Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = passive micromixers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8269 KB  
Article
A Novel Double-Diamond Microreactor Design for Enhanced Mixing and Nanomaterial Synthesis
by Qian Peng, Guangzu Wang, Chao Sheng, Haonan Wang, Yao Fu and Shenghong Huang
Micromachines 2025, 16(9), 1058; https://doi.org/10.3390/mi16091058 - 18 Sep 2025
Viewed by 696
Abstract
This study introduces the Double-Diamond Reactor (DDR), a novel planar passive microreactor designed to overcome the following conventional limitations: inefficient mass transfer, high flow resistance, and clogging. The DDR integrates splitting–turning–impinging (STI) hydrodynamic principles via CFD-guided optimization, generating chaotic advection to enhance mixing. [...] Read more.
This study introduces the Double-Diamond Reactor (DDR), a novel planar passive microreactor designed to overcome the following conventional limitations: inefficient mass transfer, high flow resistance, and clogging. The DDR integrates splitting–turning–impinging (STI) hydrodynamic principles via CFD-guided optimization, generating chaotic advection to enhance mixing. Experimental evaluations using Villermaux–Dushman tests showed a segregation index (Xs) as low as 0.027 at 100 mL·min−1, indicating near-perfect mixing. In BaSO4 nanoparticle synthesis, the DDR achieved a 46% smaller average particle size (95 nm) and narrower distribution (σg=1.27) compared to reference designs (AFR-1), while maintaining low pressure drops (<20 kPa at 60 mL·min−1). The DDR’s superior performance stems from its hierarchical flow division and concave-induced vortices, which eliminate stagnant zones. This work demonstrates the DDR’s potential for high-throughput nanomaterial synthesis with precise control over particle characteristics, offering a scalable and energy-efficient solution for advanced chemical processes. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

20 pages, 13471 KB  
Article
Numerical Investigation of Vortex-Induced Enhancement in the Mixing Characteristics of Double-Spiral and Serpentine Microchannels
by Litao Qin, Zhen Jiang, Dongjian Zhou, Jincai Yue and Huanong Cheng
Micromachines 2025, 16(9), 1016; https://doi.org/10.3390/mi16091016 - 31 Aug 2025
Viewed by 851
Abstract
To enhance passive mixing in microchannels, T-shaped double-spiral and serpentine microchannels with identical curvature radii were designed and numerically analyzed across a Reynolds number (Re) range of 1 to 300. The double-spiral microchannel exhibited superior mixing performance at Re ≤ 200, [...] Read more.
To enhance passive mixing in microchannels, T-shaped double-spiral and serpentine microchannels with identical curvature radii were designed and numerically analyzed across a Reynolds number (Re) range of 1 to 300. The double-spiral microchannel exhibited superior mixing performance at Re ≤ 200, which is primarily attributed to the efficient utilization of Dean vortices. In contrast, the serpentine microchannel showed better performance at Re ≥ 250, benefiting from the early formation of four-vortex structures induced by periodic curvature reversals. To further enhance the performance of the serpentine microchannel at low Re, groove structures with varying orientation angles were incorporated. The introduction of the groove structures generated lateral secondary flows that not only increased flow disturbances but also disrupted the symmetry of the Dean vortices. Among these configurations, Structure 2, with a 45° angle between the groove direction and centrifugal force, exhibited the most pronounced enhancement in vortex intensity, as the secondary flows induced by the grooves synergistically interacted with the Dean vortices. This configuration resulted in the highest mixing enhancement (>50%). This study provides valuable insights into geometry-driven mixing mechanisms and offers design guidelines for high-efficiency micromixers across a wide range of Re. Full article
(This article belongs to the Collection Micromixers: Analysis, Design and Fabrication)
Show Figures

