Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = osmium complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5022 KiB  
Review
Searching for New Gold(I)-Based Complexes as Anticancer and/or Antiviral Agents
by Paola Checconi, Annaluisa Mariconda, Alessia Catalano, Jessica Ceramella, Michele Pellegrino, Stefano Aquaro, Maria Stefania Sinicropi and Pasquale Longo
Molecules 2025, 30(8), 1726; https://doi.org/10.3390/molecules30081726 - 11 Apr 2025
Viewed by 284
Abstract
Approaches capable of simultaneously treating cancer and protecting susceptible patients from lethal infections are highly desirable, although they prove challenging. Taking inspiration from the well-known anticancer platinum complexes, successive studies about the complexation of organic compounds with other late transition metals, such as [...] Read more.
Approaches capable of simultaneously treating cancer and protecting susceptible patients from lethal infections are highly desirable, although they prove challenging. Taking inspiration from the well-known anticancer platinum complexes, successive studies about the complexation of organic compounds with other late transition metals, such as silver, gold, palladium, rhodium, ruthenium, iridium, and osmium, have led to remarkable anticancer activities. Among the numerous chemical moieties studied, N-heterocyclic carbenes (NHCs) have revealed very attractive activities due to their favorable chemical properties. Specifically, gold–NHC complexes emerged as some of the most active complexes acting as antitumor agents. On the other hand, some recent studies have highlighted the involvement of these complexes in antiviral research as well. The well-known gold-based, orally available complex auranofin approved by the Food and Drug Administration (FDA) for the treatment of rheumatoid arthritis has been suggested as a repositioned drug for both cancer and viral infections. In the era of the COVID-19 pandemic, the most interesting goal could be the discovery of gold–NHC complexes as dual antiviral and anticancer agents. In this review, the most recent studies regarding the anticancer and antiviral activities of gold(I)–NHC complexes will be analyzed and discussed, offering an interesting insight into the research in this field. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 3rd Edition)
Show Figures

Graphical abstract

2 pages, 123 KiB  
Abstract
Nanoscale Imaging of Human Milk Cells
by Qiongxiang Lin, Sharon L. Perrella, Ashleigh H. Warden, Cameron W. Evans, Donna T. Geddes, Leon R. Mitoulas, Haibo Jiang, Kai Chen and Killugudi Swaminatha Iyer
Proceedings 2025, 112(1), 23; https://doi.org/10.3390/proceedings2025112023 - 27 Feb 2025
Viewed by 312
Abstract
Human milk is a complex biofluid containing a diverse array of cells crucial for infant health. Despite their importance, our understanding of these cells remains incomplete due to technical challenges. To fully comprehend human milk cells, high-resolution imaging technologies that can directly measure [...] Read more.
Human milk is a complex biofluid containing a diverse array of cells crucial for infant health. Despite their importance, our understanding of these cells remains incomplete due to technical challenges. To fully comprehend human milk cells, high-resolution imaging technologies that can directly measure biological processes are required. We have developed a specialized imaging platform combining light and electron microscopy for human milk cell imaging. To identify different cell types, human milk cells were first stained with several specific cell markers (e.g., EpCAM and MUC1 for lactocytes, CD16 and CD66b for neutrophils, and HLA-DR and CD68 for macrophages) prior to light (confocal) microscopy. Following this, the same cells were processed with osmium staining, resin embedding, and sectioning for electron microscopy, allowing us to observe ultrastructural details. Our imaging workflow has enabled nanoscale visualization of human milk cells, resulting in a first-of-its-kind comprehensive database profiling the organelle-level ultrastructure of different cell types present in human milk. The cells in the human milk are highly heterogenous, featuring a large proportion of lactocytes and lipid droplets, binucleated lactocytes, neutrophil aggregation, neutrophil extracellular traps, dendritic cells/macrophages with bacteria, and immunophagocytosis. This study provides valuable cellular insights contributing to a deeper understanding of human milk biology. Full article
23 pages, 8908 KiB  
Article
Synthesis, Electrochemistry and Density Functional Theory of Osmium(II) Containing Different 2,2′:6′,2″-Terpyridines
by Nandisiwe G. S. Mateyise, Marrigje M. Conradie and Jeanet Conradie
Molecules 2024, 29(21), 5078; https://doi.org/10.3390/molecules29215078 - 27 Oct 2024
Cited by 2 | Viewed by 1686
Abstract
In coordination chemistry, 2,2′:6′,2″-terpyridine is a versatile and extensively studied tridentate ligand. Terpyridine forms stable complexes with a variety of metal ions through coordination sites provided by the three nitrogen atoms in its pyridine rings. This paper presents an electrochemical study on various [...] Read more.
In coordination chemistry, 2,2′:6′,2″-terpyridine is a versatile and extensively studied tridentate ligand. Terpyridine forms stable complexes with a variety of metal ions through coordination sites provided by the three nitrogen atoms in its pyridine rings. This paper presents an electrochemical study on various bis(terpyridine)osmium(II) complexes, addressing the absence of a systematic investigation into their redox behavior. Additionally, a computational chemistry analysis was conducted on these complexes, as well as on eight previously studied osmium(II)-bipyridine and -phenanthroline complexes, to expand both the experimental and theoretical understanding. The experimental redox potentials, Hammett constants, and DFT-calculated energies show linear correlations due to the electron-donating or electron-withdrawing nature of the substituents, as described by the Hammett constants. These substituent effects cause shifts to lower or higher redox potentials, respectively. Full article
Show Figures

Graphical abstract

19 pages, 1132 KiB  
Article
Chemotherapeutic Activities of New η6-p-Cymene Ruthenium(II) and Osmium(II) Complexes with Chelating SS and Tridentate SNS Ligands
by David O. Ywaya, Halliru Ibrahim, Holger B. Friedrich, Muhammad D. Bala, Lynette Soobramoney, Aliscia Daniels and Moganavelli Singh
Molecules 2024, 29(5), 944; https://doi.org/10.3390/molecules29050944 - 21 Feb 2024
Viewed by 2068
Abstract
A series of new chelating bidentate (SS) alkylimidazole-2-thione-Ru(II)/Os(II) complexes (3ai, 3aii, 3aiii, 3bii/4aiii, 4bi, 4bii), and the tridentate (SNS) pyridine-2,6-diylimidazole-2-thione-Ru(II)/Os(II) complexes (5bi, 5civ [...] Read more.
A series of new chelating bidentate (SS) alkylimidazole-2-thione-Ru(II)/Os(II) complexes (3ai, 3aii, 3aiii, 3bii/4aiii, 4bi, 4bii), and the tridentate (SNS) pyridine-2,6-diylimidazole-2-thione-Ru(II)/Os(II) complexes (5bi, 5civ/6bi, 6ci, 6civ) in the forms [MII(cym)(L)Cl]PF6 and [MII(cym)(L)]PF6 (M = Ru or Os, cym = η6-p-cymene, and L = heterocyclic derivatives of thiourea) respectively, were successfully synthesized. Spectroscopic and analytical methods were used to characterize the complexes and their ligands. Solid-state single-crystal X-ray diffraction analyses revealed a “piano-stool” geometry around the Ru(II) or Os(II) centers in the respective complexes. The complexes were investigated for in vitro chemotherapeutic activities against human cervical carcinoma (HeLa) and the non-cancerous cell line (Hek293) using the MTT assay. The compounds 3aii, 5civ, 5bi, 4aiii, 6ci, 6civ, and the reference drug, 5-fluorouracil were found to be selective toward the tumor cells; the compounds 3ai, 3aiii, 3bii, 4bi, 4bii, and 6bi, which were found not to be selective between normal and tumor cell lines. The IC50 value of the tridentate half-sandwich complex 5bi (86 ± 9 μM) showed comparable anti-proliferative activity with the referenced commercial anti-cancer drug, 5-fluorouracil (87 ± 15 μM). The pincer (SNS) osmium complexes 6ci (36 ± 10 μM) and 6civ (40 ± 4 μM) were twice as effective as the reference drug 5-fluorouracil at the respective dose concentrations. However, the analogous pincer (SNS) ruthenium complex 5civ was ineffective and did not show anti-proliferative activity, even at a higher concentration of 147 ± 1 μM. These findings imply that the higher stability of the chelating (SS) and the pincer (SNS) ligand architectures in the complexes improves the biological (anti-proliferative) activity of the complexes by reducing the chance of ligand dissociation under physiological conditions. In general, the pincer (SNS) osmium complexes were found to be more cytotoxic than their ruthenium analogues, suggesting that the anti-proliferative activity of the imidazole-2-thione-Ru/Os complexes depends on the ligand’s spatial coordination, the nature of the metal center, and the charge of the metal complex ions. Full article
(This article belongs to the Special Issue Advancement in Design and Synthesis of Novel Drugs)
Show Figures

Figure 1

17 pages, 2583 KiB  
Article
Development of a Redox-Polymer-Based Electrochemical Glucose Biosensor Suitable for Integration in Microfluidic 3D Cell Culture Systems
by L. Navarro-Nateras, Jancarlo Diaz-Gonzalez, Diana Aguas-Chantes, Lucy L. Coria-Oriundo, Fernando Battaglini, José Luis Ventura-Gallegos, Alejandro Zentella-Dehesa, Goldie Oza, L. G. Arriaga and Jannu R. Casanova-Moreno
Biosensors 2023, 13(6), 582; https://doi.org/10.3390/bios13060582 - 27 May 2023
Cited by 8 | Viewed by 3625
Abstract
The inclusion of online, in situ biosensors in microfluidic cell cultures is important to monitor and characterize a physiologically mimicking environment. This work presents the performance of second-generation electrochemical enzymatic biosensors to detect glucose in cell culture media. Glutaraldehyde and ethylene glycol diglycidyl [...] Read more.
The inclusion of online, in situ biosensors in microfluidic cell cultures is important to monitor and characterize a physiologically mimicking environment. This work presents the performance of second-generation electrochemical enzymatic biosensors to detect glucose in cell culture media. Glutaraldehyde and ethylene glycol diglycidyl ether (EGDGE) were tested as cross-linkers to immobilize glucose oxidase and an osmium-modified redox polymer on the surface of carbon electrodes. Tests employing screen printed electrodes showed adequate performance in a Roswell Park Memorial Institute (RPMI-1640) media spiked with fetal bovine serum (FBS). Comparable first-generation sensors were shown to be heavily affected by complex biological media. This difference is explained in terms of the respective charge transfer mechanisms. Under the tested conditions, electron hopping between Os redox centers was less vulnerable than H2O2 diffusion to biofouling by the substances present in the cell culture matrix. By employing pencil leads as electrodes, the incorporation of these electrodes in a polydimethylsiloxane (PDMS) microfluidic channel was achieved simply and at a low cost. Under flow conditions, electrodes fabricated using EGDGE presented the best performance with a limit of detection of 0.5 mM, a linear range up to 10 mM, and a sensitivity of 4.69 μA mM−1 cm−2. Full article
(This article belongs to the Collection Microsystems for Cell Cultures)
Show Figures

Figure 1

50 pages, 7553 KiB  
Article
Half-Sandwich Type Platinum-Group Metal Complexes of C-Glucosaminyl Azines: Synthesis and Antineoplastic and Antimicrobial Activities
by István Kacsir, Adrienn Sipos, Evelin Major, Nikolett Bajusz, Attila Bényei, Péter Buglyó, László Somsák, Gábor Kardos, Péter Bai and Éva Bokor
Molecules 2023, 28(7), 3058; https://doi.org/10.3390/molecules28073058 - 29 Mar 2023
Cited by 4 | Viewed by 2858
Abstract
While platinum-based compounds such as cisplatin form the backbone of chemotherapy, the use of these compounds is limited by resistance and toxicity, driving the development of novel complexes with cytostatic properties. In this study, we synthesized a set of half-sandwich complexes of platinum-group [...] Read more.
While platinum-based compounds such as cisplatin form the backbone of chemotherapy, the use of these compounds is limited by resistance and toxicity, driving the development of novel complexes with cytostatic properties. In this study, we synthesized a set of half-sandwich complexes of platinum-group metal ions (Ru(II), Os(II), Ir(III) and Rh(III)) with an N,N-bidentate ligand comprising a C-glucosaminyl group and a heterocycle, such as pyridine, pyridazine, pyrimidine, pyrazine or quinoline. The sugar-containing ligands themselves are unknown compounds and were obtained by nucleophilic additions of lithiated heterocycles to O-perbenzylated 2-nitro-glucal. Reduction of the adducts and, where necessary, subsequent protecting group manipulations furnished the above C-glucosaminyl heterocycles in their O-perbenzylated, O-perbenzoylated and O-unprotected forms. The derived complexes were tested on A2780 ovarian cancer cells. Pyridine, pyrazine and pyridazine-containing complexes proved to be cytostatic and cytotoxic on A2780 cells, while pyrimidine and quinoline derivatives were inactive. The best complexes contained pyridine as the heterocycle. The metal ion with polyhapto arene/arenyl moiety also impacted on the biological activity of the complexes. Ruthenium complexes with p-cymene and iridium complexes with Cp* had the best performance in ovarian cancer cells, followed by osmium complexes with p-cymene and rhodium complexes with Cp*. Finally, the chemical nature of the protective groups on the hydroxyl groups of the carbohydrate moiety were also key determinants of bioactivity; in particular, O-benzyl groups were superior to O-benzoyl groups. The IC50 values of the complexes were in the low micromolar range, and, importantly, the complexes were less active against primary, untransformed human dermal fibroblasts; however, the anticipated therapeutic window is narrow. The bioactive complexes exerted cytostasis on a set of carcinomas such as cell models of glioblastoma, as well as breast and pancreatic cancers. Furthermore, the same complexes exhibited bacteriostatic properties against multiresistant Gram-positive Staphylococcus aureus and Enterococcus clinical isolates in the low micromolar range. Full article
Show Figures

Graphical abstract

21 pages, 4915 KiB  
Article
Interplay of Anisotropic Exchange Interactions and Single-Ion Anisotropy in Single-Chain Magnets Built from Ru/Os Cyanidometallates(III) and Mn(III) Complex
by Vladimir S. Mironov, Eugenia V. Peresypkina and Kira E. Vostrikova
Molecules 2023, 28(3), 1516; https://doi.org/10.3390/molecules28031516 - 3 Feb 2023
Cited by 4 | Viewed by 2637
Abstract
Two novel 1D heterobimetallic compounds {[MnIII(SB2+)MIII(CN)6]·4H2O}n (SB2+ = N,N′-ethylenebis(5-trimethylammoniomethylsalicylideneiminate) based on orbitally degenerate cyanidometallates [OsIII(CN)6]3− (1) and [RuIII(CN)6]3− ( [...] Read more.
Two novel 1D heterobimetallic compounds {[MnIII(SB2+)MIII(CN)6]·4H2O}n (SB2+ = N,N′-ethylenebis(5-trimethylammoniomethylsalicylideneiminate) based on orbitally degenerate cyanidometallates [OsIII(CN)6]3− (1) and [RuIII(CN)6]3− (2) and MnIII Schiff base complex were synthesized and characterized structurally and magnetically. Their crystal structures consist of electrically neutral, well-isolated chains composed of alternating [MIII(CN)6]3− anions and square planar [MnIII(SB2+)]3+ cations bridged by cyanide groups. These -ion magnetic anisotropy of MnIII centers. These results indicate that the presence of compounds exhibit single-chain magnet (SCM) behavior with the energy barriers of Δτ1/kB = 73 K, Δτ2/kB = 41.5 K (1) and Δτ1/kB = 51 K, Δτ2 = 27 K (2). Blocking temperatures of TB = 2.8, 2.1 K and magnetic hysteresis with coercive fields (at 1.8 K) of 8000, 1600 Oe were found for 1 and 2, respectively. Theoretical analysis of the magnetic data reveals that their single-chain magnet behavior is a product of a complicated interplay of extremely anisotropic triaxial exchange interactions in MIII(4d/5d)–CN–MnIII fragments: −JxSMxSMnxJySMySMnyJzSMzSMnz, with opposite sign of exchange parameters Jx = −22, Jy = +28, Jz = −26 cm−1 and Jx = −18, Jy = +20, Jz = −18 cm−1 in 1 and 2, respectively) and single orbitally degenerate [OsIII(CN)6]3− and [RuIII(CN)6]3− spin units with unquenched orbital angular momentum in the chain compounds 1 and 2 leads to a peculiar regime of slow magnetic relaxation, which is beyond the scope of the conventional Glaubers’s 1D Ising model and anisotropic Heisenberg model. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

15 pages, 3966 KiB  
Article
Self-Assembled Monolayers of Molecular Conductors with Terpyridine-Metal Redox Switching Elements: A Combined AFM, STM and Electrochemical Study
by Jana Kocábová, František Vavrek, Štěpánka Nováková Lachmanová, Jakub Šebera, Michal Valášek and Magdaléna Hromadová
Molecules 2022, 27(23), 8320; https://doi.org/10.3390/molecules27238320 - 29 Nov 2022
Viewed by 2710
Abstract
Self-assembled monolayers (SAMs) of terpyridine-based transition metal (ruthenium and osmium) complexes, anchored to gold substrate via tripodal anchoring groups, have been investigated as possible redox switching elements for molecular electronics. An electrochemical study was complemented by atomic force microscopy (AFM) and scanning tunneling [...] Read more.
Self-assembled monolayers (SAMs) of terpyridine-based transition metal (ruthenium and osmium) complexes, anchored to gold substrate via tripodal anchoring groups, have been investigated as possible redox switching elements for molecular electronics. An electrochemical study was complemented by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) methods. STM was used for determination of the SAM conductance values, and computation of the attenuation factor β from tunneling current–distance curves. We have shown that SAMs of Os-tripod molecules contain larger adlayer structures compared with SAMs of Ru-tripod molecules, which are characterized by a large number of almost evenly distributed small islands. Furthermore, upon cyclic voltammetric experimentation, Os-tripod films rearrange to form a smaller number of even larger islands, reminiscent of the Ostwald ripening process. Os-tripod SAMs displayed a higher surface concentration of molecules and lower conductance compared with Ru-tripod SAMs. The attenuation factor of Os-tripod films changed dramatically, upon electrochemical cycling, to a higher value. These observations are in accordance with previously reported electron transfer kinetics studies. Full article
Show Figures

Graphical abstract

16 pages, 3147 KiB  
Article
A Pyrazolate Osmium(VI) Nitride Exhibits Anticancer Activity through Modulating Protein Homeostasis in HepG2 Cells
by Chengyang Huang, Wanqiong Huang, Pengchao Ji, Fuling Song, Tao Liu, Meiyang Li, Hongzhi Guo, Yongliang Huang, Cuicui Yu, Chuanxian Wang and Wenxiu Ni
Int. J. Mol. Sci. 2022, 23(21), 12779; https://doi.org/10.3390/ijms232112779 - 24 Oct 2022
Cited by 6 | Viewed by 2483
Abstract
Interest in the third-row transition metal osmium and its compounds as potential anticancer agents has grown in recent years. Here, we synthesized the osmium(VI) nitrido complex Na[OsVI(N)(tpm)2] (tpm = [5-(Thien-2-yl)-1H-pyrazol-3-yl]methanol), which exhibited a greater inhibitory effect on the cell [...] Read more.
Interest in the third-row transition metal osmium and its compounds as potential anticancer agents has grown in recent years. Here, we synthesized the osmium(VI) nitrido complex Na[OsVI(N)(tpm)2] (tpm = [5-(Thien-2-yl)-1H-pyrazol-3-yl]methanol), which exhibited a greater inhibitory effect on the cell viabilities of the cervical, ovarian, and breast cancer cell lines compared with cisplatin. Proteomics analysis revealed that Na[OsVI(N)(tpm)2] modulates the expression of protein-transportation-associated, DNA-metabolism-associated, and oxidative-stress-associated proteins in HepG2 cells. Perturbation of protein expression activity by the complex in cancer cells affects the functions of the mitochondria, resulting in high levels of cellular oxidative stress and low rates of cell survival. Moreover, it caused G2/M phase cell cycle arrest and caspase-mediated apoptosis of HepG2 cells. This study reveals a new high-valent osmium complex as an anticancer agent candidate modulating protein homeostasis. Full article
(This article belongs to the Special Issue Techniques and Strategies in Drug Design and Discovery)
Show Figures

Graphical abstract

10 pages, 2568 KiB  
Article
Crystallographic and Theoretical Study of Osme Bonds in Nitrido-Osmium(VI) Complexes
by Rosa M. Gomila and Antonio Frontera
Inorganics 2022, 10(9), 133; https://doi.org/10.3390/inorganics10090133 - 5 Sep 2022
Cited by 6 | Viewed by 2196
Abstract
Osme bonds have been recently defined as the attractive interaction between an element of group 8 acting as an electrophile and any atom or group of atoms acting as a nucleophile. To date, the known examples of osme bonds in X-ray structures involve [...] Read more.
Osme bonds have been recently defined as the attractive interaction between an element of group 8 acting as an electrophile and any atom or group of atoms acting as a nucleophile. To date, the known examples of osme bonds in X-ray structures involve mostly the highly reactive OsO4 and amines and amine oxides. In this work, evidence supporting the existence of osme bonds in osmium(VI) derivatives is reported. In particular, nitrido-osmium(VI) complexes that present square-pyramidal geometries are well disposed to participate in osme bonds opposite to the Os≡N bond. By using a combination of experimental and theoretical results, the existence and importance of this new class of σ-hole interactions is demonstrated in the solid state of several nitrido-osmium(VI) derivatives. Full article
(This article belongs to the Section Inorganic Solid-State Chemistry)
Show Figures

Figure 1

9 pages, 2028 KiB  
Short Note
Chlorido-(η6-p-cymene)-(bis(pyrazol-1-yl)methane-κ2N,N′)Osmium(II) Tetrafluoroborate, C17H22BClF4N4Os
by Allen Mambanda, Amos K. Kanyora, Peter Ongoma, Joel Gichumbi and Reinner O. Omondi
Molbank 2022, 2022(3), M1429; https://doi.org/10.3390/M1429 - 18 Aug 2022
Viewed by 1995
Abstract
The powder of the arene osmium(II) complex, [Os(II)(dpzm)(η6-p-cym)Cl]BF4 (dpzm = di(1H-pyrazol-1-yl)methane; η6-p-cym = para-cymene), with a formula of C17H22BClF4N4Os (referred to herein [...] Read more.
The powder of the arene osmium(II) complex, [Os(II)(dpzm)(η6-p-cym)Cl]BF4 (dpzm = di(1H-pyrazol-1-yl)methane; η6-p-cym = para-cymene), with a formula of C17H22BClF4N4Os (referred to herein as 1) was isolated from the reaction of [(η6-p-cym)Os(μ-Cl)(Cl)]2 with dpzm dissolved in acetonitrile and under a flow of nitrogen gas. It was characterized by spectroscopic techniques (viz., FTIR, 1H NMR, UV-Visible absorption). Yellow crystal blocks of 1 were grown by the slow evaporation from the methanolic solution of its powder. The single-crystal X-ray structure of 1 was solved by diffraction analysis on a Bruker APEX Duo CCD area detector diffractometer using the Cu(Kα), λ = 1.54178 Å as the radiation source, and 1 crystallizes in the monoclinic crystal system and the C2/c (no. 15) space group. Full article
Show Figures

Graphical abstract

19 pages, 1872 KiB  
Article
Novel Nickel(II), Palladium(II), and Platinum(II) Complexes with O,S Bidendate Cinnamic Acid Ester Derivatives: An In Vitro Cytotoxic Comparison to Ruthenium(II) and Osmium(II) Analogues
by Jana Hildebrandt, Norman Häfner, Helmar Görls, Marie-Christin Barth, Matthias Dürst, Ingo B. Runnebaum and Wolfgang Weigand
Int. J. Mol. Sci. 2022, 23(12), 6669; https://doi.org/10.3390/ijms23126669 - 15 Jun 2022
Cited by 10 | Viewed by 3198
Abstract
(1) Background: Since the discovery of cisplatin’s cytotoxic properties, platinum(II) compounds have attracted much interest in the field of anticancer drug development. Over the last few years, classical structure–activity relationships (SAR) have been broken by some promising new compounds based on platinum or [...] Read more.
(1) Background: Since the discovery of cisplatin’s cytotoxic properties, platinum(II) compounds have attracted much interest in the field of anticancer drug development. Over the last few years, classical structure–activity relationships (SAR) have been broken by some promising new compounds based on platinum or other metals. We focus on the synthesis and characterization of 17 different complexes with β-hydroxydithiocinnamic acid esters as O,S bidendate ligands for nickel(II), palladium(II), and platinum(II) complexes. (2) Methods: The bidendate compounds were synthesized and characterized using classical methods including NMR spectroscopy, MS spectrometry, elemental analysis, and X-ray crystallography, and their cytotoxic potential was assessed using in vitro cell culture assays. Data were compared with other recently reported platinum(II), ruthenium(II), and osmium(II) complexes based on the same main ligand system. (3) Results: SAR analyses regarding the metal ion (M), and the alkyl-chain position (P) and length (L), revealed the following order of the effect strength for in vitro activity: M > P > L. The highest activities have Pd complexes and ortho-substituted compounds. Specific palladium(II) complexes show lower IC50 values compared to cisplatin, are able to elude cisplatin resistance mechanisms, and show a higher cancer cell specificity. (4) Conclusion: A promising new palladium(II) candidate (Pd3) should be evaluated in further studies using in vivo model systems, and the identified SARs may help to target platinum-resistant tumors. Full article
(This article belongs to the Special Issue Metal-Based Complexes in Cancer)
Show Figures

Figure 1

29 pages, 3639 KiB  
Article
Highly Cytotoxic Osmium(II) Compounds and Their Ruthenium(II) Analogues Targeting Ovarian Carcinoma Cell Lines and Evading Cisplatin Resistance Mechanisms
by Jana Hildebrandt, Norman Häfner, Daniel Kritsch, Helmar Görls, Matthias Dürst, Ingo B. Runnebaum and Wolfgang Weigand
Int. J. Mol. Sci. 2022, 23(9), 4976; https://doi.org/10.3390/ijms23094976 - 29 Apr 2022
Cited by 20 | Viewed by 3575
Abstract
(1) Background: Ruthenium and osmium complexes attract increasing interest as next generation anticancer drugs. Focusing on structure-activity-relationships of this class of compounds, we report on 17 different ruthenium(II) complexes and four promising osmium(II) analogues with cinnamic acid derivatives as O,S bidentate ligands. The [...] Read more.
(1) Background: Ruthenium and osmium complexes attract increasing interest as next generation anticancer drugs. Focusing on structure-activity-relationships of this class of compounds, we report on 17 different ruthenium(II) complexes and four promising osmium(II) analogues with cinnamic acid derivatives as O,S bidentate ligands. The aim of this study was to determine the anticancer activity and the ability to evade platin resistance mechanisms for these compounds. (2) Methods: Structural characterizations and stability determinations have been carried out with standard techniques, including NMR spectroscopy and X-ray crystallography. All complexes and single ligands have been tested for cytotoxic activity on two ovarian cancer cell lines (A2780, SKOV3) and their cisplatin-resistant isogenic cell cultures, a lung carcinoma cell line (A549) as well as selected compounds on three non-cancerous cell cultures in vitro. FACS analyses and histone γH2AX staining were carried out for cell cycle distribution and cell death or DNA damage analyses, respectively. (3) Results: IC50 values show promising results, specifically a high cancer selective cytotoxicity and evasion of resistance mechanisms for Ru(II) and Os(II) compounds. Histone γH2AX foci and FACS experiments validated the high cytotoxicity but revealed diminished DNA damage-inducing activity and an absence of cell cycle disturbance thus pointing to another mode of action. (4) Conclusion: Ru(II) and Os(II) compounds with O,S-bidentate ligands show high cytotoxicity without strong effects on DNA damage and cell cycle, and this seems to be the basis to circumvent resistance mechanisms and for the high cancer cell specificity. Full article
(This article belongs to the Special Issue Metal-Based Complexes in Cancer)
Show Figures

