Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = optomechanical cavity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1724 KB  
Article
Fabrication Process Research for Silicon-Waveguide-Integrated Cavity Optomechanical Devices Using Magnesium Fluoride Protection
by Chengwei Xian, Pengju Kuang, Ning Fu, Zhe Li, Changsong Wang, Yi Zhang, Rudi Zhou, Guangjun Wen, Boyu Fan and Yongjun Huang
Micromachines 2025, 16(11), 1217; https://doi.org/10.3390/mi16111217 - 26 Oct 2025
Viewed by 365
Abstract
As an emerging platform for high-precision sensing, integrated silicon-waveguide-based cavity optomechanical devices face a critical fabrication challenge in the co-fabrication of silicon-on-insulator (SOI) micromechanical structures and optical waveguides: the silicon oxide (SiO2) layer beneath the waveguides is susceptible to etching during [...] Read more.
As an emerging platform for high-precision sensing, integrated silicon-waveguide-based cavity optomechanical devices face a critical fabrication challenge in the co-fabrication of silicon-on-insulator (SOI) micromechanical structures and optical waveguides: the silicon oxide (SiO2) layer beneath the waveguides is susceptible to etching during hydrofluoric acid (HF) release of the microstructures, leading to waveguide collapse and significantly reducing production yields. This study proposes a novel selective protection process based on a magnesium fluoride (MgF2) thin film to address the critical challenge of long-range waveguide collapse during hydrofluoric acid (HF) etching. By depositing a MgF2 protective layer over the waveguide regions via optical coating technology, localized protection of specific SiO2 areas during HF etching is achieved. The experimental results demonstrate the successful release of silicon waveguides with lengths of up to 5000 μm and a significant improvement in production yield. This work provides a compatible and efficient strategy for the fabrication of robust photonic–microelectromechanical integrated devices. Full article
Show Figures

Figure 1

11 pages, 2306 KB  
Article
Optical Path Design of an Integrated Cavity Optomechanical Accelerometer with Strip Waveguides
by Chengwei Xian, Pengju Kuang, Zhe Li, Yi Zhang, Changsong Wang, Rudi Zhou, Guangjun Wen, Yongjun Huang and Boyu Fan
Photonics 2025, 12(8), 785; https://doi.org/10.3390/photonics12080785 - 4 Aug 2025
Viewed by 1237
Abstract
To improve the efficiency and stability of the system, this paper proposes a monolithic integrated optical path design for a cavity optomechanical accelerometer based on a 250 nm top silicon thickness silicon-on-insulator (SOI) wafer instead of readout through U-shape fiber coupling. Finite Element [...] Read more.
To improve the efficiency and stability of the system, this paper proposes a monolithic integrated optical path design for a cavity optomechanical accelerometer based on a 250 nm top silicon thickness silicon-on-insulator (SOI) wafer instead of readout through U-shape fiber coupling. Finite Element Analysis (FEA) and Finite-Difference Time-Domain (FDTD) methods are employed to systematically investigate the performance of key optical structures, including the resonant modes and bandgap characteristics of photonic crystal (PhC) microcavities, transmission loss of strip waveguides, coupling efficiency of tapered-lensed fiber-to-waveguide end-faces, coupling characteristics between strip waveguides and PhC waveguides, and the coupling mechanism between PhC waveguides and microcavities. Simulation results demonstrate that the designed PhC microcavity achieves a quality factor (Q-factor) of 2.26 × 105 at a 1550 nm wavelength while the optimized strip waveguide exhibits a low loss of merely 0.2 dB over a 5000 μm transmission length. The strip waveguide to PhC waveguide coupling achieves 92% transmittance at the resonant frequency, corresponding to a loss below 0.4 dB. The optimized edge coupling structure exhibits a transmittance of 75.8% (loss < 1.2 dB), with a 30 μm coupling length scheme (60% transmittance, ~2.2 dB loss) ultimately selected based on process feasibility trade-offs. The total optical path system loss (input to output) is 5.4 dB. The paper confirms that the PhC waveguide–microcavity evanescent coupling method can effectively excite the target cavity mode, ensuring optomechanical coupling efficiency for the accelerometer. This research provides theoretical foundations and design guidelines for the fabrication of high-precision monolithic integrated cavity optomechanical accelerometers. Full article
Show Figures