Figure 1

21 pages, 7175 KB  
Article
Design and Analysis of a Passive Micromixer Based on Multiple Passages
by Makhsuda Juraeva and Dong-Jin Kang
Micromachines 2025, 16(5), 592; https://doi.org/10.3390/mi16050592 - 19 May 2025
Cited by 2 | Viewed by 816
Abstract
We propose a novel passive micromixer based on multiple passages and analyze its mixing performance comprehensively. The multiple passages are constructed with straight channels, making them easier to manufacture, compared to conventional SAR micromixers and other micromixers based on curved channels. Its mixing [...] Read more.
We propose a novel passive micromixer based on multiple passages and analyze its mixing performance comprehensively. The multiple passages are constructed with straight channels, making them easier to manufacture, compared to conventional SAR micromixers and other micromixers based on curved channels. Its mixing performance has been demonstrated to be superior to that of the previous micromixers across a broad range of Reynolds numbers. Five distinct designs incorporating converging passages were explored to study the significance of the number of passages on the mixing performance. Across a broad range of Reynolds number ranges (0.1 to 80), the two-passage design significantly improved mixing performance, with a degree of mixing (DOM) consistently exceeding 0.84. Particularly, the mixing enhancement is prominent within the low and intermediate range of Reynolds numbers (Re20). This enhancement in the regime of molecular diffusion dominance stems from the elongated interface between the two fluids. The mixing enhancement in the transition regime is due to a secondary flow being generated on the cross-section normal to the main stream direction. The intensity of this secondary flow is significantly influenced by the number of multiple passages. The optimal number for the present micromixer design is two. The DOM remains almost constant for the submergence of multiple passages in the range of 40 to 70 (μm). Full article
(This article belongs to the Special Issue Advanced Micromixing Technology)
Show Figures

Figure 1

24 pages, 10504 KB  
Article
Design and Investigation of a Passive-Type Microfluidics Micromixer Integrated with an Archimedes Screw for Enhanced Mixing Performance
by Muhammad Waqas, Arvydas Palevicius, Vytautas Jurenas, Kestutis Pilkauskas and Giedrius Janusas
Micromachines 2025, 16(1), 82; https://doi.org/10.3390/mi16010082 - 12 Jan 2025
Cited by 1 | Viewed by 2632
Abstract
In recent years, microfluidics has emerged as an interdisciplinary field, receiving significant attention across various biomedical applications. Achieving a noticeable mixing of biofluids and biochemicals at laminar flow conditions is essential in numerous microfluidics systems. In this research work, a new kind of [...] Read more.
In recent years, microfluidics has emerged as an interdisciplinary field, receiving significant attention across various biomedical applications. Achieving a noticeable mixing of biofluids and biochemicals at laminar flow conditions is essential in numerous microfluidics systems. In this research work, a new kind of micromixer design integrated with an Archimedes screw is designed and investigated using numerical simulation and experimental approaches. First, the geometrical parameters such as screw length (l), screw pitch (p) and gap (s) are optimized using the Design of Expert (DoE) approach and the Central Composite Design (CCD) method. The experimental designs generated by DoE are then numerically simulated aiming to determine Mixing Index (MI) and Performance Index (PI). For this purpose, COMSOL Multiphysics with two physics modules—laminar and transport diluted species—is used. The results revealed a significant influence of screw length, screw pitch and gap on mixing performance. The optimal design achieved is then scaled up and fabricated using a 3D additive manufacturing technique. In addition, the optimal micromixer design is numerically and experimentally investigated at diverse Reynolds numbers, ranging from 2 to 16. The findings revealed the optimal geometrical parameters that produce the best result compared to other designs are a screw length of 0.5 mm, screw pitch of 0.23409 mm and a 0.004 mm gap. The obtained values of the mixing index and the performance index are 98.47% and 20.15 Pa−1, respectively. In addition, a higher mixing performance is achieved at the lower Reynolds number of 2, while a lower mixing performance is observed at the higher Reynolds number of 16. This study can be very beneficial for understanding the impact of geometrical parameters and their interaction with mixing performance. Full article
Show Figures