Figure 1

36 pages, 21762 KiB  
Article
Reactive Oxygen Species Production Is Responsible for Antineoplastic Activity of Osmium, Ruthenium, Iridium and Rhodium Half-Sandwich Type Complexes with Bidentate Glycosyl Heterocyclic Ligands in Various Cancer Cell Models
by István Kacsir, Adrienn Sipos, Attila Bényei, Eszter Janka, Péter Buglyó, László Somsák, Péter Bai and Éva Bokor
Int. J. Mol. Sci. 2022, 23(2), 813; https://doi.org/10.3390/ijms23020813 - 12 Jan 2022
Cited by 18 | Viewed by 3804
Abstract
Platinum complexes are used in chemotherapy, primarily as antineoplastic agents. In this study, we assessed the cytotoxic and cytostatic properties of a set of osmium(II), ruthenium(II), iridium(III) and rhodium(III) half-sandwich-type complexes with bidentate monosaccharide ligands. We identified 5 compounds with moderate to negligible [...] Read more.
Platinum complexes are used in chemotherapy, primarily as antineoplastic agents. In this study, we assessed the cytotoxic and cytostatic properties of a set of osmium(II), ruthenium(II), iridium(III) and rhodium(III) half-sandwich-type complexes with bidentate monosaccharide ligands. We identified 5 compounds with moderate to negligible acute cytotoxicity but with potent long-term cytostatic activity. These structure-activity relationship studies revealed that: (1) osmium(II) p-cymene complexes were active in all models, while rhodium(III) and iridium(III) Cp* complexes proved largely inactive; (2) the biological effect was influenced by the nature of the central azole ring of the ligands—1,2,3-triazole was the most effective, followed by 1,3,4-oxadiazole, while the isomeric 1,2,4-oxadiazole abolished the cytostatic activity; (3) we found a correlation between the hydrophobic character of the complexes and their cytostatic activity: compounds with O-benzoyl protective groups on the carbohydrate moiety were active, compared to O-deprotected ones. The best compound, an osmium(II) complex, had an IC50 value of 0.70 µM. Furthermore, the steepness of the inhibitory curve of the active complexes suggested cooperative binding; cooperative molecules were better inhibitors than non-cooperative ones. The cytostatic activity of the active complexes was abolished by a lipid-soluble antioxidant, vitamin E, suggesting that oxidative stress plays a major role in the biological activity of the complexes. The complexes were active on ovarian cancer, pancreatic adenocarcinoma, osteosarcoma and Hodgkin’s lymphoma cells, but were inactive on primary, non-transformed human fibroblasts, indicating their applicability as potential anticancer agents. Full article
(This article belongs to the Collection Feature Papers in Molecular Oncology)
Show Figures

Figure 1

28 pages, 80430 KiB  
Article
DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications
by Dawid Zych
Materials 2021, 14(24), 7783; https://doi.org/10.3390/ma14247783 - 16 Dec 2021
Cited by 2 | Viewed by 2464
Abstract
Recently, mono- and dinuclear complexes have been in the interest of scientists due to their potential application in optoelectronics. Herein, progressive theoretical investigations starting from mononuclear followed by homo- and heterometallic dinuclear osmium and/or ruthenium complexes with NCN-cyclometalating bridging ligands substituted by one [...] Read more.
Recently, mono- and dinuclear complexes have been in the interest of scientists due to their potential application in optoelectronics. Herein, progressive theoretical investigations starting from mononuclear followed by homo- and heterometallic dinuclear osmium and/or ruthenium complexes with NCN-cyclometalating bridging ligands substituted by one or two kinds of heteroaryl groups (pyrazol-1-yl and 4-(2,2-dimethylpropyloxy)pyrid-2-yl) providing the short/long axial symmetry or asymmetry are presented. Step-by-step information about the particular part that built the mixed-metal complexes is crucial to understanding their behavior and checking the necessity of their eventual studies. Evaluation by using density functional theory (DFT) calculations allowed gaining information about the frontier orbitals, energy gaps, and physical parameters of complexes and their oxidized forms. Through time-dependent density functional theory (TD-DFT), calculations showed the optical properties, with a particular emphasis on the nature of low-energy bands. The presented results are a clear indication for other scientists in the field of chemistry and materials science. Full article
Show Figures

Figure 1

Back to TopTop