Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,560)

Search Parameters:
Keywords = organic polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7072 KB  
Article
A 1D [Ni(L)(H2O)3]n·nH2O Coordination Polymer as a Dual Function Material for Antibiotic Detection and Dye Photo-Degradation
by Fengli Yu, Mingxuan Zhu, Xiaoyu Weng, Dazhi Sun, Xingyuan Yu, Jiazhen Shi, Zhifang Liu and Xiaoyang Yu
Molecules 2025, 30(22), 4366; https://doi.org/10.3390/molecules30224366 - 12 Nov 2025
Abstract
The development of materials for the remediation and monitoring of water environments remains a significant challenge in the field of environment and materials science. In this study, a nickel-based coordination polymer, [Ni(L)(H2O)3]n·nH2O (1), [...] Read more.
The development of materials for the remediation and monitoring of water environments remains a significant challenge in the field of environment and materials science. In this study, a nickel-based coordination polymer, [Ni(L)(H2O)3]n·nH2O (1), was synthesized employing 4,4′-(1H,1′H-[2,2′-biimidazole]-1,1′-diyl)dibenzoic acid (H2L). Single-crystal X-ray diffraction analysis showed that L2− ligands connect Ni2+ ions into 1D Z-shaped chains via two coordination modes. The chains are further assembled into a 3D supramolecular structure through hydrogen bonding interactions. The photocatalytic test showed that complex 1 could effectively degrade the organic dye methylene blue (MB). Under the conditions of catalyst dosage 5 mg, MB initial concentration 20 ppm and pH 7, the degradation efficiency reached 87.7% within 180 min. In addition, complex 1 can be used for the electrochemical detection of norfloxacin (NOR) by differential pulse voltammetry (DPV), exhibiting a linear response in the concentration range of 2–197 μM and the detection limit (LOD) of 1.74 μM. These results demonstrate that complex 1 has bifunctional properties of photocatalytic degradation of organic dyes and electrochemical sensing of antibiotic NOR, making it a promising candidate material for the synergistic treatment of complex pollutants. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Graphical abstract

24 pages, 4211 KB  
Article
Design of a Novel Polyvinyl Imidazole-Based Adsorbent for Efficient Textile Dye Removal
by Seyda Tugba Gunday, Arkan Almushikes, Fatmah Al Bibiy, Noor Alzayer, Lama Almedaires, Aljawharah Alagl, Ismail Anil and Omer Aga
Nanomaterials 2025, 15(22), 1708; https://doi.org/10.3390/nano15221708 - 12 Nov 2025
Abstract
Textile dye effluents containing toxic organic compounds pose serious environmental challenges. In this study, novel Poly(1-vinyl imidazole)-Bis[2-(methacryloyloxy)ethyl] phosphate (PVIB) polymers were synthesized with crosslinker molar fractions ranging from 5% to 80% and were subsequently investigated as advanced adsorbents for textile dye removal. Procion [...] Read more.
Textile dye effluents containing toxic organic compounds pose serious environmental challenges. In this study, novel Poly(1-vinyl imidazole)-Bis[2-(methacryloyloxy)ethyl] phosphate (PVIB) polymers were synthesized with crosslinker molar fractions ranging from 5% to 80% and were subsequently investigated as advanced adsorbents for textile dye removal. Procion Red (PR), a widely used reactive dye, was selected as the model pollutant. The materials were characterized using FTIR, TGA, DTG, SEM-EDX, WD-XRF, TEM, and BET analyses. Adsorption mechanisms were examined through kinetic, isotherm, and thermodynamic models. Among the synthesized formulations, PVIB20% achieved the best dye removal, reaching an experimental adsorption capacity of 330 mg g−1 within 60 min under acidic to neutral conditions. The kinetic modeling studies identified the pseudo-first-order model as the best fit, indicating a surface-controlled process involving both physical and chemical interactions. Isotherm studies showed that the Langmuir and Redlich–Peterson models provided the best fit, yielding a maximum monolayer adsorption capacity of 765 mg g−1. Thermodynamic analysis revealed that the adsorption was spontaneous, endothermic, and entropy-driven. Overall, PVIB20% demonstrated superior adsorption capacity, rapid kinetics, and strong dye–polymer interactions compared with many conventional and modified adsorbents, which highlights its potential as an efficient and durable material for anionic dye removal from wastewater. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

