Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = pearl powder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2289 KB  
Article
RelabotulinumtoxinA, a Ready-to-Use Formulation Neuromodulator Manufactured with PEARL™ Technology to Maintain High Biological and Specific Activity
by Ulf Ståhl, Emilia Lekholm, Emil Hamnevik, Robert Fredriksson, Sachin M. Shridharani, Keywan Taghetchian, Joel L. Cohen, Mark S. Nestor and Åsa Liljegren Sundberg
Toxins 2025, 17(10), 501; https://doi.org/10.3390/toxins17100501 - 9 Oct 2025
Viewed by 1859
Abstract
Most botulinum toxin A (BoNT-A) products for esthetic use require reconstitution before administration. Ready-to-use relabotulinumtoxinA is a liquid manufactured using Precipitation-free Extraction and Activity-preserving, Refined Liquid (PEARL™) Technology from a proprietary C. botulinum type A1 strain. We examined the in vitro characteristics of [...] Read more.
Most botulinum toxin A (BoNT-A) products for esthetic use require reconstitution before administration. Ready-to-use relabotulinumtoxinA is a liquid manufactured using Precipitation-free Extraction and Activity-preserving, Refined Liquid (PEARL™) Technology from a proprietary C. botulinum type A1 strain. We examined the in vitro characteristics of relabotulinumtoxinA. The specific BoNT-A1 potency remained consistent throughout drug substance manufacturing (1.9 × 108–2.2 × 108 LD50 mouse potency units/mg of BoNT-A1, four fractions sampled). Using glabellar line (GL) on-label doses, relabotulinumtoxinA liquid product was compared with powder onabotulinumtoxinA using the following: BoNT-A1 amount based on ELISA; specific enzyme activity based on SNAP-25 cleavage by a fluorescence resonance energy transfer-based assay (BoTest®); biological activity (binding, internalization, and SNAP-25 cleavage over time) using a cell-based assay. RelabotulinumtoxinA contained more BoNT-A1 per on-label GL dose (0.27 ng) than onabotulinumtoxinA (0.18 ng), had higher enzyme activity (53 vs. 29 BoTest® units) per GL dose, and had higher specific activity per pg BoNT-A, with onabotulinumtoxinA displaying 81% of the specific activity of relabotulinumtoxinA. In vitro, relabotulinumtoxinA demonstrated higher biological activity and earlier onset of SNAP-25-cleavage than onabotulinumtoxinA. PEARLTM Technology thus produces high-quality BoNT-A1 with high specific enzyme and biological activities, which may explain the clinical performance of relabotulinumtoxinA in Phase 3 clinical trials examining treatment of GLs and/or LCLs. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

16 pages, 2947 KB  
Article
1,10-Phenanthroline-Iron Complex-Derived Fe-N-C Electrocatalysts: Enhanced Oxygen Reduction Activity and Stability Through Synthesis Tuning
by Carlos S. A. Vasconcellos, Nelson A. Galiote, Nadeem Khan, Enrique A. Paredes-Salazar, Maykon L. Souza, Kotaro Sasaki, Meng Li and Fabio H. B. Lima
Catalysts 2025, 15(9), 821; https://doi.org/10.3390/catal15090821 - 29 Aug 2025
Viewed by 1319
Abstract
The development of electrocatalysts composed of earth-abundant elements is essential for advancing the commercial application of Proton Exchange Membrane Fuel Cells (PEMFC). Among these, single-atom electrocatalysts, such as Fe-N-C, show great promise for the oxygen reduction reaction (ORR). This study aims to improve [...] Read more.
The development of electrocatalysts composed of earth-abundant elements is essential for advancing the commercial application of Proton Exchange Membrane Fuel Cells (PEMFC). Among these, single-atom electrocatalysts, such as Fe-N-C, show great promise for the oxygen reduction reaction (ORR). This study aims to improve the ORR activity and stability of Fe-N-C electrocatalysts by fine-tuning the straightforward 1,10-phenanthroline-iron complexation synthesis method. Key parameters, including iron-to-phenanthroline ratio, carbon powder surface area, and pyrolysis temperature were systematically varied to evaluate their influence on the resulting electrocatalysts. The findings of this study revealed that the electrocatalysts synthesized with 1,10-phenanthroline (Phen) and high-surface-area Black Pearls (BP) possessed much better ORR activity than electrocatalysts prepared by using Vulcan carbon (lower surface area). Interestingly, electrocatalysts prepared with BP, but with a non-bidentate nitrogen-containing ligand molecule, such as imidazole, showed a much poorer activity, as the resulting material predominantly consisted of inactive structures, such as encapsulated iron nanoparticles and iron oxide, as evidenced by HR-TEM, EXAFS, and XRD. Therefore, the results suggest that only the synergistic combination of the bidentate ligand phenanthroline (Phen) and the high-surface-area carbon support (BP) favored the formation of ORR-active Fe-N-C single-atom species upon pyrolysis. The study also unveiled a significant enhancement in electrocatalyst stability during accelerated durability tests (and air storage) as the pyrolysis temperature was increased from 700 to 1300 °C, albeit at the expense of ORR activity, likely resulting from the generation of iron particles. Pyrolysis at 1050 °C yielded the electrocatalyst with the most favorable balance of activity and stability in rotating disk measurements, while maintaining moderate durability under PEM fuel cell operation. The insights obtained in this study may guide the development of more active efficient and durable electrocatalysts, synthesized via a simple method using earth-abundant elements, for application in PEMFC cathodes. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