Figure 1

19 pages, 431 KB  
Article
The Detection of a Defect in a Dual-Coupling Optomechanical System
by Zhen Li and Ya-Feng Jiao
Symmetry 2025, 17(7), 1166; https://doi.org/10.3390/sym17071166 - 21 Jul 2025
Viewed by 398
Abstract
We provide an approach to detect a nitrogen-vacancy (NV) center, which might be a defect in a diamond nanomembrane, using a dual-coupling optomechanical system. The NV center modifies the energy-level structure of a dual-coupling optomechanical system through dressed states arising from its interaction [...] Read more.
We provide an approach to detect a nitrogen-vacancy (NV) center, which might be a defect in a diamond nanomembrane, using a dual-coupling optomechanical system. The NV center modifies the energy-level structure of a dual-coupling optomechanical system through dressed states arising from its interaction with the mechanical membrane. Thus, we study the photon blockade in the cavity of a dual-coupling optomechanical system in which an NV center is embedded in a single-crystal diamond nanomembrane. The NV center significantly influences the statistical properties of the cavity field. We systematically investigate how three key NV center parameters affect photon blockade: (i) its coupling strength to the mechanical membrane, (ii) transition frequency, and (iii) decay rate. We find that the NV center can shift, give rise to a new dip, and even suppress the original dip in a bare quadratic optomechanical system. In addition, we can amplify the effect of the NV center on photon statistics by adding a gravitational potential when the NV center has little effect on photon blockade. Therefore, our study provides a method to detect diamond nanomembrane defects in a dual-coupling optomechanical system. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

21 pages, 5274 KB  
Article
Drive-Loss Engineering and Quantum Discord Probing of Synchronized Optomechanical Squeezing
by Hugo Molinares and Vitalie Eremeev
Mathematics 2025, 13(13), 2171; https://doi.org/10.3390/math13132171 - 3 Jul 2025
Viewed by 462
Abstract
In an optomechanical system (OMS), the dynamics of quantum correlations, e.g., quantum discord, can witness synchronized squeezing between the cavity and mechanical modes. We investigate an OMS driven by two coherent fields, and demonstrate that optimal quantum correlations and squeezing synchronization can be [...] Read more.
In an optomechanical system (OMS), the dynamics of quantum correlations, e.g., quantum discord, can witness synchronized squeezing between the cavity and mechanical modes. We investigate an OMS driven by two coherent fields, and demonstrate that optimal quantum correlations and squeezing synchronization can be achieved by carefully tuning key parameters: the cavity-laser detunings, loss rates, and the effective coupling ratio between the optomechanical interaction and the amplitude drive. By employing the steady-state solution of the covariance matrix within the Lyapunov framework, we identify the conditions under which squeezing becomes stabilized. Furthermore, we demonstrate that synchronized squeezing of the cavity and mechanical modes can be effectively controlled by tuning the loss ratio between the cavity and mechanical subsystems. Alternatively, in the case where the cavity is driven by a single field, we demonstrate that synchronized squeezing in the conjugate quadratures of the cavity and mechanical modes can still be achieved, provided that the cavity is coupled to a squeezed reservoir. The presence of this engineered reservoir compensates the absent driving field, by injecting directional quantum noise, thereby enabling the emergence of steady-state squeezing correlations between the two modes. A critical aspect of our study reveals how the interplay between dissipative and driven-dispersive squeezing mechanisms governs the system’s bandwidth and robustness against decoherence. Our findings provide a versatile framework for manipulating quantum correlations and squeezing in OMS, with applications in quantum metrology, sensing, and the engineering of nonclassical states. This work advances the understanding of squeezing synchronization and offers new strategies for enhancing quantum-coherent phenomena in dissipative environments. Full article
Show Figures