Figure 1

15 pages, 12145 KB  
Article
A Microfluidic Biosensor for Quantitative Detection of Salmonella in Traditional Chinese Medicine
by Yutong Wu, Yang Liu, Jinchen Ma, Shanxi Zhu, Xiaojun Zhao, Huawei Mou, Xuanqi Ke, Zhisheng Wu, Yifei Wang, Sheng Lin and Wuzhen Qi
Biosensors 2025, 15(1), 10; https://doi.org/10.3390/bios15010010 - 27 Dec 2024
Cited by 2 | Viewed by 2233
Abstract
Microbial contamination is an important factor threatening the safety of Chinese medicine preparations, and microfluidic detection methods have demonstrated excellent advantages in the application of rapid bacterial detection. In our study, a novel optical biosensor was developed for the rapid and sensitive detection [...] Read more.
Microbial contamination is an important factor threatening the safety of Chinese medicine preparations, and microfluidic detection methods have demonstrated excellent advantages in the application of rapid bacterial detection. In our study, a novel optical biosensor was developed for the rapid and sensitive detection of Salmonella in traditional Chinese medicine on a microfluidic chip. Immune gold@platinum nanocatalysts (Au@PtNCs) were utilized for specific bacterial labeling, while magnetic nano-beads (MNBs) with a novel high-gradient magnetic field were employed for the specific capture of bacteria. The immune MNBs, immune Au@PtNCs, and bacterial samples were introduced into a novel passive microfluidic micromixer for full mixing, resulting in the formation of a double-antibody sandwich structure due to antigen–antibody immune reactions. Subsequently, the mixture flowed into the reaction cell, where the MNBs-Salmonella-Au@PtNCs complex was captured by the magnetic field. After washing, hydrogen peroxide-tetramethylbenzidine substrate (H2O2-TMB) was added, reacting with the Au@PtNCs peroxidase to produce a blue reaction product. This entire process was automated using a portable device, and Salmonella concentration was analyzed via a phone application. This simple biosensor has good specificity with a detection range of 9 × 101–9 × 105 CFU/mL and can detect Salmonella concentrations as low as 90 CFU/mL within 74 min. The average recoveries of the spiked samples ranged from 76.8% to 109.5% Full article
(This article belongs to the Special Issue Design and Application of Microfluidic Biosensors in Biomedicine)
Show Figures

Figure 1

8 pages, 2251 KB  
Proceeding Paper
Enhancing Microfluidic Systems’ Mixing Efficiency Using Design Models with Convergent–Divergent Sinusoidal Microchannel Walls: Experimental Investigations Based on Entropy Minimization Flow Structures
by Kingsley Safo, Joshua Anani and Ahmed H. El-Shazly
Eng. Proc. 2024, 67(1), 54; https://doi.org/10.3390/engproc2024067054 - 26 Sep 2024
Viewed by 926
Abstract
This study presents an innovative passive micromixer design featuring convergent–divergent sinusoidal walls, evaluated using the Villermaux–Dushman protocol. Five distinct designs were fabricated and tested, demonstrating superior mixing efficiency without additional obstructions. Testing of flow rates from 1000 to 50 mL/h revealed that the [...] Read more.
This study presents an innovative passive micromixer design featuring convergent–divergent sinusoidal walls, evaluated using the Villermaux–Dushman protocol. Five distinct designs were fabricated and tested, demonstrating superior mixing efficiency without additional obstructions. Testing of flow rates from 1000 to 50 mL/h revealed that the square-wave micromixer had the highest efficiency due to repeated fluid perturbations from its 90-degree angles. The loop-wave mixer performed the worst due to its lack of angles. The circular and box-wave mixers outperformed the loop-wave and backward arrow mixers due to their split and recombination effects. These designs, especially the circular and box-wave designs, offer optimal mixing for short-length applications, improving the efficiency and manufacturing simplicity for biomedical and biochemical analyses. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Processes)
Show Figures