26 pages, 9300 KB  
Article
Preliminary Preclinical Evaluation of Innovative Bone Scaffolds Composed of Natural Sources–Whey Protein Isolate and Pearl Powder
by Daniel K. Baines, Jaroslaw Rachuna, Aleksandra Hnydka, Agnieszka Michalak, Timothy E. L. Douglas and Katarzyna Klimek
Int. J. Mol. Sci. 2025, 26(16), 7939; https://doi.org/10.3390/ijms26167939 - 17 Aug 2025
Viewed by 984
Abstract
The aim of this work was to produce bone scaffolds containing whey protein isolate and pearl powder and to conduct a preliminary assessment of the biomedical potential in vitro and in vivo. This included analysis of structural, physicochemical, mechanical, and biological properties, which [...] Read more.
The aim of this work was to produce bone scaffolds containing whey protein isolate and pearl powder and to conduct a preliminary assessment of the biomedical potential in vitro and in vivo. This included analysis of structural, physicochemical, mechanical, and biological properties, which revealed that biomaterials containing pearl powder exhibited an enhanced porous structure, increasing absorptive properties, and decreasing proteolytic capacity with increasing inorganic component content. Pearl powder content in the biomaterials did not clearly influence their mechanical properties or their ability to release calcium ions, as well as proteins. Extracts obtained from all tested biomaterials showed no cytotoxicity in vitro. The surfaces of all biomaterials promoted normal human osteoblast growth, proliferation, and osteogenic differentiation. Furthermore, all biomaterials did not display toxicity in vivo, but no changes in Danio rerio were observed after evaluation of the biomaterial containing the highest amount of pearl powder–10% v/w (marked as WPI/P10). Taking all the obtained results into account, it appears that this biomaterial can be promising for bone scaffolds and similar applications, thanks to its porous structure, high cytocompatibility in vitro, and lack of toxicity in vivo. However, advanced studies will be conducted in the future. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 3407 KB  
Article
In Vitro In Silico Screening Strategy and Mechanism of Novel Tyrosinase Inhibitory Peptides from Nacre of Hyriopsis cumingii
by Haisheng Lin, Fei Li, Jiaao Kang, Shaohe Xie, Xiaoming Qin, Jialong Gao, Zhongqin Chen, Wenhong Cao, Huina Zheng and Wenkui Song
Mar. Drugs 2024, 22(9), 420; https://doi.org/10.3390/md22090420 - 15 Sep 2024
Cited by 5 | Viewed by 2691
Abstract
For thousands of years, pearl and nacre powders have been important traditional Chinese medicines known for their skin whitening effects. To prepare the enzymatic hydrolysates of Hyriopsis cumingii nacre powder (NP-HCH), complex enzymatic hydrolysis by pineapple protease and of neutral protease was carried [...] Read more.
For thousands of years, pearl and nacre powders have been important traditional Chinese medicines known for their skin whitening effects. To prepare the enzymatic hydrolysates of Hyriopsis cumingii nacre powder (NP-HCH), complex enzymatic hydrolysis by pineapple protease and of neutral protease was carried out after the powder was pre-treated with a high-temperature and high-pressure method. The peptides were identified using LC-MS/MS and picked out through molecular docking and molecular dynamics simulations. Subsequently, the tyrosinase inhibitory and antioxidant properties of novel tyrosinase inhibitory peptides were investigated in vitro. In addition, the enzymatic activity of tyrosinase in B16F10 cells as well as melanin content and antioxidant enzyme levels were also examined. The results showed that a tyosinase inhibitory peptide (Tyr-Pro-Asn-Pro-Tyr, YPNPY) with an efficient IC50 value of 0.545 ± 0.028 mM was identified. The in vitro interaction results showed that YPNPY is a reversible competitive inhibitor of tyrosinase, suggesting that it binds to the free enzyme. The B16F10 cell whitening test revealed that YPNPY can reduce the melanin content of B16F10 cells by directly inhibiting the activity of intracellular tyrosinase. Additionally, it indirectly affects melanin production by acting as an antioxidant. These results suggest that YPNPY could be widely used as a tyrosinase inhibitor in whitening foods and drugs. Full article
(This article belongs to the Special Issue Marine Alkaloids: Sources, Discovery, Diversity, and Bioactivities)
Show Figures