Figure 1

15 pages, 2117 KB  
Article
Enhancement of Photon Blockade Under the Joint Effect of Optical Parametric Amplification and Mechanical Squeezing
by Yue Hao, Jia-Le Tong, Suying Bai, Shao-Xiong Wu and Cheng-Hua Bai
Photonics 2025, 12(7), 628; https://doi.org/10.3390/photonics12070628 - 20 Jun 2025
Viewed by 545
Abstract
The photon blockade effect, as a quantum behavior in cavity optomechanics, has certain limitations, including stringent requirements for system parameters and technical difficulties in achieving strong nonlinear interactions. This paper proposes a novel scheme that aims to achieve strong nonlinear effects through introducing [...] Read more.
The photon blockade effect, as a quantum behavior in cavity optomechanics, has certain limitations, including stringent requirements for system parameters and technical difficulties in achieving strong nonlinear interactions. This paper proposes a novel scheme that aims to achieve strong nonlinear effects through introducing the degenerate optical parametric amplifier (OPA) and mechanical squeezing. These enhanced nonlinear effects can significantly improve the photon blockade effect, effectively overcoming the limitations of weak coupling. Our theoretical analysis demonstrates the successful realization of an ideal single-photon blockade (1PB) state through optimized parameter conditions. Additionally, this joint approach significantly enhances the two-photon blockade (2PB) effect and broadens the region where 2PB occurs. This finding helps us identify the optimal system parameters to maximize two-photon emission efficiency. By precisely controlling these parameters, a new pathway is opened for more flexible manipulation and utilization of the photon blockade effect in experiments. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

9 pages, 3584 KB  
Article
Parameter Study of 500 nm Thick Slot-Type Photonic Crystal Cavities for Cavity Optomechanical Sensing
by Zhe Li, Jun Liu, Yi Zhang, Chenguwei Xian, Yifan Wang, Kai Chen, Gen Qiu, Guangwei Deng, Yongjun Huang and Boyu Fan
Photonics 2025, 12(6), 584; https://doi.org/10.3390/photonics12060584 - 8 Jun 2025
Viewed by 3106
Abstract
In recent years, research on light-matter interactions in silicon-based micro/nano cavity optomechanical systems demonstrates high-resolution sensing capabilities (e.g., sub-fm-level displacement sensitivity). Conventional 2D photonic crystal (PhC) cavity optomechanical sensors face inherent limitations: thin silicon layers (200–300 nm) restrict both the mass block (critical [...] Read more.
In recent years, research on light-matter interactions in silicon-based micro/nano cavity optomechanical systems demonstrates high-resolution sensing capabilities (e.g., sub-fm-level displacement sensitivity). Conventional 2D photonic crystal (PhC) cavity optomechanical sensors face inherent limitations: thin silicon layers (200–300 nm) restrict both the mass block (critical for thermal noise suppression) and optical Q-factor. Enlarging the detection mass in such thin layers exacerbates in-plane height nonuniformity, severely limiting high-precision sensing. This study proposes a 500 nm thick silicon-based 2D slot-type PhC cavity design for advanced sensing applications, fabricated on a silicon-on-insulator (SOI) substrate with optimized air slot structures. Systematic parameter optimization via finite element simulations defines structural parameters for the 1550 nm band, followed by 6 × 6 × 6 combinatorial experiments on lattice constant, air hole radius, and line-defect waveguide width. Experimental results demonstrate a loaded Q-factor of 57,000 at 510 nm lattice constant, 175 nm air hole radius, and 883 nm line-defect waveguide width (measured sidewall angle: 88.4°). The thickened silicon layer delivers dual advantages: enhanced mass block for thermal noise reduction and high Q-factor for optomechanical coupling efficiency, alongside improved ridge waveguide compatibility. This work advances the practical development of CMOS-compatible micro-opto-electromechanical systems (MOEMS). Full article
Show Figures