30 pages, 5866 KB  
Review
Performance Optimization Strategies for Polymer Organic Field-Effect Transistors as Sensing Platforms
by Yan Wang, Zimin Ye, Tianci Wang, Linxiao Zu and Liwen Chen
Sensors 2025, 25(22), 6891; https://doi.org/10.3390/s25226891 - 11 Nov 2025
Abstract
Organic field-effect transistors (OFETs) have emerged as a transformative platform for high-performance sensing technologies, yet their full potential can be realized only through coordinated performance optimization. This article provides a comprehensive review of recent strategies employed in polymer OFETs to enhance key parameters, [...] Read more.
Organic field-effect transistors (OFETs) have emerged as a transformative platform for high-performance sensing technologies, yet their full potential can be realized only through coordinated performance optimization. This article provides a comprehensive review of recent strategies employed in polymer OFETs to enhance key parameters, including carrier mobility (μ), threshold voltage (Vth), on/off current ratio (Ion/Ioff), and operational stability. These strategies encompass both physical and chemical approaches, such as annealing, self-assembled monolayers (SAMs), modification of main and side polymer chains, dielectric-layer engineering, buffer-layer insertion, and blending or doping techniques. The development of high-performance devices requires precise integration of physical processing and chemical design, alongside the anticipation of processing compatibility during the molecular design phase. This article further highlights the limitations of focusing solely on high mobility and advocates a balanced optimization across multiple dimensions—mobility, mechanical flexibility, environmental stability, and consistent functional performance. Adopting a multi-scale optimization framework spanning molecular, film, and device levels can substantially enhance the adaptability of OFETs for emerging applications such as flexible sensing, bioelectronic interfaces, and neuromorphic computing. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 3146 KB  
Article
Improved Polymer Membrane for Textile Zinc-Ion Capacitor
by Sheng Yong, Sasikumar Arumugam and Stephen Paul Beeby
Polymers 2025, 17(22), 2995; https://doi.org/10.3390/polym17222995 - 11 Nov 2025
Abstract
This work presents the design, fabrication and characterisation of an improved textile energy storage device implemented in a single layer of polyester cotton and silk fabric. To achieve this, the energy storage device has evolved from an electrical double-layer (EDL) supercapacitor to a [...] Read more.
This work presents the design, fabrication and characterisation of an improved textile energy storage device implemented in a single layer of polyester cotton and silk fabric. To achieve this, the energy storage device has evolved from an electrical double-layer (EDL) supercapacitor to a zinc-ion supercapacitor (ZHSC) with an optimised co-polymer membrane containing a polyethene oxide (PEO) additive and a polyvinylidene (PVDF)-based organic electrolyte. The flexible textile ZHSC achieved an areal capacitance of 159.5 mF cm−2 and an energy density of 52.3 µWh cm−2 (increasing by a factor of 4 and 1.8, respectively, on the previous work) with a power density of 0.27 mW cm−2 and good bending stability. Full article
(This article belongs to the Special Issue Polymeric Materials for Next-Generation Energy Storage)
Show Figures

Figure 1

17 pages, 821 KB  
Review
Feasibility and Implications of Biodegradable Diaper Alternatives
by Vintia Mulungo and Thandi Patricia Gumede
Sustainability 2025, 17(22), 10072; https://doi.org/10.3390/su172210072 - 11 Nov 2025
Abstract
Disposable diapers contribute significantly to municipal solid waste, with non-biodegradable polymers such as low-density polyethylene (LDPE) persisting in landfills for centuries. Biodegradable alternatives, including polylactic acid (PLA), poly(butylene adipate-co-terephthalate) (PBAT), bamboo, and organic cotton, offer reduced environmental persistence, although challenges remain regarding cost, [...] Read more.
Disposable diapers contribute significantly to municipal solid waste, with non-biodegradable polymers such as low-density polyethylene (LDPE) persisting in landfills for centuries. Biodegradable alternatives, including polylactic acid (PLA), poly(butylene adipate-co-terephthalate) (PBAT), bamboo, and organic cotton, offer reduced environmental persistence, although challenges remain regarding cost, mechanical performance, and scalability. This review synthesizes current literature on these materials, highlighting their properties, biodegradation mechanisms, environmental performance, and commercial feasibility. In addition, we examine emerging biodegradable superabsorbent polymers (SAPs), such as polysaccharide-based hydrogels, chitosan, and nanocellulose, essential for fully compostable diapers. Our review uniquely integrates material performance, tropical high-humidity degradation, cost considerations, and consumer acceptance, providing insights into both technological advances and barriers to adoption. Key challenges include high production costs, supply chain limitations, and maintaining performance parity with conventional diapers. Finally, we discuss sustainable waste management strategies, including industrial composting, and identify future research directions focused on optimizing biopolymer properties, safety, and life-cycle impacts. This synthesis informs researchers, industry stakeholders, and policymakers seeking to advance environmentally responsible diaper products. Full article
Show Figures