Graphical abstract

22 pages, 5015 KB  
Article
Thermal and Hydrodynamic Measurements of a Novel Chaotic Micromixer to Enhance Mixing Performance
by Abdelkader Mahammedi, Rahmani Kouider, Naas Toufik Tayeb, Raúl Kassir Al-Karany, Eduardo M. Cuerda-Correa and Awf Al-Kassir
Energies 2024, 17(13), 3248; https://doi.org/10.3390/en17133248 - 2 Jul 2024
Cited by 3 | Viewed by 1838
Abstract
In this study, three-dimensional simulations were conducted on a new passive micromixer to assess the thermal and hydrodynamic behaviors of Newtonian and non-Newtonian fluids subjected to low generalized Reynolds numbers (0.1 to 50) and shear-thinning properties. To acquire a more profound comprehension of [...] Read more.
In this study, three-dimensional simulations were conducted on a new passive micromixer to assess the thermal and hydrodynamic behaviors of Newtonian and non-Newtonian fluids subjected to low generalized Reynolds numbers (0.1 to 50) and shear-thinning properties. To acquire a more profound comprehension of the qualitative and quantitative fluctuations in fluid fraction using the CFD Fluent Code, the mass mixing index, rheological behavior, performance index, mixing energy cost, mass fraction distributions, temperature contours, and pressure drop were compared to illustrate the importance of the mixer geometry in the context of two miscible fluids with varying inlet temperatures. The selected geometry is characterized by a robust chaotic flow that substantially enhances thermal and hydrodynamic performance across all Reynolds numbers. A mass mixing exceeding 72.5% is obtained when Re = 5, reaching 93.5% when Re = 50. Furthermore, the evolution of thermal mixing for all behavior indexes reaches a step of 98% with minimal pressure losses. This work enabled the demonstration of a chaotic geometry in a highly efficient mixing system, leading to enhanced thermal performance for both Newtonian and non-Newtonian fluids. The results of the hydrodynamic and thermal characterization of the mixing of shear-thinning fluids within the micromixers under investigation are conclusive. Full article
Show Figures

Figure 1

16 pages, 4614 KB  
Article
Design and Mixing Analysis of a Passive Micromixer with Circulation Promoters
by Makhsuda Juraeva and Dong-Jin Kang
Micromachines 2024, 15(7), 831; https://doi.org/10.3390/mi15070831 - 27 Jun 2024
Cited by 4 | Viewed by 2689
Abstract
A novel passive micromixer equipped with circulation promoters is proposed, and its mixing performance is simulated over a broad range of Reynolds numbers (0.1Re100). To evaluate the effectiveness of the circulation promoters, three different configurations are [...] Read more.
A novel passive micromixer equipped with circulation promoters is proposed, and its mixing performance is simulated over a broad range of Reynolds numbers (0.1Re100). To evaluate the effectiveness of the circulation promoters, three different configurations are analyzed in terms of the degree of mixing (DOM) at the outlet and the associated pressure drop. Compared to other typical passive micromixers, the circulation promoter is shown to significantly enhance mixing performance. Among the three configurations of circulation promoters, Case 3 demonstrates the best performance, with a DOM exceeding 0.96 across the entire range of Reynolds numbers. At Re = 1, the DOM of Case 3 is 3.7 times larger than that of a modified Tesla micromixer, while maintaining a comparable pressure drop. The mixing enhancement of the present micromixer is particularly significant in the low and intermediate ranges of Reynolds numbers (Re<40). In the low range of Reynolds numbers (Re1), the mixing enhancement is primarily due to circulation promoters directing fluid flow from a concave wall to the opposite convex wall. In the intermediate range of Reynolds numbers (2Re<40), the mixing enhancement results from fluid flowing from one concave wall to another concave wall on the opposite side. Full article
(This article belongs to the Collection Micromixers: Analysis, Design and Fabrication)
Show Figures