Figure 1

13 pages, 903 KB  
Article
Direct and Indirect Coupling Entanglements in an Optomechanical Cavity Coupled to a Rydberg Superatom
by Dong Yan, Feifan Ren, Lei Huang, Yilongyue Guo, Jing Wang, Kaihui Gu and Hanxiao Zhang
Photonics 2025, 12(5), 472; https://doi.org/10.3390/photonics12050472 - 12 May 2025
Viewed by 599
Abstract
We investigate steady-state entanglement in a hybrid optomechanical cavity coupled to a Rydberg atomic ensemble confined within a single blockade region. The ensemble behaves as one superatom due to the rigid dipole blockade effect. Through optomechanical coupling, three types of bipartite entanglement emerge [...] Read more.
We investigate steady-state entanglement in a hybrid optomechanical cavity coupled to a Rydberg atomic ensemble confined within a single blockade region. The ensemble behaves as one superatom due to the rigid dipole blockade effect. Through optomechanical coupling, three types of bipartite entanglement emerge among the cavity, the Rydberg superatom, and the movable mirror. As the principal quantum number of the Rydberg atoms increases (leading to reduced atomic decay rates), the direct cavity–mirror coupling entanglement is redistributed into direct cavity–superatom coupling entanglement and indirect superatom–mirror coupling entanglement. Counterintuitively, this redistribution culminates in the complete suppression of two direct coupling entanglements, leaving only the indirect coupling entanglement persistent under resonant Stokes sideband conditions. Systematic parameter tuning reveals entanglement transfer pathways and establishes the preference of the superatom–mirror entanglement for specific principal quantum numbers. Furthermore, we demonstrate the thermal robustness of the surviving entanglement up to experimentally accessible temperatures. These findings advance the understanding of quantum entanglement in hybrid quantum systems and suggest applications in quantum information processing. Full article
Show Figures

Figure 1

16 pages, 328 KB  
Review
Dynamical Casimir Effect: 55 Years Later
by Viktor V. Dodonov
Physics 2025, 7(2), 10; https://doi.org/10.3390/physics7020010 - 29 Mar 2025
Cited by 1 | Viewed by 8576
Abstract
The paper represents a brief review of the publications in 2020 to 2024 related to the phenomena combined under the name of dynamical Casimir effect. Full article
17 pages, 3494 KB  
Article
Membrane-Mediated Conversion of Near-Infrared Amplitude Modulation into the Self-Mixing Signal of a Terahertz Quantum Cascade Laser
by Paolo Vezio, Andrea Ottomaniello, Leonardo Vicarelli, Mohammed Salih, Lianhe Li, Edmund Linfield, Paul Dean, Virgilio Mattoli, Alessandro Pitanti and Alessandro Tredicucci
Photonics 2025, 12(3), 273; https://doi.org/10.3390/photonics12030273 - 16 Mar 2025
Viewed by 5981
Abstract
A platform for converting near-infrared (NIR) laser power modulation into the self-mixing (SM) signal of a quantum cascade laser (QCL) operating at terahertz (THz) frequencies is introduced. This approach is based on laser feedback interferometry (LFI) with a THz QCL using a metal-coated [...] Read more.
A platform for converting near-infrared (NIR) laser power modulation into the self-mixing (SM) signal of a quantum cascade laser (QCL) operating at terahertz (THz) frequencies is introduced. This approach is based on laser feedback interferometry (LFI) with a THz QCL using a metal-coated silicon nitride trampoline membrane resonator as both the external QCL laser cavity and the mechanical coupling element of the two-laser hybrid system. We show that the membrane response can be controlled with high precision and stability both in its dynamic (i.e., piezo-electrically actuated) and static state via photothermally induced NIR laser excitation. The responsivity to nanometric external cavity variations and robustness to optical feedback of the QCL LFI apparatus allows a highly sensitive and reliable transfer of the NIR power modulation into the QCL SM voltage, with a bandwidth limited by the thermal response time of the membrane resonator. Interestingly, a dual information conversion is possible thanks to the accurate thermal tuning of the membrane resonance frequency shift and displacement. Overall, the proposed apparatus can be exploited for the precise opto-mechanical control of QCL operation with advanced applications in LFI imaging and spectroscopy and in coherent optical communication. Full article
(This article belongs to the Special Issue The Three-Decade Journey of Quantum Cascade Lasers)
Show Figures

