditioning System with an Ice Storage System
by Enes Hüseyin Ergün and Salih Coşkun
Appl. Sci. 2025, 15(18), 10088; https://doi.org/10.3390/app151810088 - 15 Sep 2025
Cited by 2 | Viewed by 1131
Abstract
High peak-hour energy consumption from air conditioning in commercial buildings creates significant operational costs and grid instability. This study experimentally investigates the thermo-economic performance of a vapor compression refrigeration system (VCR) ice storage system to address this challenge through load shifting. The methodology [...] Read more.
High peak-hour energy consumption from air conditioning in commercial buildings creates significant operational costs and grid instability. This study experimentally investigates the thermo-economic performance of a vapor compression refrigeration system (VCR) ice storage system to address this challenge through load shifting. The methodology involved operating a custom test rig, featuring an insulated test chamber and an ice tank with a novel spiral evaporator, under an improved 8 h night charging and 9 h day discharge strategy. Results show the system consumed 5.44 kWh of electricity to store 7.70 kWh of thermal energy, achieving a charging Coefficient of Performance (COP) of 1.42. A total of 5.195 kWh of cooling was delivered with a discharge efficiency of 67.5%. The experimental cost analysis confirmed an approximate 20% operating cost advantage over conventional direct cooling. A simple payback assessment indicates strong sensitivity to tariff structures and annual operating days. This study concludes that the optimized Ice Storage System (ISS) is a technically viable and economically advantageous solution for managing peak cooling loads, providing a validated reference model and dataset for future work. Full article
(This article belongs to the Topic Thermal Energy Transfer and Storage, 2nd Edition)
Show Figures

Figure 1

36 pages, 40569 KB  
Article
Deep Learning Approaches for Fault Detection in Subsea Oil and Gas Pipelines: A Focus on Leak Detection Using Visual Data
by Viviane F. da Silva, Theodoro A. Netto and Bessie A. Ribeiro
J. Mar. Sci. Eng. 2025, 13(9), 1683; https://doi.org/10.3390/jmse13091683 - 1 Sep 2025
Viewed by 1380
Abstract
The integrity of subsea oil and gas pipelines is essential for offshore safety and environmental protection. Conventional leak detection approaches, such as manual inspection and indirect sensing, are often costly, time-consuming, and prone to subjectivity, motivating the development of automated methods. In this [...] Read more.
The integrity of subsea oil and gas pipelines is essential for offshore safety and environmental protection. Conventional leak detection approaches, such as manual inspection and indirect sensing, are often costly, time-consuming, and prone to subjectivity, motivating the development of automated methods. In this study, we present a deep learning-based framework for detecting underwater leaks using images acquired in controlled experiments designed to reproduce representative conditions of subsea monitoring. The dataset was generated by simulating both gas and liquid leaks in a water tank environment, under scenarios that mimic challenges observed during Remotely Operated Vehicle (ROV) inspections along the Brazilian coast. It was further complemented with artificially generated synthetic images (Stable Diffusion) and publicly available subsea imagery. Multiple Convolutional Neural Network (CNN) architectures, including VGG16, ResNet50, InceptionV3, DenseNet121, InceptionResNetV2, EfficientNetB0, and a lightweight custom CNN, were trained with transfer learning and evaluated on validation and blind test sets. The best-performing models achieved stable performance during training and validation, with macro F1-scores above 0.80, and demonstrated improved generalization compared to traditional baselines such as VGG16. In blind testing, InceptionV3 achieved the most balanced performance across the three classes when trained with synthetic data and augmentation. The study demonstrates the feasibility of applying CNNs for vision-based leak detection in complex underwater environments. A key contribution is the release of a novel experimentally generated dataset, which supports reproducibility and establishes a benchmark for advancing automated subsea inspection methods. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 4446 KB  
Article
Research on a Soil Mechanical Resistance Detection Device Based on Flexible Thin-Film Pressure Sensors
by Haojie Zhang, Wenyi Zhang, Bing Qi, Yunxia Wang, Youqiang Ding, Yue Deng and Maxat Amantayev
Agronomy 2025, 15(9), 2041; https://doi.org/10.3390/agronomy15092041 - 25 Aug 2025
Viewed by 1483
Abstract
Soil compaction is a pivotal factor influencing crop growth and yield, and its accurate assessment is imperative for precision agricultural management. Soil mechanical resistance is the key indicator of soil compaction, with accurate measurement enabling precise assessment. Dynamic soil mechanical resistance measurement outperforms [...] Read more.
Soil compaction is a pivotal factor influencing crop growth and yield, and its accurate assessment is imperative for precision agricultural management. Soil mechanical resistance is the key indicator of soil compaction, with accurate measurement enabling precise assessment. Dynamic soil mechanical resistance measurement outperforms conventional manual fixed-point sampling in data acquisition efficiency. In this paper, a methodology is proposed for the dynamic acquisition of soil mechanical resistance using a flexible thin-film pressure sensor. This study dynamically captures soil mechanical resistance at three depths (5 cm, 10 cm, and 15 cm) under dynamic machinery operating conditions. A device was designed for the detection of soil mechanical resistance, and a prediction model for soil mechanical resistance was developed based on the Kalman filter algorithm. Tests were conducted under steady-state and variable-load conditions, and the predicted values accurately tracked the reference pressure. Soil tank trials showed that at an operating speed of 0.69–0.72 km/h, the average prediction errors for the three soil layers were 2.03%, 1.48%, and 6.27%, with the coefficient of determination (R2) between predicted and measured values reaching 0.96. The system effectively predicts multi-depth soil resistance, providing novel theoretical and technical approaches for dynamic acquisition. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