Figure 1

17 pages, 5267 KB  
Article
Mixing Performance of a Passive Micromixer Based on Split-to-Circulate (STC) Flow Characteristics
by Makhsuda Juraeva and Dong-Jin Kang
Micromachines 2024, 15(6), 773; https://doi.org/10.3390/mi15060773 - 10 Jun 2024
Cited by 1 | Viewed by 2033
Abstract
We propose a novel passive micromixer leveraging STC (split-to-circulate) flow characteristics and analyze its mixing performance comprehensively. Three distinct designs incorporating submerged circular walls were explored to achieve STC flow characteristics, facilitating flow along a convex surface and flow impingement on a concave [...] Read more.
We propose a novel passive micromixer leveraging STC (split-to-circulate) flow characteristics and analyze its mixing performance comprehensively. Three distinct designs incorporating submerged circular walls were explored to achieve STC flow characteristics, facilitating flow along a convex surface and flow impingement on a concave surface. Across a broad Reynolds number range (0.1 to 80), the present micromixer substantially enhances mixing, with a degree of mixing (DOM) consistently exceeding 0.84. Particularly, the mixing enhancement is prominent within the low and intermediate range of Reynolds numbers (0.1<Re<20). This enhancement stems from key flow characteristics of STC: the formation of saddle points around convex walls and flow impingement on concave walls. Compared to other passive micromixers, the DOM of the present micromixer stands out as notably high over a broad range of Reynolds numbers (0.1Re80). Full article
(This article belongs to the Special Issue Microreactors and Their Applications)
Show Figures

Figure 1

34 pages, 13785 KB  
Review
A Review of Pressure Drop and Mixing Characteristics in Passive Mixers Involving Miscible Liquids
by Arijit Ganguli, Viraj Bhatt, Anna Yagodnitsyna, Dipak Pinjari and Aniruddha Pandit
Micromachines 2024, 15(6), 691; https://doi.org/10.3390/mi15060691 - 24 May 2024
Cited by 4 | Viewed by 3512
Abstract
The present review focuses on the recent studies carried out in passive micromixers for understanding the hydrodynamics and transport phenomena of miscible liquid–liquid (LL) systems in terms of pressure drop and mixing indices. First, the passive micromixers have been categorized based on the [...] Read more.
The present review focuses on the recent studies carried out in passive micromixers for understanding the hydrodynamics and transport phenomena of miscible liquid–liquid (LL) systems in terms of pressure drop and mixing indices. First, the passive micromixers have been categorized based on the type of complexity in shape, size, and configuration. It is observed that the use of different aspect ratios of the microchannel width, presence of obstructions, flow and operating conditions, and fluid properties majorly affect the mixing characteristics and pressure drop in passive micromixers. A regime map for the micromixer selection based on optimization of mixing index (MI) and pressure drop has been identified based on the literature data for the Reynolds number (Re) range (1 ≤ Re ≤ 100). The map comprehensively summarizes the favorable, moderately favorable, or non-operable regimes of a micromixer. Further, regions for special applications of complex micromixer shapes and micromixers operating at low Re have been identified. Similarly, the operable limits for a micromixer based on pressure drop for Re range 0.1 < Re < 100,000 have been identified. A comparison of measured pressure drop with fundamentally derived analytical expressions show that Category 3 and 4 micromixers mostly have higher pressure drops, except for a few efficient ones. An MI regime map comprising diffusion, chaotic advection, and mixed advection-dominated zones has also been devised. An empirical correlation for pressure drop as a function of Reynolds number has been developed and a corresponding friction factor has been obtained. Predictions on heat and mass transfer based on analogies in micromixers have also been proposed. Full article
(This article belongs to the Special Issue Microreactors and Their Applications)
Show Figures