Figure 1

20 pages, 8171 KB  
Article
Alignment of Fabry–Pérot Cavities for Optomechanical Acceleration Measurements
by Marina Rezinkina and Claus Braxmaier
Photonics 2025, 12(1), 15; https://doi.org/10.3390/photonics12010015 - 27 Dec 2024
Viewed by 1199
Abstract
The wave optics processes in a Fabry–Pérot cavity with a length of about tens of millimeters are considered. Such cavities are used, among other applications, in optomechanical accelerometers for precise measurement of displacement of moving elements. A Fabry–Pérot cavity formed by a spherical [...] Read more.
The wave optics processes in a Fabry–Pérot cavity with a length of about tens of millimeters are considered. Such cavities are used, among other applications, in optomechanical accelerometers for precise measurement of displacement of moving elements. A Fabry–Pérot cavity formed by a spherical and flat mirror is considered. The influence of parameters characterizing the alignment of the Fabry–Pérot cavity mirrors and the laser beam on the appearance of the higher order modes is investigated using numerical modeling. It is shown that the angle of inclination of the flat mirror of the cavity greatly affects the occurrence of higher order modes in addition to the fundamental mode. The levels of displacement of the axis of a spherical mirror in the vertical direction which do not cause the emergence of higher order modes is shown. The influence of the degree of displacement of the laser beam axis in the vertical direction relative to the symmetry axis of the Fabry–Pérot cavity is also investigated. Full article
Show Figures

Figure 1

14 pages, 4164 KB  
Article
Increasing Light-Induced Forces with Magnetic Photonic Glasses
by Hugo Avalos-Sánchez, Abraham J. Carmona-Carmona, Martha A. Palomino-Ovando, Benito Flores Desirena, Rodolfo Palomino-Merino, Khashayar Misaghian, Jocelyn Faubert, Miller Toledo-Solano and Jesus Eduardo Lugo
Photonics 2024, 11(9), 827; https://doi.org/10.3390/photonics11090827 - 1 Sep 2024
Viewed by 1708
Abstract
In this work, we theoretically and experimentally study the induction of electromagnetic forces in an opal-based magnetic photonic glass, where light normally impinges onto a disordered arrangement of SiO2 spheres by the aggregation of Fe3O4 nanoparticles. The working wavelength [...] Read more.
In this work, we theoretically and experimentally study the induction of electromagnetic forces in an opal-based magnetic photonic glass, where light normally impinges onto a disordered arrangement of SiO2 spheres by the aggregation of Fe3O4 nanoparticles. The working wavelength is 633 nm. Experimental evidence is presented for the force that results from forced oscillations of the photonic structure. Finite-element method simulations and a theoretical model estimate the magnetic force volumetric density value, peak displacement, and velocity of oscillations. The magnetic force is of the order of 56 microN, which is approximately 500-times higher than forces induced in dielectric optomechanical photonic crystal cavities. Full article
(This article belongs to the Special Issue Emerging Trends in Photonic Crystals)
Show Figures

Figure 1

10 pages, 2342 KB  
Article
Modulation of Second-Order Sideband Efficiency in an Atom-Assisted Optomechanical System
by Liang-Xuan Fan, Tao Shui, Ling Li and Wen-Xing Yang
Photonics 2024, 11(5), 416; https://doi.org/10.3390/photonics11050416 - 30 Apr 2024
Cited by 1 | Viewed by 1314
Abstract
We propose an efficient scheme to enhance the generation of optical second-order sidebands (OSSs) in an atom-assisted optomechanical system. The cavity field is coupled with a strong driving field and a weak probe field, and a control field is applied to the atom. [...] Read more.
We propose an efficient scheme to enhance the generation of optical second-order sidebands (OSSs) in an atom-assisted optomechanical system. The cavity field is coupled with a strong driving field and a weak probe field, and a control field is applied to the atom. We use the steady-state method to analyze the nonlinear interaction in the system, which is different from the traditional linear analysis method. The existence of an auxiliary three-level atom driven by the control field significantly enhances the generation of an OSS. It is found that the efficiency of the OSS can be effectively modulated by adjusting the Rabi frequency of the control field, optomechanical cooperativity and atomic coupling strength. Our scheme provides a promising solution for controlling light propagation and has potential application in quantum optical devices and quantum information networks. Full article
(This article belongs to the Special Issue Optics and Laser: Light Field Manipulation)
Show Figures