13 pages, 2107 KB  
Article
Neurobehavioral Protection by Prebiotic Formulations in a Scopolamine-Induced Cognitive Impaired Zebrafish Model
by Emanuel Vamanu, Ionela Avram, Diana Roxana Pelinescu, Hesham R. El-Seedi, Lucian Hritcu, Ion Brinza, Laura-Dorina Dinu and Razvan Stefan Boiangiu
Life 2025, 15(8), 1268; https://doi.org/10.3390/life15081268 - 11 Aug 2025
Cited by 1 | Viewed by 1672
Abstract
The present work evaluates the influence of two prebiotic formulations—P1 (ColonX) and P4 (a product containing AnXietate extract), at concentrations of 3 and 6 mg/L—on scopolamine (SCOP, 100 μM)-induced cognitive dysfunction and anxiety-related behaviors in adult zebrafish (Danio rerio). To assess behavioral alterations, [...] Read more.
The present work evaluates the influence of two prebiotic formulations—P1 (ColonX) and P4 (a product containing AnXietate extract), at concentrations of 3 and 6 mg/L—on scopolamine (SCOP, 100 μM)-induced cognitive dysfunction and anxiety-related behaviors in adult zebrafish (Danio rerio). To assess behavioral alterations, wild-type fish were subjected to the novel tank assay (NTT), Y-maze study, and novel object recognition test protocol (NOR). The formulations were examined for potential anti-inflammatory activity and cytotoxicity. In parallel, in vitro assays were performed to evaluate cytotoxic and anti-inflammatory effects. The results indicate that both prebiotic formulations effectively mitigated SCOP-induced behavioral impairments and improved cognitive performance in zebrafish. Furthermore, the prebiotic formulation P4 showed significant anti-inflammatory activity without inducing cytotoxicity. The study was conducted following ethical guidelines, ensuring scientific rigor and integrity. These findings highlight the therapeutic potential of prebiotics in alleviating anxiety and cognitive deficits, with promising implications for the management of neuropsychiatric disorders. Full article
Show Figures