Figure 1

27 pages, 3496 KB  
Article
Bifunctional N/S-Coordinated Thiadiazole–Triazine Porous Organic Polymer for Efficient Hg(II) Immobilization in Aqueous–Soil Systems
by Kai Li and Rongguo Sun
Processes 2025, 13(11), 3652; https://doi.org/10.3390/pr13113652 - 11 Nov 2025
Abstract
Mercury (Hg) contamination in water and soil poses severe ecological and human health risks, yet conventional sorbents often suffer from limited capacity, selectivity, and stability. Here, we report a bifunctional porous organic polymer (AMTD-TCT) rationally constructed by covalently crosslinking 2-amino-5-mercapto-1,3,4-thiadiazole with trichlorotriazine, thereby [...] Read more.
Mercury (Hg) contamination in water and soil poses severe ecological and human health risks, yet conventional sorbents often suffer from limited capacity, selectivity, and stability. Here, we report a bifunctional porous organic polymer (AMTD-TCT) rationally constructed by covalently crosslinking 2-amino-5-mercapto-1,3,4-thiadiazole with trichlorotriazine, thereby integrating abundant sulfur and nitrogen coordination sites within a stable mesoporous framework. AMTD-TCT exhibits an ultrahigh Hg(II) adsorption capacity of 1257.7 mg g−1, far exceeding most reported porous sorbents. Adsorption follows monolayer chemisorption, governed by strong S–Hg and N–Hg coordination and Na+/Hg2+ ion exchange, while hierarchical porosity ensures rapid diffusion and efficient utilization of active sites. The polymer maintains robust performance over a wide pH range and demonstrates strong retention with minimal desorption, underscoring its environmental durability. These findings highlight AMTD-TCT as a highly effective and scalable platform for Hg(II) remediation in complex aqueous–soil systems and illustrate a generalizable molecular design strategy for developing multifunctional porous polymers in advanced separation and purification technologies. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 2249 KB  
Article
Use Organic Polymers Polyvinyl Alcohol (PVA) and Polyethylene Oxide (PEO) in Diesel Heating Fuel to Reduce Humidity and Sulfur and Enhance Combustion Efficiency
by George Tzilantonis, Adamos Stimoniaris, Ioanna A. Vasiliadou, Athanasios Kanapitsas and Constantinos G. Tsanaktsidis
Appl. Sci. 2025, 15(22), 11945; https://doi.org/10.3390/app152211945 - 10 Nov 2025
Viewed by 69
Abstract
The use of conventional fuels for heat, energy, or motion production is largely determined by the concentration of water in the fuel. Therefore, the knowledge of the moisture content is of particular importance for combustion efficiency. Specifically, the presence of water in fuels [...] Read more.
The use of conventional fuels for heat, energy, or motion production is largely determined by the concentration of water in the fuel. Therefore, the knowledge of the moisture content is of particular importance for combustion efficiency. Specifically, the presence of water in fuels can cause corrosion, and during preheating the water vapor can cause extinguishing of the flame, while at low temperatures it can cause blockage of the network by ice that can be formed. In general, the presence of water can contribute to the development of organic and inorganic substrates that may contribute to fuel turbidity, a fact that is addressed by the addition of chemical additives. In the present work, the possibility of removing moisture from heating diesel fuel through the properties of ionic and non-ionic organic polymers, namely polyvinyl alcohol (PVA) and polyethylene oxide (PEO), was studied. The experimental data obtained by the addition of the polymers to the diesel showed that the fuel’s physicochemical properties were within the suitability limits, while the moisture content was decreased from 62 mg/kg to 50 mg/kg and 53 mg/kg, respectively, for PVA and PEO polymers. A mathematical expression of adsorption was used to simulate the experimental findings. In addition, the sulfur content was decreased from 941 mg/kg to 937 mg/kg when PVA was used. The methodology proposed for improving the physicochemical properties of heating diesel through organic polymers can optimize its combustion behavior to be more environmentally friendly. Full article
Show Figures

Figure 1

29 pages, 11420 KB  
Article
FRESCO: An Open Database for Fiber and Polymer Strengthening of Infilled RC Frame Systems
by Vachan Vanian and Theodoros Rousakis
Fibers 2025, 13(11), 152; https://doi.org/10.3390/fib13110152 - 10 Nov 2025
Viewed by 140
Abstract
This paper presents FRESCO (Fiber REinforced Strengthening COmposite Database), a comprehensive open-source database designed to systematically organize experimental data on infilled RC frame systems that can be strengthened with advanced composite materials, such as Fiber-Reinforced Polymers (FRP), Textile-Reinforced Mortars (TRM), and other fiber-based [...] Read more.
This paper presents FRESCO (Fiber REinforced Strengthening COmposite Database), a comprehensive open-source database designed to systematically organize experimental data on infilled RC frame systems that can be strengthened with advanced composite materials, such as Fiber-Reinforced Polymers (FRP), Textile-Reinforced Mortars (TRM), and other fiber-based solutions. The database employs open source practices while providing high-quality output that is fully compatible with leading commercial software packages such as ANSYS 2022R2. It uses Python3 as the main programming language and FreeCAD v1.0 as the model generation engine, with a systematic 13-section structure that ensures complete documentation of all parameters necessary for numerical modeling and validation of analytical methods. Two types of databases are provided: in comma-separated format (.csv) for common everyday interaction and in JSON format (.json) for easy programmatic access. The database features automated 3D modeling capabilities, converting experimental data into detailed finite element models with solid RC frame geometry, reinforcement details, and infill configurations. Validation through three comprehensive examples demonstrates that numerical models generated from the database closely match experimental results, with response curves that closely match the initial stiffness, the peak loading and the post-peak stiffness degradation phase across different loading conditions. The database focuses on RC frame systems with unreinforced brick infill. Reflecting the term FRESCO, which in Greek (φρέσκο) means “fresh”, the database is designed as a dynamic, evolving resource, with future versions planned to include RC walls and full buildings. Full article
Show Figures

Figure 1

12 pages, 3194 KB  
Article
Development of a Drug Delivery System Using a Compound Based on Ethyl Cyanoacrylate and Hancornia speciosa (Gomes) in a Rat Calvaria Model
by Daniel Felipe Fernandes Paiva, Marco Antonio Tridapalli Mafra, Victor Augusto Benedicto dos Santos, Sidney Raimundo Figueroba, Anne Caroline Gercina Carvalho Dantas, Klinger de Souza Amorim, Francisco Haiter Neto, Camila Batista da Silva and Francisco Carlos Groppo
Pharmaceuticals 2025, 18(11), 1695; https://doi.org/10.3390/ph18111695 - 8 Nov 2025
Viewed by 190
Abstract
Background/Objectives: Regenerating critical-sized bone defects is a significant clinical challenge. Autogenous bone grafts are the gold standard but have limitations, including donor site morbidity. As an alternative, this study introduces a novel biocomposite combining an ethyl cyanoacrylate (ECA) polymer with Hancornia speciosa [...] Read more.
Background/Objectives: Regenerating critical-sized bone defects is a significant clinical challenge. Autogenous bone grafts are the gold standard but have limitations, including donor site morbidity. As an alternative, this study introduces a novel biocomposite combining an ethyl cyanoacrylate (ECA) polymer with Hancornia speciosa (Hs) latex. The ECA acts as a scaffold and delivery vehicle for the latex, which contains phytochemicals with known angiogenic properties. Methods: We created 5 mm critical-sized calvarial defects in 36 Wistar rats, which were divided into four experimental groups. Bone regeneration was evaluated at 30, 60, and 90 days using micro-computed tomography (micro-CT) for morphometric analysis and hematoxylin and eosin staining for histology. Results: The composite-treated group (Hs+ECA) showed significantly higher bone volume (57.2; IQR: 56.7–61.2) than the control (53.9; IQR: 49.4–56.4) and ECA-only (48.4; IQR: 47.2–59.9) groups at 90 days (p < 0.05). By day 60, the bone volume in the Hs+ECA group was statistically similar (p > 0.05) to that of the autogenous bone group. Histological analysis revealed an organized repair process with neoangiogenesis observed only in the Hs+ECA group, confirming the material’s strong bioactivity. Conclusions: The Hs+ECA composite is a promising biomaterial that acts as an effective delivery system for the bioactive components of the latex. The induced angiogenesis was critical to its regenerative success. This cost-effective material warrants further investigation for clinical applications in regenerative dentistry. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Drug Delivery)
Show Figures

Graphical abstract

16 pages, 3117 KB  
Article
Production of Organic Acids from Cashew Nut Shell Liquid (CNSL) via Electrochemical Synthesis
by Jorge A. Ducuara, Alvaro A. Arrieta and Oriana Palma Calabokis
Int. J. Mol. Sci. 2025, 26(22), 10821; https://doi.org/10.3390/ijms262210821 - 7 Nov 2025
Viewed by 201
Abstract
Environmental problems arising from conventional production models have posed a significant challenge in the search for renewable sources as raw materials for the production of everyday chemical compounds through more sustainable alternatives. The objective of the present work was the electrochemical synthesis of [...] Read more.
Environmental problems arising from conventional production models have posed a significant challenge in the search for renewable sources as raw materials for the production of everyday chemical compounds through more sustainable alternatives. The objective of the present work was the electrochemical synthesis of organic acids from the liquid of the natural and technical cashew nut shell (CNSLn and CNSLt), employing chronopotentiometry using a potentiostat and a graphite working electrode. Two concentrations (0.01–0.1% v/v) of CNSLn and CNSLt, two concentrations of NaOH as supporting electrolyte (0.125–2 M), and two current densities (40–60 mA/cm2) were tested in the experiments. Organic acids were detected and quantified by HPLC. To characterize the redox processes occurring in the constituents of CNSL, spectroelectrochemical analysis (FTIR–cyclic voltammetry), FTIR, and chronoamperometry were performed. The maximum concentrations obtained in the treatments were: acetic acid (828.86 mg/L), lactic acid (531.78 mg/L), and formic acid (305.4 mg/L), while other acids present in lower concentrations included oxalic, propionic, citric, and malonic acids. Voltammetry characterizations showed three irreversible oxidation processes in the anodic wave during the first cycle, indicating that the first process involved the formation of the phenoxy radical, the second process the formation of hydroquinones and benzoquinones, and the third process the cleavage of the aromatic ring and the aliphatic chain to form the organic acids. Furthermore, another oxidation pathway was observed, consisting of a fourth process in the second voltammetry cycle, corresponding to the nucleation of the phenoxy radical, evidenced as the formation of the C–O–C bond visible at 1050 cm−1 in the infrared spectrum. From this route, a polymer was formed on the electrode surface, which limited the yield of organic acid synthesis. Finally, this research provides new insights in the field of electrochemistry, specifically in the synthesis of organic acids from CNSL as a renewable feedstock, with the novelty being the production of oxalic, propionic, citric, and malonic acids. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

23 pages, 1696 KB  
Review
Chitosan-Grafted Graphene Oxide-Reinforced Bio-Based Waterborne Epoxy Nanocomposites for Antibacterial and Corrosion Resistance in Tropical Marine Environments: A Mini-Review
by Yunyang Wu, Zhongyuan Luo, Yucheng Wang, Chengwei Xu and Yuanzhe Li
Polymers 2025, 17(21), 2964; https://doi.org/10.3390/polym17212964 - 6 Nov 2025
Viewed by 512
Abstract
Epoxy resin coatings are widely employed for steel protection owing to their excellent adhesion, chemical stability, mechanical strength, and barrier properties. However, conventional bisphenol A-based resins and organic solvents may pose risks to reproductive, developmental, and immune systems, as well as contribute to [...] Read more.
Epoxy resin coatings are widely employed for steel protection owing to their excellent adhesion, chemical stability, mechanical strength, and barrier properties. However, conventional bisphenol A-based resins and organic solvents may pose risks to reproductive, developmental, and immune systems, as well as contribute to atmospheric pollution. This mini-review critically evaluates recent advancements in fully waterborne bio-based epoxy nanocomposites as sustainable alternatives, with particular emphasis on their enhanced antibacterial and corrosion-resistant performance in tropical marine environments. A central focus is the role of chitosan-grafted graphene oxide (Chi-GO) as a multifunctional nanofiller that significantly enhances both antibacterial efficacy and barrier capabilities. For instance, coatings reinforced with Chi-GO exhibit up to two orders of magnitude lower corrosion current density than pristine epoxy coatings, and achieve over 95% bacterial inhibition against Escherichia coli and Staphylococcus aureus at a 1 wt.% loading. The review summarizes key synthesis methods, functional modification techniques, and commonly adopted evaluation approaches. Emerging research further underscores environmental performance metrics, including reduced volatile organic compound (VOC) emissions and improved life-cycle assessments. By integrating bio-based polymer matrices with Chi-GO, these composite systems present a promising pathway toward environmentally benign and durable protective coatings. Nevertheless, critical challenges concerning scalability and long-term stability under real-world operating conditions remain insufficiently addressed. Future research should emphasize scalable manufacturing strategies, such as roll-to-roll processing, and conduct extended tropical exposure testing (e.g., salt spray tests beyond 2000 h). Additionally, developing comprehensive life-cycle assessment (LCA) frameworks will be crucial for sustainable industrial implementation. Full article
(This article belongs to the Special Issue Polymers for Protective Coatings)
Show Figures