Figure 1

14 pages, 3109 KB  
Article
1/f Noise Mitigation in an Opto-Mechanical Sensor with a Fabry–Pérot Interferometer
by Andrea M. Nelson, Jose Sanjuan and Felipe Guzmán
Sensors 2024, 24(6), 1969; https://doi.org/10.3390/s24061969 - 20 Mar 2024
Cited by 1 | Viewed by 2794
Abstract
Low-frequency and 1/f noise are common measurement limitations that arise in a variety of physical processes. Mitigation methods for these noises are dependent on their source. Here, we present a method for removing 1/f noise of optical origin using a [...] Read more.
Low-frequency and 1/f noise are common measurement limitations that arise in a variety of physical processes. Mitigation methods for these noises are dependent on their source. Here, we present a method for removing 1/f noise of optical origin using a micro-cavity Fabry–Pérot (FP) interferometer. A mechanical modulation of the FP cavity length was applied to a previously studied opto-mechanical sensor. It effectively mimics an up-conversion of the laser frequency, shifting signals to a region where lower white-noise sources dominate and 1/f noise is not present. Demodulation of this signal shifts the results back to the desired frequency range of observation with the reduced noise floor of the higher frequencies. This method was found to improve sensitivities by nearly two orders of magnitude at 1 Hz and eliminated 1/f noise in the range from 1 Hz to 4 kHz. A mathematical model for low-finesse FP cavities is presented to support these results. This study suggests a relatively simple and efficient method for 1/f noise suppression and improving the device sensitivity of systems with an FP interferometer readout. Full article
(This article belongs to the Special Issue Sensors Based on Optical and Photonic Devices)
Show Figures

Figure 1

12 pages, 691 KB  
Article
Second-Order Sidebands and Group Delays in Coupled Optomechanical Cavity System with a Cubic Nonlinear Harmonic Oscillator
by Qiwen Zhao, Ying He, Yanfang Yang, Huifang Zhang and Yi Xu
Photonics 2024, 11(3), 256; https://doi.org/10.3390/photonics11030256 - 12 Mar 2024
Cited by 1 | Viewed by 2157
Abstract
The generation of second-order sidebands and its associated group delay is an important subject in optical storage and switch. In this work, the efficiency of second-order sideband generation in a coupled optomechanical cavity system with a cubic nonlinear harmonic oscillator is theoretically investigated. [...] Read more.
The generation of second-order sidebands and its associated group delay is an important subject in optical storage and switch. In this work, the efficiency of second-order sideband generation in a coupled optomechanical cavity system with a cubic nonlinear harmonic oscillator is theoretically investigated. It is found that the efficiency of second-order sideband generation can be effectively enhanced with the decrease in decay rate of optomechanical cavity, the increase in coupling strength between two cavities and the power of probe field. The slow light effect (i.e., positive group delay) is also observed in the proposed optomechanical cavity system, and can be controlled with the power of control field. Full article
(This article belongs to the Special Issue Levitated Optomechanics)
Show Figures

Figure 1

19 pages, 2260 KB  
Article
Quantum Dynamics of Cavity–Bose–Einstein Condensates in a Gravitational Field
by Zhen Li, Wang-Jun Lu and Ya-Feng Jiao
Photonics 2024, 11(3), 205; https://doi.org/10.3390/photonics11030205 - 24 Feb 2024
Viewed by 2532
Abstract
We theoretically studied the quantum dynamics of a cavity–Bose–Einstein condensate (BEC) system in a gravitational field, which is composed of a Fabry–Pérot cavity and a BEC. We also show how to deterministically generate the transient macroscopic quantum superposition states (MQSSs) of the cavity [...] Read more.
We theoretically studied the quantum dynamics of a cavity–Bose–Einstein condensate (BEC) system in a gravitational field, which is composed of a Fabry–Pérot cavity and a BEC. We also show how to deterministically generate the transient macroscopic quantum superposition states (MQSSs) of the cavity by the use of optomechanical coupling between the cavity field and the BEC. The quantum dynamics of the cavity–BEC system specifically include phase space trajectory dynamics, system excitation number dynamics, quantum entanglement dynamics, and quantum coherence dynamics. We found that the system performs increasingly complex trajectories for larger values of the Newtonian gravity parameter. Moreover, the number of phonon excitations of the system can be increased by coupling the cavity–BEC system to Newtonian gravity, which is analogous to an external direct current drive. The scattering of atoms inside the BEC affects the periodicity of the quantum dynamics of the system. We demonstrate a curious complementarity relation between the quantum entanglement and quantum coherence of cavity–BEC systems and found that the complementarity property can be sustained to some extent, despite being in the presence of the cavity decay. This phenomenon also goes some way to show that quantum entanglement and quantum coherence can be referred to together as quantum resources. Full article
Show Figures

Figure 1

Back to TopTop