Graphical abstract

16 pages, 14336 KB  
Article
Three-Dimensional Binary Marker: A Novel Underwater Marker Applicable for Long-Term Deployment Scenarios
by Alaaeddine Chaarani, Patryk Cieslak, Joan Esteba, Ivan Eichhardt and Pere Ridao
J. Mar. Sci. Eng. 2025, 13(8), 1442; https://doi.org/10.3390/jmse13081442 - 28 Jul 2025
Viewed by 791
Abstract
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the [...] Read more.
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the 2D-markers limitation through a 3D design that enhances resilience and maintains contrast for computer vision detection over extended periods. The proposed solution has been validated through simulation, water tank testing, and long-term sea trials for 5 months. In each stage, the marker was compared based on detection per visible frame and the detection distance. In conclusion, the design demonstrated superior performance compared to standard 2D markers. The proposed Three-Dimensional Binary Marker provides compatibility with widely used fiducial markers, such as ArUco and AprilTag, allowing quick adaptation for users. In terms of fabrication, the Three-Dimensional Binary Marker uses additive manufacturing, offering a low-cost and scalable solution for underwater localization tasks. The proposed marker improved the deployment time of fiducial markers from a couple of days to sixty days and with a range up to seven meters, providing robustness and reliability. As the marker survivability and detection range depend on its size, it is still a valuable innovation for Autonomous Underwater Vehicles, as well as for inspection, maintenance, and monitoring tasks in marine robotics and offshore infrastructure applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 2271 KB  
Article
Single and Combined Effects of Meropenem, Valproic Acid, and Ketoprofen on Adult Zebrafish Behavior, Oxidative Stress, and Acetylcholinesterase Activity
by Ionut-Alexandru Chelaru, Roxana Strungaru-Jijie, Mircea Nicoara, Diana Mirila, Alin Ciobica and Dorel Ureche
Pharmaceuticals 2025, 18(8), 1096; https://doi.org/10.3390/ph18081096 - 24 Jul 2025
Viewed by 811
Abstract
Background: Pharmaceutical compounds frequently co-occur in environmental waters, but studies on their combined effects on animals and humans remain limited. The present study investigated the individual and combined short-term effects of ketoprofen (Kp, a nonsteroidal anti-inflammatory drug inhibiting cyclooxygenase-2), valproic acid (VPA, [...] Read more.
Background: Pharmaceutical compounds frequently co-occur in environmental waters, but studies on their combined effects on animals and humans remain limited. The present study investigated the individual and combined short-term effects of ketoprofen (Kp, a nonsteroidal anti-inflammatory drug inhibiting cyclooxygenase-2), valproic acid (VPA, an anticonvulsant acting as a voltage-gated sodium channel modulator), and meropenem (Mp, a β-lactam antibiotic) at environmentally relevant concentrations on zebrafish behavior, acetylcholinesterase (AChE) activity, and oxidative status. Methods: Adult zebrafish were exposed for 4 days to Kp, VPA, Mp, and their binary and ternary mixtures. Behavioral effects were assessed using 3D novel tank and social behavior tests, while the oxidative stress response was assessed through malondialdehyde (MDA) content, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Results: Zebrafish exposed to Mp showed a notable increase in immobility, whereas those exposed to VPA and Mp + Kp exhibited a significant augmentation of average velocity and counter-clockwise rotations. All treated groups exhibited a notable increase in the time spent near the walls (thigmotaxis), and except for the control and Mp-exposed zebrafish, the other groups mostly stayed in the bottom tank zone (geotaxis). Kp, VPA + Kp, and VPA + Mp + Kp treatments impaired social behavior, with zebrafish displaying less interest in conspecifics. Biochemical analysis demonstrated that both the individual drugs and their combination caused oxidative stress, characterized by decreased GPx activity and increased SOD activity and MDA levels. Moreover, AChE activity was more strongly inhibited in zebrafish exposed to the binary and ternary mixtures than to individual drugs. Conclusions: The results indicate that acute exposure to individual and/or combined pharmaceuticals induces behavioral changes, oxidative damage, and AChE inhibition in zebrafish, highlighting the need to assess the effects of pharmaceutical mixtures for comprehensive ecosystem risks evaluation. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop