Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,252)

Search Parameters:
Keywords = oil emulsion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4928 KB  
Article
Physical and Gastrointestinal Digestive Properties of Sodium Caseinate Emulsions Regulated by Four Different Polysaccharides
by Mengyao Kang, Denglin Luo, Lihua Zhang, Jiaxiang Zang, Lala Li and Wei Xu
Gels 2025, 11(12), 968; https://doi.org/10.3390/gels11120968 (registering DOI) - 1 Dec 2025
Abstract
Polysaccharide intervention is an effective strategy to regulate properties of emulsions. In this study, xanthan gum (XG), konjac glucomannan (KGM), guar gum (GG), and inulin (IN) were selected to regulate physical and gastrointestinal digestive properties of sodium caseinate (CAS) oil-in-water (O/W) emulsions. The [...] Read more.
Polysaccharide intervention is an effective strategy to regulate properties of emulsions. In this study, xanthan gum (XG), konjac glucomannan (KGM), guar gum (GG), and inulin (IN) were selected to regulate physical and gastrointestinal digestive properties of sodium caseinate (CAS) oil-in-water (O/W) emulsions. The results indicate that IN could not improve CAS emulsion properties, while XG, KGM, and GG significantly reduced droplet size and improved emulsions’ stability. With the increase of the polysaccharide concentration, the G′ and G″ of the emulsions increased and the emulsions showed an obvious “solid-like” state, which effectively slowed down the “strain-thinning” phenomenon. The microstructure demonstrated that the polysaccharide chains are effectively connected with the surface membrane of droplets, which effectively improves interfacial membrane strength and inhibits droplet aggregation. In vitro digestion simulations proved that polysaccharides effectively modulate emulsion lipid release, providing an excellent lipid environment for curcumin absorption in the gastrointestinal tract. The order of the four polysaccharides in improving CAS emulsions was XG > KGM > GG > IN. This study dissects the differential regulation of physical and gastrointestinal digestive properties of emulsion by polysaccharides, providing theoretical support for functional emulsions for diverse requirements. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Figure 1

13 pages, 1099 KB  
Article
Protein Level and Particle Size-Dependent Stabilization of Oil-in-Water Emulsions by Sunflower Meal
by Strahinja Vidosavljević, Nikola Maravić, Zita Šereš, Aleksandar Fišteš and Nemanja Bojanić
Processes 2025, 13(12), 3882; https://doi.org/10.3390/pr13123882 (registering DOI) - 1 Dec 2025
Abstract
Sunflower meal represents a protein- and fiber-rich by-product of the oil industry with potential application as a natural stabilizer in food emulsions. Building upon previous findings that emphasized the role of protein content in emulsion stability, the present study further investigated the combined [...] Read more.
Sunflower meal represents a protein- and fiber-rich by-product of the oil industry with potential application as a natural stabilizer in food emulsions. Building upon previous findings that emphasized the role of protein content in emulsion stability, the present study further investigated the combined effect of protein level and particle size distribution of sunflower meal fractions on the formation and stability of oil-in-water emulsions. Two sets of sunflower meal fractions were prepared from finely milled material, fractionated, and blended in controlled proportions to obtain four protein-enriched (30 ± 1%) and four cellulose-rich (15 ± 1%) fractions, each defined by particle size ranges of 250/200, 200/125, 125/100, and <100 µm. Emulsion stability was evaluated through droplet size analysis, zeta potential measurements, and creaming index determination during seven days of storage. The results demonstrated that both protein content and particle size significantly affected the emulsifying and stabilizing behavior of sunflower meal fractions. For the low-protein group (15%), larger particle sizes (250/200 µm) yielded smaller emulsion droplets (D[4.3] = 66.03 µm) and higher zeta potential values (−15.53 mV), while in the high-protein group (30%), droplet size distribution was more uniform (D[4.3] from 72.13 to 76.29 µm). During seven days of storage, all emulsions exhibited a gradual increase in creaming index, followed by partial stabilization at later time points. Emulsions prepared with sunflower meal fractions of higher-protein content showed consistently lower creaming index values, indicating improved physical stability throughout storage. Overall, the study confirmed that the interplay between composition (protein level) and physical structure (particle size) governs the emulsification efficiency of sunflower meal fractions, providing insights for their potential application as plant-based stabilizers in food systems. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

15 pages, 1594 KB  
Review
Fabricating Partial Acylglycerols for Food Applications
by Harsh B. Jadhav, Dheeraj Kumar and Federico Casanova
Colloids Interfaces 2025, 9(6), 80; https://doi.org/10.3390/colloids9060080 (registering DOI) - 1 Dec 2025
Abstract
The functional characteristics of Partial acylglycerols (PAGs) have attracted the attention of researchers in designing PAGs for food applications as a potential substitute for conventional fats/oils. Designing PA using enzymes has been of great interest due to the greater specificity of enzymes, giving [...] Read more.
The functional characteristics of Partial acylglycerols (PAGs) have attracted the attention of researchers in designing PAGs for food applications as a potential substitute for conventional fats/oils. Designing PA using enzymes has been of great interest due to the greater specificity of enzymes, giving high-quality products for food applications. The utilization of PA in fat-based products, such as bakery, dairy, and emulsion foods, exhibits superior functionalities and health-friendly characteristics. The PA can also be used for cooking/frying applications. However, exposure of PA to a higher temperature for a longer time shows inferior characteristics. The functional characteristics of PA, such as solid fat content, rheology, microstructure, crystal formation, and thermal behavior, make it a potential replacement for conventional fat. The present review focuses on a comparative assessment of synthetic routes, the functional characteristics of PA, food applications, and technological drawbacks in commercializing PA-based products. Furthermore, the future prospect focuses on supporting future research that will facilitate the incorporation of PA in food products at an industrial scale. Full article
(This article belongs to the Special Issue Feature Reviews in Colloids and Interfaces)
Show Figures

Figure 1

23 pages, 1481 KB  
Article
Formulation and Analytical Evaluation of Liquid Cannabidiol Preparations: Comparative Study of Oil-Based Solutions and Emulsions
by Robert-Alexandru Vlad, Lénárd Farczádi, Denisa Paliștan, Cezara Pintea, Paula Antonoaea, Emöke-Margit Rédai, Andrada Pintea, Cornelia-Titiana Cotoi, Adriana Ciurba, Magdalena Bîrsan and Ruxandra-Emilia Ștefănescu
Pharmaceutics 2025, 17(12), 1533; https://doi.org/10.3390/pharmaceutics17121533 - 28 Nov 2025
Viewed by 57
Abstract
Background/Objectives: Cannabidiol (CBD) is a non-psychoactive compound found in the Cannabis sativa plant. Due to its broad therapeutic potential, CBD is often incorporated into various pharmaceutical formulations. This study aimed to evaluate homogenous (oil-based) and heterogeneous (emulsion-based) liquid preparations of CBD using [...] Read more.
Background/Objectives: Cannabidiol (CBD) is a non-psychoactive compound found in the Cannabis sativa plant. Due to its broad therapeutic potential, CBD is often incorporated into various pharmaceutical formulations. This study aimed to evaluate homogenous (oil-based) and heterogeneous (emulsion-based) liquid preparations of CBD using different fatty oils and provide a comprehensive comparative framework for the development of stable liquid dosage forms of cannabidiol (CBD), with direct applications in pharmaceutical formulations. Methods: The oils and emulsions were qualitatively analysed to assess their stability and suitability as CBD carriers. Ultraviolet (UV) spectrophotometry and High-Performance Liquid Chromatography (HPLC) were employed for quantifying CBD in the formulations and also characterising them in terms of product quality. Results: The results indicated that sunflower oil is the most stable and analytically compatible matrix, with CBD recovery close to 100% and minimal degradation over time. Conversely, linseed and pumpkin seed oils exhibited significant analytical interference and oxidative instability. Oil-in-water emulsions prepared with a 4% Tween 80/Span 80 mixture demonstrated optimal physical stability and droplet size distribution. Conclusions: Overall, both formulations can be regarded as suitable pharmaceutical carriers for CBD delivery. Full article
(This article belongs to the Special Issue Recent Advances in Pharmaceutical Formulation)
Show Figures

Figure 1

32 pages, 18674 KB  
Article
An Experimental Study on Oil–Water Emulsification Mechanism During Steam Injection Process in Heavy Oil Thermal Recovery
by Hui Cai, Zhilin Qi, Yingxian Liu, Dong Liu, Chunxiao Du, Jie Tian, Wende Yan and Taotao Luo
Energies 2025, 18(23), 6250; https://doi.org/10.3390/en18236250 - 28 Nov 2025
Viewed by 117
Abstract
This article focuses on the oil–water emulsification problem during steam injection in heavy oil thermal recovery. Emulsions were prepared through one-dimensional flow experiments, and key parameters including the inversion point water cut and micro-morphological characteristics (particle size and distribution range) of the emulsions [...] Read more.
This article focuses on the oil–water emulsification problem during steam injection in heavy oil thermal recovery. Emulsions were prepared through one-dimensional flow experiments, and key parameters including the inversion point water cut and micro-morphological characteristics (particle size and distribution range) of the emulsions were systematically measured under varied conditions (temperature: 150–360 °C; salinity: 0–7500 mg/L; water cut: 10.07–72.22%). By analyzing the experimental data, the emulsification mechanism and influencing rules were revealed: under the combined conditions of high temperature (150–360 °C), high salinity (up to 7500 mg/L), and low water cut (10.07–19.35%), crude oil and formation water form oil-in-water emulsions under the shear action of porous media. During this process, active substances in crude oil react with inorganic salts in formation water to generate natural surfactants, which reduce the oil–water interfacial tension and enhance emulsion stability, enabling the emulsion to maintain stability even at a high water cut of up to 72.22%, with particle sizes ranging from 1 μm to 350 μm and distribution spans varying from 4 μm to 50 μm. The formation of such emulsions leads to a significant increase in viscosity, adversely affecting oil recovery. In production practice, it is recommended to add chemical agents during the early stage of steam huff and puff development (water cut: 10.07–37.50%). This measure aims to destroy the oil–water liquid film, promote water droplet coalescence (narrowing the particle size distribution span), and facilitate emulsion breaking and phase inversion, thereby effectively mitigating the adverse impacts of oil–water emulsions and improving heavy oil recovery efficiency. Full article
(This article belongs to the Special Issue New Advances in Oil, Gas and Geothermal Reservoirs—3rd Edition)
Show Figures

Figure 1

16 pages, 1310 KB  
Article
Structural Modulation of Musky Octopus Proteins by pH and Ultrasound: From Aggregates to Protein–Quercetin Emulsion Stabilisers
by María Carmen Gómez-Guillén, Ailén Alemán, Ignacio Boto, Johana López-Polo and María Pilar Montero
Molecules 2025, 30(23), 4570; https://doi.org/10.3390/molecules30234570 - 27 Nov 2025
Viewed by 162
Abstract
This study investigates the potential of an undervalued cephalopod species, Eledone moschata, for producing a freeze-dried protein concentrate via acid solubilisation and isoelectric precipitation. Although nutritionally rich, the processing route significantly affected the aggregation state of the recovered proteins, as demonstrated by [...] Read more.
This study investigates the potential of an undervalued cephalopod species, Eledone moschata, for producing a freeze-dried protein concentrate via acid solubilisation and isoelectric precipitation. Although nutritionally rich, the processing route significantly affected the aggregation state of the recovered proteins, as demonstrated by differential scanning calorimetry (DSC) and SDS–PAGE electrophoresis. We systematically examined pretreatments of the lyophilised protein concentrate (PC) by dispersing it across a pH range (2–10) and applying ultrasonication (US), characterising the resulting aggregates in terms of protein solubility, surface hydrophobicity, dynamic light scattering (DLS), and ζ-potential. Subsequently, ultrasound-treated protein dispersions at different pH values were used to produce protein–quercetin nanoparticles (PQ), which were analysed for particle size (DLS), yield, and quercetin entrapment efficiency. PQ dispersions at pH 2, 4, and 7 were evaluated as stabilising agents in US-treated sunflower oil emulsions containing 10% oil and were characterised by rheological properties, microstructure, and DLS particle sizing. Confocal laser scanning microscopy (CLSM) revealed that nanoparticles at pH 2 produced small, uniformly distributed fat droplets with a particle diameter of 1.5 μm. This study provides insights into how processing conditions modulate the structural and interfacial behaviour of cephalopod proteins and highlights their potential application in designing low-fat, fluid emulsions for innovative food formulations. Full article
Show Figures

Figure 1

18 pages, 550 KB  
Article
A Pumpkin Seed Oil and Orange Peel Flour Gelled Emulsion as a Novel Fat Replacer in English Breakfast Sausages: Effects on Composition, Quality, and Sensory Acceptance
by Carmen Botella-Martínez, Alejandro López-Córdoba, Raquel Lucas-González, Juana Fernández-López, José Ángel Pérez-Álvarez and Manuel Viuda-Martos
Appl. Sci. 2025, 15(23), 12488; https://doi.org/10.3390/app152312488 - 25 Nov 2025
Viewed by 108
Abstract
The excessive intake of saturated and trans fats is associated with several chronic disorders. Reformulating foods to reduce total and saturated fats has therefore become a global health priority. However, the structural and sensory roles of saturated fats often hinder direct reduction. Oil [...] Read more.
The excessive intake of saturated and trans fats is associated with several chronic disorders. Reformulating foods to reduce total and saturated fats has therefore become a global health priority. However, the structural and sensory roles of saturated fats often hinder direct reduction. Oil structuring technologies, such as gelled emulsions, have emerged as effective strategies to replace solid fats with liquid vegetable oils, improving nutritional quality. This study evaluated the effects of partially replacing pork backfat (33% and 66%) with oil-in-water gelled emulsions prepared using pumpkin seed oil and orange peel flour (PS-GE) in English breakfast sausages. Reformulated samples exhibited higher moisture contents, whereas fat and protein levels were reduced compared with the control. Increasing the proportion of PS-GE substitution led to a progressive rise in total unsaturated fatty acids accompanied by a decrease in total saturated fatty acids. Lipid oxidation was not affected by the reformulation in raw sausages. Sensory evaluation confirmed comparable acceptability among all samples, indicating that fat replacement did not negatively influence product quality. Overall, the use of orange peel flour and pumpkin seed oil as a gelled emulsion presents a promising strategy for producing healthier English breakfast sausages with enhanced nutritional profiles and maintained technological and sensory properties. Full article
Show Figures

Figure 1

23 pages, 4382 KB  
Article
Structural Integrity Enhancement and Sustainable Machining Process Optimization for Anti-Lock Braking System Hydraulic Valve Blocks
by Alexandru-Nicolae Rusu, Dorin-Ion Dumitrascu and Adela-Eliza Dumitrascu
Materials 2025, 18(23), 5287; https://doi.org/10.3390/ma18235287 - 24 Nov 2025
Viewed by 255
Abstract
This paper presents an in-depth study on the structural integrity enhancement and machining process optimization of Anti-lock Braking System (ABS) hydraulic valve blocks, focusing on the transition from the MK60 to the MK100 design. The research combines finite element analysis (FEA), topology optimization, [...] Read more.
This paper presents an in-depth study on the structural integrity enhancement and machining process optimization of Anti-lock Braking System (ABS) hydraulic valve blocks, focusing on the transition from the MK60 to the MK100 design. The research combines finite element analysis (FEA), topology optimization, fixture redesign, and coolant technology improvements to achieve significant performance, productivity, and sustainability gains. The MK100 exhibits a mass reduction of 31.6%, an increase in tensile strength by 29.2%, and a fatigue life extension of 35% compared to the MK60. Pressure losses have been reduced by 38.8%, improving braking system responsiveness. On the manufacturing side, fixture redesign increased production capacity from 240 to 480 parts per shift while reducing cycle time from 16 min to 8 min per lot. The transition from a semi-synthetic emulsion coolant (AquaCut EM-X45) to a bio-based oil (BioLube AL-2200) extended coolant replacement intervals from six months to two years, reduced tooling costs, and increased tool life by 25%. These findings demonstrate the feasibility of integrating computational design methods with advanced machining strategies to achieve measurable mechanical and economic benefits in the automotive industry. Full article
(This article belongs to the Special Issue Modeling and Optimization of Material Properties and Characteristics)
Show Figures

Graphical abstract

17 pages, 5247 KB  
Article
Mulberry Leaf Glutelin: Physicochemical, Functional, and Pancreatic Lipase Inhibitory Activity of Seven Varieties
by Hongyan Li, Dongjun He, Xiaomin Zhang, Zhenpeng Liu, Mingxi Li, Tianran Shen, Shuang Wei, Xiyang Wu and Chongzhen Sun
Foods 2025, 14(23), 4004; https://doi.org/10.3390/foods14234004 - 22 Nov 2025
Viewed by 227
Abstract
Mulberry leaf glutelin (MG), a nutrient-rich protein fraction from mulberry leaves, remains underutilized due to limited studies on its physicochemical functional properties and biological activities. In this study, seven varieties of MG (TSG, DSG, 109G, C1G, C2G, C3G, C4G) were evaluated for amino [...] Read more.
Mulberry leaf glutelin (MG), a nutrient-rich protein fraction from mulberry leaves, remains underutilized due to limited studies on its physicochemical functional properties and biological activities. In this study, seven varieties of MG (TSG, DSG, 109G, C1G, C2G, C3G, C4G) were evaluated for amino acid composition, secondary structure (FTIR), solubility, water-holding capacity (WHC), oil absorption capacity (OAC), foaming capacity (FC), foam stability (FS), emulsifying activity index (EAI), emulsion stability index (ESI), in vitro digestibility, and pancreatic lipase inhibitory activity (PLI). The results showed that MG contains four secondary structures and 17 amino acids, being rich in glutamic acid, aspartic acid, and leucine. C3G exhibited superior solubility (96.32%) at pH 10, while C4G showed optimal WHC (9.27 g/g), FC (73.75%), and FS (92.80%). TSG exhibited the highest OAC (9.58 g/g) and EAI (15.79 m2/g), and DSG demonstrated an excellent ESI (117.25 min), digestibility (88.17%), and PLI (70.54%). These findings provide valuable insights for the application of MG in food processing and innovation, enhancing its potential value for the food industry and human health. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

17 pages, 2562 KB  
Article
Aqueous Solutions of Oil-Soluble Polyglycerol Esters: Structuring and Emulsifying Abilities
by Rumyana Stanimirova, Mihail Georgiev, Krassimir Danov and Jordan Petkov
Molecules 2025, 30(23), 4507; https://doi.org/10.3390/molecules30234507 - 22 Nov 2025
Viewed by 412
Abstract
The polyglycerol esters (PGEs) of fatty acids have a wide range of HLB values and applications in diverse industries, such as pharmaceuticals and cosmetics. While the physicochemical properties of oil-soluble PGEs dissolved in oil phases are well studied in the literature, there is [...] Read more.
The polyglycerol esters (PGEs) of fatty acids have a wide range of HLB values and applications in diverse industries, such as pharmaceuticals and cosmetics. While the physicochemical properties of oil-soluble PGEs dissolved in oil phases are well studied in the literature, there is no information on their structuring in aqueous phases and emulsifying abilities. We combined rheological and differential scanning calorimetry (DSC) measurements and microscopy observations to characterize the dependence of oil-soluble PGE structuring in aqueous phases on the PGE concentration, the temperature of solution homogenization, and the PGE molecular structure. Excellent correlations between the considerable changes in solution viscosity and the temperatures of the two endo- and exothermic peaks in the DSC thermograms are observed. Single-tail PGE molecules, which have a higher number of polyglycerol units, are better organized in networks, and the viscosity of their aqueous solutions is higher compared to that of the respective double-tail PGE molecules. PGEs exhibit good emulsifying ability and the viscosity of the produced emulsions at room temperature can differ by orders of magnitudes depending on the temperature of emulsification. The reported properties of oil-soluble PGEs could be of interest for increasing the range of their applicability in practice. Full article
(This article belongs to the Special Issue Development and Application of Environmentally Friendly Surfactants)
Show Figures

Graphical abstract

28 pages, 1675 KB  
Review
Mechanism and Potential of Aqueous Enzymatic Extraction for Constructing Green Production System for Lipids and Proteins
by Zefang Jiang, Jiaqi Chen, Xin Guo, Fusheng Chen, Xingfeng Guo, Qiang Wang and Bo Jiao
Foods 2025, 14(23), 3981; https://doi.org/10.3390/foods14233981 - 21 Nov 2025
Viewed by 527
Abstract
Conventional oil extraction methods face challenges such as nutrient loss, solvent residues, and protein denaturation. Aqueous enzymatic extraction (AEE), as a green alternative, offers mild processing and environmental benefits. However, its application is hindered by inefficient release of intracellular components due to rigid [...] Read more.
Conventional oil extraction methods face challenges such as nutrient loss, solvent residues, and protein denaturation. Aqueous enzymatic extraction (AEE), as a green alternative, offers mild processing and environmental benefits. However, its application is hindered by inefficient release of intracellular components due to rigid cell walls, difficulties in demulsifying stable oil–water interfaces, and insufficient valorization of by-products. Moreover, proteins are heterogeneously distributed among aqueous, emulsion, and solid phases with distinct functionalities, yet research remains disproportionately focused on aqueous-phase proteins, leading to suboptimal resource utilization. This study aims to elucidate targeted cell wall disruption mechanisms and the dynamic interplay between oil release and emulsion formation during enzymatic hydrolysis. By integrating physical-assisted technologies, we establish an oil–protein production system that overcomes efficient oil liberation and demulsification barriers. A multi-component functional evaluation framework is developed to systematically analysis oil nutritional properties and multi-phase protein functionalities. The proposed strategy of precision cellular deconstruction, technology integration, and component valorization provides a theoretical and technical foundation for enhancing AEE efficiency, producing high-quality oils, and advancing multi-phase protein functionalization. Full article
(This article belongs to the Special Issue Recent Research on Function and Structure of Plant-Based Food Protein)
Show Figures

Figure 1

26 pages, 6599 KB  
Article
Interfacial Engineering of High-Performance Pickering Emulsion–Gelatin Composite Films for Active Packaging
by Jia Kan, Mingzhu Li, Menghuan Liu, Ning Jiang, Zefeng Yue, Hao Yu, Rongxue Sun, Qianyuan Liu, Saikun Pan and Cheng Wang
Foods 2025, 14(22), 3978; https://doi.org/10.3390/foods14223978 - 20 Nov 2025
Viewed by 369
Abstract
Amidst the urgent demand for sustainable alternatives to petrochemical plastics, this work incorporated oregano essential oil Pickering emulsion (AOPE; stabilizer: acetylated chitin nanocrystals (a-ChNCs)) into the gelatin matrix. Through precisely engineered hydrogen-bonding networks at the a-ChNCs/gelatin interface, achieved through the systematic optimization of [...] Read more.
Amidst the urgent demand for sustainable alternatives to petrochemical plastics, this work incorporated oregano essential oil Pickering emulsion (AOPE; stabilizer: acetylated chitin nanocrystals (a-ChNCs)) into the gelatin matrix. Through precisely engineered hydrogen-bonding networks at the a-ChNCs/gelatin interface, achieved through the systematic optimization of AOPE concentration, a high-performance bio-based gelatin composite film (designated as GOPX%) was developed. Low-field nuclear magnetic resonance analysis confirmed that GOPX% containing AOPE exhibited increased hydrogen bonding crosslink density. At an AOPE loading of 6% (GOP6%), the composite film exhibited exceptional improvements compared with GOP0%: elongation at break increased by 107%, toughness increased by 167.5%, water vapor permeability decreased by 73.6%, and oxygen permeability reduced by 85.3%. Additionally, antibacterial and antioxidant properties were markedly enhanced. The Pickering emulsion effectively mitigated the damage of ultraviolet radiation and thermal effects on the bioactive properties of oregano essential oil. Overall, the incorporation of AOPE imparted the gelatin composite film with exceptional mechanical properties, barrier properties, antioxidant activity, and antibacterial activity, extending the shelf life of grass carp fillets by 3 days during storage. This sustainable and eco-friendly active packaging film offers a promising strategy for designing active packaging materials. Full article
Show Figures

Graphical abstract

18 pages, 3358 KB  
Article
Green Synthesis of Silica Nanoparticles from Sugarcane Bagasse Ash for Stable Pickering Oil-in-Water Emulsions
by Daniel Jaramillo-Vélez, Mariana Ochoa-Castaño, Andrea Flórez-Caro, Luis David Botero, Esteban Ureña-Benavides, Raúl Adolfo Valencia-Cardona, Jorge Andrés Velásquez-Cock and Catalina Gómez-Hoyos
Molecules 2025, 30(22), 4464; https://doi.org/10.3390/molecules30224464 - 19 Nov 2025
Viewed by 336
Abstract
The present study explores novel alternatives for the exploitation of sugarcane bagasse ash by obtaining and modifying SiO2 nanoparticles through a green synthesis method. The hydrophilic nature of the nanoparticles was modified using oleic acid. The nanoparticles were characterized using FTIR, FESEM, [...] Read more.
The present study explores novel alternatives for the exploitation of sugarcane bagasse ash by obtaining and modifying SiO2 nanoparticles through a green synthesis method. The hydrophilic nature of the nanoparticles was modified using oleic acid. The nanoparticles were characterized using FTIR, FESEM, and DLS, and their performance in the stabilization of Pickering emulsions was also studied. FESEM micrographs of the nanoparticles revealed an irregular and agglomerated structure. EDS confirmed that their main components are oxygen and silicon, and ATR-FTIR spectra demonstrated that oleic acid effectively modified the nanoparticles. Subsequently, O/W Pickering emulsions were fabricated by combining rotor–stator homogenization and probe ultra-sonication, using dodecane and liquid paraffin as model oil phases and SiO2 NPs as stabilizers. Static light scattering measurements showed that the emulsions exhibited polydispersity, while photographic monitoring confirmed that their physical stability was affected by the concentrations of oleic acid and nanoparticles: concentrations of up to 20.0 wt% and 1.0 wt%, respectively, produced emulsions that remained stable for 7 to 15 days. This study identifies the behavior and challenges associated with novel pathways for the valorization of sugarcane bagasse ash. The stabilization of Pickering emulsions using the obtained SiO2 NPs highlights their potential in pharmaceutical, cosmetic, and food applications. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants: Extraction and Application)
Show Figures