Graphical abstract

16 pages, 3390 KB  
Article
In Silico Identification and Molecular Mechanism of Novel Tyrosinase Inhibitory Peptides Derived from Nacre of Pinctada martensii
by Fei Li, Haisheng Lin, Xiaoming Qin, Jialong Gao, Zhongqin Chen, Wenhong Cao, Huina Zheng and Shaohe Xie
Mar. Drugs 2024, 22(8), 359; https://doi.org/10.3390/md22080359 - 7 Aug 2024
Cited by 8 | Viewed by 2706
Abstract
Pearl and nacre powders have been valuable traditional Chinese medicines with whitening properties for thousands of years. We utilized a high-temperature and high-pressure method along with compound enzyme digestion to prepare the enzymatic hydrolysates of nacre powder of Pinctada martensii (NP-PMH). The peptides [...] Read more.
Pearl and nacre powders have been valuable traditional Chinese medicines with whitening properties for thousands of years. We utilized a high-temperature and high-pressure method along with compound enzyme digestion to prepare the enzymatic hydrolysates of nacre powder of Pinctada martensii (NP-PMH). The peptides were identified using LC–MS/MS and screened through molecular docking and molecular dynamics simulations. The interactions between peptides and tyrosinase were elucidated through enzyme kinetics, circular dichroism spectropolarimetry, and isothermal titration calorimetry. Additionally, their inhibitory effects on B16F10 cells were explored. The results showed that a tyrosinase-inhibitory peptide (Ala-His-Tyr-Tyr-Asp, AHYYD) was identified, which inhibited tyrosinase with an IC50 value of 2.012 ± 0.088 mM. The results of the in vitro interactions showed that AHYYD exhibited a mixed-type inhibition of tyrosinase and also led to a more compact enzyme structure. The binding reactions of AHYYD with tyrosinase were spontaneous, leading to the formation of a new set of binding sites on the tyrosinase. The B16F10 cell-whitening assay revealed that AHYYD could reduce the melanin content of the cells by directly inhibiting the activity of intracellular tyrosinase. Additionally, it indirectly affects melanin production by acting as an antioxidant. These results suggest that AHYYD could be widely used as a tyrosinase inhibitor in whitening foods and pharmaceuticals. Full article
(This article belongs to the Special Issue Marine Bioactive Peptides—Structure, Function, and Application 2.0)
Show Figures

Graphical abstract

12 pages, 275 KB  
Article
Nutritional, Biochemical, and Functional Properties of Pearl Millet and Moringa oleifera Leaf Powder Composite Meal Powders
by Faith Sibanda, Victoria A. Jideani and Anthony O. Obilana
Foods 2024, 13(5), 743; https://doi.org/10.3390/foods13050743 - 28 Feb 2024
Cited by 4 | Viewed by 3570
Abstract
This study sought to improve pearl millet’s nutritional, functional, and biochemical properties through malting and fermentation. Moringa oleifera leaf powder (MLP) was used as a fortificant. Mixture design was used to find optimal proportions for each component that yielded a high protein and [...] Read more.
This study sought to improve pearl millet’s nutritional, functional, and biochemical properties through malting and fermentation. Moringa oleifera leaf powder (MLP) was used as a fortificant. Mixture design was used to find optimal proportions for each component that yielded a high protein and or low saturated fat content. Twelve mixtures with varying ratios of fermented and malted pearl millet flour ranging between 30–65% and MLP between 5–15% were generated through I-Optimal mixture design. The mixtures were wet-cooked, freeze-dried, and analysed for protein and fat content. The data obtained were fitted to a linear mixture model, and the search for the optimum was conducted using Numerical Optimisation for maximising protein and minimising saturated fat. The linear model was suitable for explaining total protein and saturated fat variation with r2 of 0.50 and 0.51, respectively. Increasing MLP increased protein content. Two final formulations, Optimisation Solution 1 (OS1) and Optimisation Solution 2 (OS2), were generated through the optimisation process. Pearl millet’s protein content increased by up to 22%, while saturated fat decreased by up to 13%; ash content increased by 75%. Polyphenol content and oxygen radical absorbance capacity increased by 80% and 25%, respectively. Final and peak viscosity were reduced by 90% and 95%, respectively. Full article
(This article belongs to the Special Issue Advances in Improvement and Fortification of Cereal Food)
20 pages, 6235 KB  
Article
Generation of Pearl/Calcium Phosphate Composite Particles and Their Integration into Porous Chitosan Scaffolds for Bone Regeneration
by Zhiyi Li, Ihtesham Ur Rehman, Rebecca Shepherd and Timothy E. L. Douglas
J. Funct. Biomater. 2024, 15(3), 55; https://doi.org/10.3390/jfb15030055 - 21 Feb 2024
Cited by 6 | Viewed by 3378
Abstract
Bone tissue engineering using osteoconductive scaffolds holds promise for regeneration, with pearl powder gaining interest for its bioactive qualities. This study used freeze drying to create chitosan (CS) scaffolds with pearl/calcium phosphate (p/CaP) powders, mimicking bone tissue structurally and compositionally. Characterization included scanning [...] Read more.
Bone tissue engineering using osteoconductive scaffolds holds promise for regeneration, with pearl powder gaining interest for its bioactive qualities. This study used freeze drying to create chitosan (CS) scaffolds with pearl/calcium phosphate (p/CaP) powders, mimicking bone tissue structurally and compositionally. Characterization included scanning electron microscopy (SEM) and mechanical testing. X-ray diffraction (XRD) Fourier-transform infrared–photoacoustic photo-acoustic sampling (FTIR−PAS), and FTIR- attenuated total reflectance (FTIR-ATR) were used to characterize p/CaP. In vitro tests covered degradation, cell activity, and SEM analysis. The scaffolds showed notable compressive strength and modulus enhancements with increasing p/CaP content. Porosity, ranging from 60% to 90%, decreased significantly at higher pearl/CaP ratios. Optimal cell proliferation and differentiation were observed with scaffolds containing up to 30 wt.% p/CaP, with 30 wt.% pearl powder and 30 wt.% p/CaP yielding the best results. In conclusion, pearl/calcium phosphate chitosan (p/CaP_CS) composite scaffolds emerged as promising biomaterials for bone tissue engineering, combining structural mimicry and favourable biological responses. Full article
(This article belongs to the Special Issue Hydroxyapatite Composites for Biomedical Application)
Show Figures

Figure 1

20 pages, 1602 KB  
Review
The Use of Shells of Marine Molluscs in Spanish Ethnomedicine: A Historical Approach and Present and Future Perspectives
by José A. González and José Ramón Vallejo
Pharmaceuticals 2023, 16(10), 1503; https://doi.org/10.3390/ph16101503 - 23 Oct 2023
Cited by 7 | Viewed by 6210
Abstract
Since ancient times, the shells of marine molluscs have been used as a therapeutic and/or prophylactic resource. In Spain, they were part of practical guides for doctors or pharmacists until the 19th century. In general, seashells were prepared by dissolving in vinegar and [...] Read more.
Since ancient times, the shells of marine molluscs have been used as a therapeutic and/or prophylactic resource. In Spain, they were part of practical guides for doctors or pharmacists until the 19th century. In general, seashells were prepared by dissolving in vinegar and were part of plasters or powders used as toothpaste, or to treat dyspepsia, heartburn and leprosy. Thus, the nacre or mother-of-pearl of various molluscs was regularly used in the Royal Colleges of Surgery and in hospitals during the times of the Cortes of Cadiz, as a medicine in galenic preparations based on powders. In contemporary Spanish ethnomedicine, seashells, with a high symbolic value, have been used as an amulet to prevent cracks in the breasts and promote their development during lactation, to avoid teething pain in young children, to eliminate stains on the face or to cure erysipelas. But, as in other countries, products derived from seashells have also been empirically applied. The two resources used traditionally have been the cuttlebone, the internal shell of cuttlefish and the nacre obtained from the external shells of some species. Cuttlebone, dried and pulverised, has been applied externally to cure corneal leukoma and in dental hygiene. In the case of nacre, a distinction must be made between chemical and physical remedies. Certain seashells, macerated in lemon juice, were used in coastal areas to remove spots on the face during postpartum. However, the most common practice in Spain mainland was to dissolve mother-of-pearl buttons in lemon juice (or vinegar). The substance thus obtained has been used to treat different dermatological conditions of the face (chloasma, acne), as well as to eliminate freckles. For the extraction of foreign bodies in the eyes, a very widespread traditional remedy has been to introduce small mother-of-pearl buttons under the lid. These popular remedies and practices are compared with those collected in classic works of medicine throughout history, and data on the pharmacological activity and pharmaceutical applications of the products used are provided. The use of cuttlebone powders is supported by different works on anti-inflammatory, immune-modulatory and/or wound healing properties. Nacre powder has been used in traditional medicines to treat palpitations, convulsions or epilepsy. As sedation and a tranquilisation agent, nacre is an interesting source for further drug development. Likewise, nacre is a biomaterial for orthopaedic and other tissue bioengineering applications. This article is a historical, cultural and anthropological view that can open new epistemological paths in marine-derived product research. Full article
Show Figures

Figure 1

14 pages, 13744 KB  
Article
Calcium Sulfate Nanoparticles in Surface Sediments of Lingding Bay of the Pearl River Estuary, China: Implications for the Nonclassical Crystallization Pathway of Gypsum in the Natural Estuary Environment
by Guoqiang Wang, Tianjian Yang, Yitong Fan, Shushu Bai and Peiyuan Yin
Minerals 2023, 13(7), 903; https://doi.org/10.3390/min13070903 - 3 Jul 2023
Cited by 1 | Viewed by 2312
Abstract
The mechanism of the nonclassical crystallization pathway of calcium sulfate dihydrate (gypsum) with calcium sulfate hemihydrate (bassanite) as a precursor has been considered in many studies. However, studies on the crystallization of gypsum in natural environments have rarely been reported, especially with regard [...] Read more.
The mechanism of the nonclassical crystallization pathway of calcium sulfate dihydrate (gypsum) with calcium sulfate hemihydrate (bassanite) as a precursor has been considered in many studies. However, studies on the crystallization of gypsum in natural environments have rarely been reported, especially with regard to natural estuaries, which are one of the most important precipitation environments for calcium sulfate. Here, surface sediments (0–5 cm) of Lingding Bay of the Pearl River Estuary in China were sampled and analyzed. X-ray powder diffraction (XRD) analysis showed that calcium sulfate in the surface sediments mainly existed in the form of gypsum. In high-resolution transmission electron microscopy (HR-TEM) analysis, calcium sulfate nanoparticles were observed in the surface sediments. These particles mainly included spherical calcium sulfate nanoparticles (diameter ranging from 10–50 nm) and bassanite nanorod clusters (sizes ranging from 30 nm × 150 nm to 100 nm × 650 nm), and their main elements included O, S and Ca, with small amounts of N, Si, Na and Mg. The bassanite nanorods self-assembled into aggregates primarily co-oriented along the c axis (i.e., [001] direction). In epitaxial growth into larger bassanite nanorods (100 nm × 650 nm), the crystal form of gypsum could be observed. Based on the observations and analyses, we proposed that the crystallization of gypsum in surface sediments of the natural estuary environment could occur through the nonclassical crystallization pathway. In this pathway, bassanite nanoparticles and nanorods appear as precursors (nanoscale precursors), grow via self-assembly, and are finally transformed into gypsum. This work provided evidence supporting and enhancing the understanding of the crystallization pathway of calcium sulfate phases in the natural estuary environment. Furthermore, the interactions between calcium sulfate nanoparticles and the natural estuary environment were examined. Full article
Show Figures

Figure 1

12 pages, 3080 KB  
Article
Hydrolyzed Conchiolin Protein (HCP) Extracted from Pearls Antagonizes both ET-1 and α-MSH for Skin Whitening
by Shan Yang, Zhekun Wang, Yunwei Hu, Kaile Zong, Xingjiang Zhang, Hui Ke, Pan Wang, Yuyo Go, Xi Hui Felicia Chan, Jianxin Wu and Qing Huang
Int. J. Mol. Sci. 2023, 24(8), 7471; https://doi.org/10.3390/ijms24087471 - 18 Apr 2023
Cited by 5 | Viewed by 4948
Abstract
Pearl powder is a famous traditional Chinese medicine that has a long history in treating palpitations, insomnia, convulsions, epilepsy, ulcers, and skin lightining. Recently, several studies have demonstrated the effects of pearl extracts on protection of ultraviolet A (UVA) induced irritation on human [...] Read more.
Pearl powder is a famous traditional Chinese medicine that has a long history in treating palpitations, insomnia, convulsions, epilepsy, ulcers, and skin lightining. Recently, several studies have demonstrated the effects of pearl extracts on protection of ultraviolet A (UVA) induced irritation on human skin fibroblasts and inhibition of melanin genesis on B16F10 mouse melanoma cells. To further explore the effect we focused on the whitening efficacy of pearl hydrolyzed conchiolin protein (HCP) on human melanoma MNT-1 cells under the irritation of alpha-melanocyte-stimulating hormone (α-MSH) or endothelin 1 (ET-1) to evaluate the intracellular tyrosinase and melanin contents, as well as the expression levels of tyrosinase (TYR), tyrosinase related protein 1 (TRP-1), and dopachrome tautomerase (DCT) genes and related proteins. We found that HCP could decrease the intracellular melanin content by reducing the activity of intracellular tyrosinase and inhibiting the expression of TYR, TRP-1, DCT genes and proteins. At the same time, the effect of HCP on melanosome transfer effect was also investigated in the co-culture system of immortalized human keratinocyte HaCaT cells with MNT-1. The result indicated that HCP could promote the transfer of melanosomes in MNT-1 melanocytes to HaCaT cells, which might accelerate the skin whitening process by quickly transferring and metabolizing melanosomes during keratinocyte differentiation. Further study is needed to explore the mechanism of melanosome transfer with depigmentation. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

12 pages, 5440 KB  
Article
Morphology and Structure Characteristics of the Rare Black-Glazed Porcelains Excavated from the Jian Kiln Site of Song Dynasty
by Shiqian Tao, Yuguang Zhu, Song Liu, Junqing Dong, Yimeng Yuan and Qinghui Li
Crystals 2023, 13(4), 632; https://doi.org/10.3390/cryst13040632 - 7 Apr 2023
Cited by 9 | Viewed by 3882
Abstract
Jian tea bowls are greatly appreciated not only due to their thick and lustrous black glazes, but also their exquisite streaked and mottled patterns. Researches on the firing process and colouring mechanism of typical hare’s fur and oil spot Jian glazes have continuously [...] Read more.
Jian tea bowls are greatly appreciated not only due to their thick and lustrous black glazes, but also their exquisite streaked and mottled patterns. Researches on the firing process and colouring mechanism of typical hare’s fur and oil spot Jian glazes have continuously been carried out in the past decades; however, there are few reports about other scarce types of black-glazed porcelains excavated from the Jian kiln site. In this work, we report on a multi-technique analysis of the surface and cross-sectional structure, phase, morphology and chemical composition of three rare types of Jian tea bowls (tea-dust-glazed ware, grey-glazed ware and pearl-glazed ware) combining optical and spectroscopic methods such as optical coherence tomography (OCT), optical microscopy (OM), Portable energy dispersive X-ray fluorescence spectrometry (XRF), laser-Raman spectroscopy (LRS) and scanning electron microscopy coupled with an X-ray energy dispersive spectrometer (SEM-EDS). Results revealed that the tea dust glaze was one high-temperature iron-based crystalline glaze, and its glaze was characterized by a transparent glass matrix; irregular pits completely or partially filled by TiO2; and that ε-Fe2O3 and residual quartz were randomly distributed all over the surface, which produced the appearance of tea-dust. The grey-glazed porcelain was fired at a lower temperature in the dragon kiln than that of the traditional hare’s fur and oil spot samples, its glaze contained some residual quartz, and anorthite crystals showed a serried distribution along the thickness. The pearl-glazed porcelain was fired through a secondary glazing process via artificial stippling quartz powder. This work provides guidance for the firing process of three rare types of Jian wares and has not only scientific but also cultural profound significance, which reveals the features of their historical heritage. Full article
Show Figures

Figure 1

21 pages, 3225 KB  
Article
Anti-Hyperlipidemia, Hypoglycemic, and Hepatoprotective Impacts of Pearl Millet (Pennisetum glaucum L.) Grains and Their Ethanol Extract on Rats Fed a High-Fat Diet
by Nadiah S. Alzahrani, Ghedeir M. Alshammari, Afaf El-Ansary, Abu ElGasim A. Yagoub, Musarat Amina, Ali Saleh and Mohammed Abdo Yahya
Nutrients 2022, 14(9), 1791; https://doi.org/10.3390/nu14091791 - 25 Apr 2022
Cited by 26 | Viewed by 5121
Abstract
This study tested the anti-hyperlipidemic, hypoglycemic, hepatoprotective, and anti-inflammatory effects of whole pearl millet grain powder (MPG) and its ethanol extract (MPGethaolE) in obese rats fed a high-fat diet. The rats were divided into eight groups based on the treatments they received: control, [...] Read more.
This study tested the anti-hyperlipidemic, hypoglycemic, hepatoprotective, and anti-inflammatory effects of whole pearl millet grain powder (MPG) and its ethanol extract (MPGethaolE) in obese rats fed a high-fat diet. The rats were divided into eight groups based on the treatments they received: control, high fat diet (HFD), HFD + MGE (25 mg/Kg), HFD + MPGethaolE (50 mg/Kg), HFD + MPGethaolE (100 mg/Kg), HFD + MPG (10%), HFD + MPG (20%), and HFD + MPG (30%). The final body weight, visceral, epididymal fat pads, and the liver weight were significantly decreased, in a dose-dependent manner, in HFD fed rats that were co-administered either the MPG powder or MPGethaolE. In the same line, serum levels of triglycerides (TGs), cholesterol (CHOL), and low-density lipoprotein-cholesterol (LDL-c), as well as fasting glucose, insulin, HOMA-IR, and serum levels of lipopolysaccharides (LPS), interleukine-6 (IL-6), interleukine-10 (IL-10), C-reactive protein (CRP), tumor necrosis factor (TNF-α), and adiponectin were progressively decreased while serum levels of high-density lipoproteins (HDL-c) were significantly increased when increasing the doses of both treatments. In conclusion, both the raw powder and ethanolic extract of MP have a comparative dose-dependent anti-obesity, hypoglycemic, hypolipidemic, anti-inflammatory, and anti-steatotic in HFD-fed rats. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

19 pages, 1913 KB  
Article
Leuconostoc mesenteroides and Pediococcus pentosaceus Non-Alcoholic Pearl Millet Beverage Enriched with Moringa oleifera Leaf Powder: Nutritional and Sensory Characteristics
by Victoria A. Jideani, Mmaphuti A. Ratau and Vincent I. Okudoh
Processes 2021, 9(12), 2125; https://doi.org/10.3390/pr9122125 - 25 Nov 2021
Cited by 10 | Viewed by 3761
Abstract
Non-alcoholic cereal beverages (NACB) are usually produced through uncontrolled fermentation driven by a cocktail of bacteria resulting in final product variability. Hence, to commercialise fermented traditional cereal beverages bioburden microbial cultures are required. This investigation aimed to evaluate the physicochemical, nutritional, and sensory [...] Read more.
Non-alcoholic cereal beverages (NACB) are usually produced through uncontrolled fermentation driven by a cocktail of bacteria resulting in final product variability. Hence, to commercialise fermented traditional cereal beverages bioburden microbial cultures are required. This investigation aimed to evaluate the physicochemical, nutritional, and sensory characteristics of NACB produced using pure cultures of Leuconostoc mesenteroides and Pediococcus pentosaceus. Pearl millet extract (PME) pasteurised at 85 °C for 15 min and cooled to 40 °C was inoculated with Leuconostoc mesenteroides and Pediococcus pentosaceus at 0.050% and 0.025% (1:0.5), respectively, and fermented at 37 °C for 18 h, referred to as plain non-alcoholic pearl millet beverage (PNAPMB). Moringa supplemented non-alcoholic pearl millet beverage (MSNAPMB) was produced following the same method as PNAPMB but a 4% moringa leaf extract powder was added before hydration of the pearl millet powder. The traditional non-alcoholic pearl millet beverage (TNAPMB) was prepared by mixing water and pearl millet flour (1:1.25; PMF:Water) and hydrated for 3 h at 25 °C. The mixture was divided into ¼ slurry which was mixed with sprouted rice flour (SRF) and ¾ portion that was gelatinised with 1 L of boiling water and cooled to 40 °C. The two portions were mixed and fermented at 37 °C for 18 h, followed by sieving, dilution with water (1:0.5, filtrate:water), and pasteurization for 15 min at 85 °C. The growth of lactic acid bacteria, pH, total titratable acidity (TTA), and sugar in PNAPMB and MSNAPMB were determined at 3 h intervals during fermentation. The final beverages were also analysed for proximate, colour and metabolites. The lactic acid bacteria were significantly (p < 0.05) affected by the fermentation period and increased from 3.32 to 7.97 log CFU/mL (pH 4.14) and 3.58 to 8.38 log CFU/mL (pH 3.65) for PNAPMB and MSNAPMB, respectively. The total titratable acidity significantly (p < 0.05) increased from 0.14 to 0.22% and from 0.17 to 0.38% in PNAPMB and MSNAPMB, respectively. The protein, total fat, moisture total sugar, and carbohydrates differed significantly (p < 0.05) among the samples. PNAPMB was preferred by a consumer panel followed by MSNAPMB and TNAPMB. Volatile compounds with beneficial anti-inflammatory and anti-pathogenic properties were identified in the beverages. Innovative fermentation of pearl millet extract using purified bioburden cultures was possible and the added Moringa oleifera leaf powder improved the nutritional quality of the resulting beverage. Full article
(This article belongs to the Special Issue Properties and Processing Process of Flour Products)
Show Figures