Figure 1

19 pages, 14362 KB  
Article
Mixing Performance Analysis and Optimal Design of a Novel Passive Baffle Micromixer
by Yiwen Zheng, Yu Liu, Chaojun Tang, Bo Liu, Hongyuan Zou, Wei Li and Hongpeng Zhang
Micromachines 2024, 15(2), 182; https://doi.org/10.3390/mi15020182 - 26 Jan 2024
Cited by 3 | Viewed by 3063
Abstract
Micromixers, as crucial components of microfluidic devices, find widespread applications in the field of biochemistry. Due to the laminar flow in microchannels, mixing is challenging, and it significantly impacts the efficiency of rapid reactions. In this study, numerical simulations of four baffle micromixer [...] Read more.
Micromixers, as crucial components of microfluidic devices, find widespread applications in the field of biochemistry. Due to the laminar flow in microchannels, mixing is challenging, and it significantly impacts the efficiency of rapid reactions. In this study, numerical simulations of four baffle micromixer structures were carried out at different Reynolds numbers (Re = 0.1, Re = 1, Re = 10, and Re = 100) in order to investigate the flow characteristics and mixing mechanism under different structures and optimize the micromixer by varying the vertical displacement of the baffle, the rotation angle, the horizontal spacing, and the number of baffle, and by taking into account the mixing intensity and pressure drop. The results indicated that the optimal mixing efficiency was achieved when the baffle’s vertical displacement was 90 μm, the baffle angle was 60°, the horizontal spacing was 130 μm, and there were 20 sets of baffles. At Re = 0.1, the mixing efficiency reached 99.4%, and, as Re increased, the mixing efficiency showed a trend of, first, decreasing and then increasing. At Re = 100, the mixing efficiency was 97.2%. Through simulation analysis of the mixing process, the structure of the baffle-type micromixer was effectively improved, contributing to enhanced fluid mixing efficiency and reaction speed. Full article
(This article belongs to the Collection Micromixers: Analysis, Design and Fabrication)
Show Figures

Figure 1

20 pages, 8327 KB  
Article
Design and Mixing Analysis of a Passive Micromixer Based on Curly Baffles
by Makhsuda Juraeva and Dong-Jin Kang
Micromachines 2023, 14(9), 1795; https://doi.org/10.3390/mi14091795 - 20 Sep 2023
Cited by 3 | Viewed by 2627
Abstract
A novel passive micromixer based on curly baffles is proposed and optimized through the signal-to-noise analysis of various design parameters. The mixing performance of the proposed design was evaluated across a wide Reynolds number range, from 0.1 to 80. Through the analysis, the [...] Read more.
A novel passive micromixer based on curly baffles is proposed and optimized through the signal-to-noise analysis of various design parameters. The mixing performance of the proposed design was evaluated across a wide Reynolds number range, from 0.1 to 80. Through the analysis, the most influential parameter was identified, and its value was found to be constant regardless of the mixing mechanism. The optimized design, refined using the signal-to-noise analysis, demonstrated a significant enhancement of mixing performance, particularly in the low Reynolds number range (Re< 10). The design set obtained at the diffusion dominance range shows the highest degree of mixing (DOM) in the low Reynolds number range of Re< 10, while the design set optimized for the convection dominance range exhibited the least pressure drop across the entire Reynolds number spectrum (Re< 80). The present design approach proved to be a practical tool for identifying the most influential design parameter and achieving excellent mixing and pressure drop characteristics. The enhancement is mainly due to the curvature of the most influential design parameter. Full article
Show Figures

Figure 1

17 pages, 8675 KB  
Article
Effect of Multiple Structural Parameters on the Performance of a Micromixer with Baffles, Obstacles, and Gaps
by Jiacheng Nai, Feng Zhang, Peng Dong, Fan Bai, Ting Fu, Jiangbo Wang and Anle Ge
Micromachines 2023, 14(9), 1750; https://doi.org/10.3390/mi14091750 - 7 Sep 2023
Cited by 4 | Viewed by 1919
Abstract
As an essential component of chip laboratories and microfluidic systems, micromixers are widely used in fields such as chemical and biological analysis. In this work, a square cavity micromixer with multiple structural parameters (baffles, obstacles, and gaps) has been proposed to further improve [...] Read more.
As an essential component of chip laboratories and microfluidic systems, micromixers are widely used in fields such as chemical and biological analysis. In this work, a square cavity micromixer with multiple structural parameters (baffles, obstacles, and gaps) has been proposed to further improve the mixing performance of micromixers. This study examines the comprehensive effects of various structural parameters on mixing performance. The impact of baffle length, obstacle length-to-width ratio, gap width, and obstacle shape on the mixing index and pressure drop were numerically studied at different Reynolds numbers (Re). The results show that the mixing index increases with baffle length and obstacle length-to-width ratio and decreases with gap width at Re = 0.1, 1, 10, 20, 40, and 60. The mixing index can reach more than 0.98 in the range of Re ≥ 20 when the baffle length is 150 μm, the obstacle length-to-width ratio is 600/100, and the gap width is 200 μm. The pressure drop of the microchannel is proportional to baffle length and obstacle length-to-width ratio. Combining baffles and obstacles can further improve the mixing performance of square cavity micromixers. A longer baffle length, larger obstacle length-to-width ratio, narrower gap width, and a more symmetrical structure are conducive to improving the mixing index. However, the impact of pressure drop must also be considered comprehensively. The research results provide references and new ideas for passive micromixer structural design. Full article
Show Figures

Figure 1

16 pages, 25374 KB  
Article
Numerical and Experimental Investigation on a “Tai Chi”-Shaped Planar Passive Micromixer
by Annan Xia, Cheng Shen, Chengfeng Wei, Lingchen Meng, Zhiwen Hu, Luming Zhang, Mengyue Chen, Liang Li, Ning He and Xiuqing Hao
Micromachines 2023, 14(7), 1414; https://doi.org/10.3390/mi14071414 - 13 Jul 2023
Cited by 2 | Viewed by 1869
Abstract
(1) Background: Microfluidic chips have found extensive applications in multiple fields due to their excellent analytical performance. As an important platform for micro-mixing, the performance of micromixers has a significant impact on analysis accuracy and rate. However, existing micromixers with high mixing efficiency [...] Read more.
(1) Background: Microfluidic chips have found extensive applications in multiple fields due to their excellent analytical performance. As an important platform for micro-mixing, the performance of micromixers has a significant impact on analysis accuracy and rate. However, existing micromixers with high mixing efficiency are accompanied by high pressure drop, which is not conducive to the integration of micro-reaction systems; (2) Methods: This paper proposed a novel “Tai Chi”-shaped planar passive micromixer with high efficiency and low pressure drop. The effect of different structural parameters was investigated, and an optimal structure was obtained. Simulations on the proposed micromixer and two other micromixers were carried out while mixing experiments on the proposed micromixer were performed. The experimental and simulation results were compared; (3) Results: The optimized values of the parameters were that the straight channel width w, ratio K of the outer and inner walls of the circular cavity, width ratio w1/w2 of the arc channel, and number N of mixing units were 200 μm, 2.9, 1/2, and 6, respectively. Moreover, the excellent performance of the proposed micromixer was verified when compared with the other two micromixers; (4) Conclusions: The mixing efficiency M at all Re studied was more than 50%, and at most Re, the M was nearly 100%. Moreover, the pressure drop was less than 18,000 Pa. Full article
Show Figures

Figure 1

20 pages, 6387 KB  
Article
Performance Investigation of Micromixer with Spiral Pattern on the Cylindrical Chamber Side Wall
by Shuang Yang, He Zhang, Shuihua Yang, Yunlong Zheng, Jianan Wang and Rongyan Chuai
Micromachines 2023, 14(7), 1303; https://doi.org/10.3390/mi14071303 - 25 Jun 2023
Cited by 2 | Viewed by 1935
Abstract
In this paper, a sequence of passive micromixers with spiral patterns on the side wall of cylindrical chambers are designed, optimized, prepared and tested. The simulation studies show that the vortex magnitude and continuity in the mixing chamber are the most important factors [...] Read more.
In this paper, a sequence of passive micromixers with spiral patterns on the side wall of cylindrical chambers are designed, optimized, prepared and tested. The simulation studies show that the vortex magnitude and continuity in the mixing chamber are the most important factors to determine mixing performance, while the inlet position and structural parameters are secondary influences on their performance. According to the above principles, the performance of a micromixer with a continuous sidewall spiral finally wins out. The total mixing length is only 14 mm, but when Re = 5, the mixing index can reach 99.81%. The multi-view visual tests of these mixer chips prepared by 3D printing are consistent with the simulation results. This paper provides a new idea for optimizing the micromixer with spiral patterns on the side wall and the problems of floor area and pressure loss are significantly improved compared to the conventional spiral structure. Full article
Show Figures

Figure 1

Back to TopTop