Graphical abstract

19 pages, 2664 KB  
Article
Proteins Extraction and Characterization in Spirulina Biomass: A Comparative Study of High-Pressure Homogenization and Alkaline Methods
by Eleonora Muccio, Rossella Francesca Lanza, Francesco Marra, Donatella Albanese and Francesca Malvano
Foods 2025, 14(22), 3942; https://doi.org/10.3390/foods14223942 - 18 Nov 2025
Viewed by 379
Abstract
The growing demand for sustainable proteins has driven interest in Limnospira platensis (Spirulina) due to its high protein content. However, the presence of the cell wall limits the availability and recovery of proteins within it. Conventional alkaline extraction is widely applied but often [...] Read more.
The growing demand for sustainable proteins has driven interest in Limnospira platensis (Spirulina) due to its high protein content. However, the presence of the cell wall limits the availability and recovery of proteins within it. Conventional alkaline extraction is widely applied but often results in low yields and excessive solvent consumption. This study compares the efficiency and functional properties of Spirulina proteins extracted using an alkaline method and high-pressure homogenisation (HPH) at 20, 50, 80 and 100 MPa. Following isoelectric precipitation, proteins were collected in precipitate and supernatant fractions and characterized for yield, solubility, phycobiliproteins content, emulsifying and foaming properties, water– and oil–holding capacity, thermal stability and rheological behaviour. Microscopy confirmed progressive cell disruption with increasing homogenization pressures. HPH at 50 MPa increased protein extraction by 28% compared to alkaline extraction and significantly (p < 0.05) improved solubility, oil-holding capacity, foaming and emulsion properties. Phycobiliproteins, particularly C–phycocyanin, were more efficiently recovered in HPH supernatants, achieving a higher purity index than the alkaline method. Rheological analysis showed weak gel-like network formation, whereas excessive mechanical stress reduced functionality. Overall, HPH emerges as an interesting method for obtaining Spirulina proteins with enhanced technological properties; however, pressure optimisation is required to avoid denaturation and functionality loss. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

11 pages, 230 KB  
Review
Red Palm Oil: Nutritional Composition, Bioactive Properties, and Potential Applications in Health and Cosmetics: A Narrative Review
by Husna Madoromae and Monthon Lertcanawanichakul
Molecules 2025, 30(22), 4402; https://doi.org/10.3390/molecules30224402 - 14 Nov 2025
Viewed by 546
Abstract
Red palm oil (RPO) is a rich source of bioactive compounds, including carotenoids, tocopherols, tocotrienols, and polyphenols, which contribute to its potent antioxidant and anti-inflammatory properties. This review summarizes the current understanding of RPO composition, bioactivity, and potential applications in health and cosmetics. [...] Read more.
Red palm oil (RPO) is a rich source of bioactive compounds, including carotenoids, tocopherols, tocotrienols, and polyphenols, which contribute to its potent antioxidant and anti-inflammatory properties. This review summarizes the current understanding of RPO composition, bioactivity, and potential applications in health and cosmetics. Current preclinical and small-scale clinical studies suggest that RPO bioactives can mitigate oxidative stress, modulate inflammatory pathways, and improve skin barrier function. Strategies to enhance stability and bioavailability, such as microencapsulation and formulation into emulsions or liposomes, are also discussed. The manuscript highlights the potential of RPO as a natural functional ingredient in dietary, nutraceutical, and cosmetic products. Comprehensive evaluation of these bioactive compounds provides insights for future research and practical applications in promoting human health. Full article
Show Figures

Graphical abstract

Back to TopTop