Figure 1

12 pages, 5049 KB  
Article
The Construction of Multi-Incorporated Polylactic Composite Nanofibrous Scaffold for the Potential Applications in Bone Tissue Regeneration
by Du Nie, Yi Luo, Guang Li, Junhong Jin, Shenglin Yang, Suying Li, Yu Zhang, Jiamu Dai, Rong Liu and Wei Zhang
Nanomaterials 2021, 11(9), 2402; https://doi.org/10.3390/nano11092402 - 15 Sep 2021
Cited by 11 | Viewed by 2879
Abstract
To improve the bone regeneration ability of pure polymer, varieties of bioactive components were incorporated to a biomolecular scaffold with different structures. In this study, polysilsesquioxane (POSS), pearl powder and dexamethasone loaded porous carbon nanofibers (DEX@PCNFs) were incorporated into polylactic (PLA) nanofibrous scaffold [...] Read more.
To improve the bone regeneration ability of pure polymer, varieties of bioactive components were incorporated to a biomolecular scaffold with different structures. In this study, polysilsesquioxane (POSS), pearl powder and dexamethasone loaded porous carbon nanofibers (DEX@PCNFs) were incorporated into polylactic (PLA) nanofibrous scaffold via electrospinning for the application of bone tissue regeneration. The morphology observation showed that the nanofibers were well formed through electrospinning process. The mineralization test of incubation in simulated body fluid (SBF) revealed that POSS incorporated scaffold obtained faster hydroxyapatite depositing ability than pristine PLA nanofibers. Importantly, benefitting from the bioactive components of pearl powder like bone morphogenetic protein (BMP), bone mesenchymal stem cells (BMSCs) cultured on the composite scaffold presented higher proliferation rate. In addition, by further incorporating with DEX@PCNFs, the alkaline phosphatase (ALP) level and calcium deposition were a little higher based on pearl powder. Consequently, the novel POSS, pearl powder and DEX@PCNFs multi-incorporated PLA nanofibrous scaffold can provide better ability to enhance the biocompatibility and accelerate osteogenic differentiation of BMSCs, which has potential applications in bone tissue regeneration. Full article
Show Figures

Figure 1

12 pages, 2678 KB  
Article
Efficacy of Water-Soluble Pearl Powder Components Extracted by a CO2 Supercritical Extraction System in Promoting Wound Healing
by Minting Liu, Junjun Tao, Hongchen Guo, Liang Tang, Guorui Zhang, Changming Tang, Hu Zhou, Yunlong Wu, Huajun Ruan and Xian Jun Loh
Materials 2021, 14(16), 4458; https://doi.org/10.3390/ma14164458 - 9 Aug 2021
Cited by 16 | Viewed by 5100
Abstract
Pearl powder is a biologically active substance that is widely used in traditional medicine, skin repair and maintenance. The traditional industrial extraction processes of pearl powder are mainly based on water, acid or enzyme extraction methods, all of which have their own drawbacks. [...] Read more.
Pearl powder is a biologically active substance that is widely used in traditional medicine, skin repair and maintenance. The traditional industrial extraction processes of pearl powder are mainly based on water, acid or enzyme extraction methods, all of which have their own drawbacks. In this study, we propose a new extraction process for these active ingredients, specifically, water-soluble components of pearl powder extracted by a CO2 supercritical extraction system (SFE), followed by the extraction efficiency evaluation. A wound-healing activity was evaluated in vitro and in vivo. This demonstrated that the supercritical extraction technique showed high efficiency as measured by the total protein percentage. The extracts exhibited cell proliferation and migration-promoting activity, in addition to improving collagen formation and healing efficiency in vivo. In brief, this study proposes a novel extraction process for pearl powder, and the extracts were also explored for wound-healing bioactivity, demonstrating the potential in wound healing. Full article
Show Figures

Figure 1

Back to TopTop