Figure 1

17 pages, 5908 KB  
Article
Analysis of Olfactive Prints from Artificial Lung Cancer Volatolome with Nanocomposite-Based vQRS Arrays for Healthcare
by Abhishek Sachan, Mickaël Castro and Jean-François Feller
Biosensors 2025, 15(11), 742; https://doi.org/10.3390/bios15110742 - 4 Nov 2025
Viewed by 416
Abstract
Exhaled breath analysis is emerging as one of the most promising non-invasive strategies for the early detection of life-threatening diseases, especially lung cancer, where rapid and reliable diagnosis remains a major clinical challenge. In this study, we designed and optimized an electronic nose [...] Read more.
Exhaled breath analysis is emerging as one of the most promising non-invasive strategies for the early detection of life-threatening diseases, especially lung cancer, where rapid and reliable diagnosis remains a major clinical challenge. In this study, we designed and optimized an electronic nose (e-nose) platform composed of quantum resistive vapor sensors (vQRSs) engineered by polymer-carbon nanotube nanocomposites via spray layer-by-layer assembly. Each sensor was tailored through specific polymer functionalization to tune selectivity and enhance sensitivity toward volatile organic compounds (VOCs) of medical relevance. The sensor array, combined with linear discriminant analysis (LDA), demonstrated the ability to accurately discriminate between cancer-related biomarkers in synthetic blends, even when present at trace concentrations within complex volatile backgrounds. Beyond artificial mixtures, the system successfully distinguished real exhaled breath samples collected under challenging conditions, including before and after smoking and alcohol consumption. These results not only validate the robustness and reproducibility of the vQRS-based array but also highlight its potential as a versatile diagnostic tool. Overall, this work underscores the relevance of nanocomposite chemo-resistive arrays for breathomics and paves the way for their integration into future portable e-nose devices dedicated to telemedicine, continuous monitoring, and early-stage disease diagnosis. Full article
Show Figures

Figure 1

30 pages, 1506 KB  
Review
Recent Developments in Cellulose/Chitosan Biopolymer Composites for Winery Wastewater Treatment and Reuse: A Review
by Fisokuhle Innocentia Kumalo, Innocent Mugudamani, Ernestine Atangana and Thandi Patricia Gumede
Materials 2025, 18(21), 5028; https://doi.org/10.3390/ma18215028 - 4 Nov 2025
Viewed by 466
Abstract
Winery wastewater, characterized by high organic load, fluctuating pH, and seasonal variability, presents a major environmental challenge for sustainable water management in viticulture regions. Recent advances in bio-based polymer composites, particularly those incorporating cellulose and chitosan matrices blended with synthetic polymers such as [...] Read more.
Winery wastewater, characterized by high organic load, fluctuating pH, and seasonal variability, presents a major environmental challenge for sustainable water management in viticulture regions. Recent advances in bio-based polymer composites, particularly those incorporating cellulose and chitosan matrices blended with synthetic polymers such as polyacrylamide (PAM), polyvinyl alcohol (PVA), and polyethylene glycol (PEG), provide promising possibilities for effective wastewater treatment and water reuse in irrigation. This review critically explores the synthesis, structural properties, and functional performance of cellulose/chitosan-based composites, with a particular emphasis on their adsorption, flocculation, and biodegradability in the context of winery effluent treatment. Evidence from recent laboratory- and pilot-scale studies highlights the significance of pH-responsive functional groups, electrostatic interactions, and hydrogen bonding in controlling pollutant capture and regeneration efficiency. While notable removal efficiencies of these composites have been demonstrated to exceed 85–95% for COD, 80–98% for turbidity, and >90% for heavy metals, challenges remain in terms of regeneration, long-term field applicability, and scale-up. Overall, biopolymer composites represent a promising pathway toward sustainable wastewater treatment and irrigation reuse in winery operations. Full article
Show Figures

Figure 1

15 pages, 5118 KB  
Article
Making Fluorescent Nylon, Polypropylene, and Polystyrene Microplastics for In Vivo and In Vitro Imaging
by Charles E. Bardawil, Jarrett Dobbins, Shannon Lankford, Saif Chowdrey, Jack Shumway, Gayathriy Balamayooran, Cedric Schaack and Rajeev Dhupar
Microplastics 2025, 4(4), 84; https://doi.org/10.3390/microplastics4040084 - 4 Nov 2025
Viewed by 307
Abstract
Microplastics (MPs) are synthetic environmental pollutants increasingly linked to adverse human health effects. To study their biological impact, researchers require access to environmentally relevant MPs that can be accurately tracked in biological systems. However, most ambient MPs are composed of non-conjugated polymers that [...] Read more.
Microplastics (MPs) are synthetic environmental pollutants increasingly linked to adverse human health effects. To study their biological impact, researchers require access to environmentally relevant MPs that can be accurately tracked in biological systems. However, most ambient MPs are composed of non-conjugated polymers that lack intrinsic fluorescence, limiting their utility in live-cell or in vivo imaging. Addressing this challenge, we present two alternative labeling approaches that enable visualization, tracking, and quantification of MPs. First, we stained nylon and polypropylene MPs with Rhodamine 6G, a fluorescent dye known for its stability and compatibility with in vivo applications. These labeled MPs retained strong fluorescence in murine lung tissue for up to one week, as confirmed by fluorescent microscopy. Second, we conjugated aminated polystyrene microspheres with IRDye-800CW, a near-infrared fluorophore that enables high-resolution imaging with minimal tissue autofluorescence via an In Vivo Imaging System and confocal microscopy. In vivo experiments revealed organ-specific accumulation of IRDye-labeled MPs, with a 2.8-fold increase in the liver and a 5-fold increase in spleen compared to controls, detectable up to 72 h post-injection. These labeling strategies provide researchers with practical tools to visualize and study the biodistribution of MPs in biological systems, advancing efforts to understand their health implications. Full article
Show Figures

Graphical abstract

25 pages, 5439 KB  
Article
Hydrogen Carriers for Renewable Microgrid System Applications
by Dionissios D. Papadias, Rajesh K. Ahluwalia, Jui-Kun Peng, Peter Valdez, Ahmad Tbaileh and Kriston Brooks
Energies 2025, 18(21), 5775; https://doi.org/10.3390/en18215775 - 1 Nov 2025
Viewed by 278
Abstract
Utility-scale energy storage can help improve grid reliability, reduce costs, and promote faster adoption of intermittent sources such as solar and wind. This paper analyzes the technical aspects and economics of standalone microgrids operating on intermittent power combined with hydrogen energy storage. It [...] Read more.
Utility-scale energy storage can help improve grid reliability, reduce costs, and promote faster adoption of intermittent sources such as solar and wind. This paper analyzes the technical aspects and economics of standalone microgrids operating on intermittent power combined with hydrogen energy storage. It explores the feasibility of using dibenzyltoluene (DBT) as a liquid organic hydrogen carrier to absorb excess energy during periods of high supply and polymer electrolyte fuel cells to generate electrical energy during periods of low supply. A comparative analysis is conducted on three power demand scenarios (industrial, residential, and office), in conjunction with three alternative energy sources: solar, wind and wind–solar mix. A mixed system of solar and wind energy can maintain an annual average efficiency above 70%, except for residential power demand, which lowered the efficiency to 67%. A balanced combination of wind and solar power was the most cost-effective option. The current levelized cost of electricity (LCOE) for industrial power demand was estimated to 15 ¢/kWh, and it is projected to decrease to 9 ¢/kWh in the future. For residential power demand, the LCOE was 45% higher due to the demand profile. In comparison, battery storage is significantly more expensive than hydrogen storage, even with future cost projections, increasing the LCOE between 60 and 120 ¢/kWh. Full article
Show Figures

Figure 1

Back to TopTop