Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = phenolic building block

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3096 KB  
Article
Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) Analysis of Adhesives in Block-Glued Laminated Timber
by Candela Pedrero Zazo, Peter Gosselink and Rolands Kromanis
Sustainability 2025, 17(17), 8055; https://doi.org/10.3390/su17178055 - 7 Sep 2025
Viewed by 1485
Abstract
The growing need for sustainable and resource-efficient materials increasingly promotes the use of block-glued laminated timber (glulam) in buildings and civil structures such as bridges. While timber is renewable and sustainable, the formaldehyde-based adhesives commonly used in glulam raise environmental and health concerns. [...] Read more.
The growing need for sustainable and resource-efficient materials increasingly promotes the use of block-glued laminated timber (glulam) in buildings and civil structures such as bridges. While timber is renewable and sustainable, the formaldehyde-based adhesives commonly used in glulam raise environmental and health concerns. This study addresses this gap by presenting one of the first combined life cycle assessment (LCA) and life cycle cost (LCC) analyses of bio-based versus synthetic adhesives for block-glued glulam. A pedestrian bridge in Zwolle, the Netherlands, serves as a case study. Three synthetic adhesives—melamine-urea formaldehyde (MUF), phenol resorcinol formaldehyde (PRF), and phenol formaldehyde (PF)—and two bio-based alternatives—lignin phenol glyoxal (LPG) and tannin-furfuryl alcohol formaldehyde (TFF)—are analyzed. The LCA covers raw material sourcing, transport, and end-of-life scenarios, with impacts assessed in accordance with EN 15804+A2 using Earthster and the Ecoinvent v3.11 database. The proposed method integrates environmental and economic assessments, with results presented both per kilogram of adhesive and per cubic meter of glulam to ensure comparability. Results show that synthetic adhesives have higher environmental impacts than bio-based adhesives: the carbon footprint of 1 kg of adhesive averages 0.60 kg CO2-eq for bio-based adhesives and 2.01 kg CO2-eq for synthetic adhesives. LCC are similar across adhesives, averaging EUR 400 per m3 of glulam. These findings suggest that bio-based adhesives can compete environmentally and economically, but their limited availability and uncertain long-term performance remain barriers. Overall, the study highlights trade-offs between sustainability and structural reliability and provides guidance for sustainable adhesive selection in timber engineering. Full article
(This article belongs to the Special Issue Advancements in Green Building Materials, Structures, and Techniques)
Show Figures

Figure 1

13 pages, 1052 KB  
Article
Upgrading Renewable Phenols to Functional Benzyl Chlorides and Formamides: Versatile Building Blocks for the Chemical Industry
by Nicola Porcelli, Biagio Anderlini, Alberto Ughetti, Mattia Giuliana, Matteo Fiocchi and Fabrizio Roncaglia
Appl. Sci. 2025, 15(14), 7876; https://doi.org/10.3390/app15147876 - 15 Jul 2025
Viewed by 1062
Abstract
A reliable synthetic method based on the already known Blanc–Quelet methodology has been developed for upgrading bio-based phenols into valuable electrophilic mono-, di-, and trifunctional benzyl chlorides. These compounds show significant potential as building blocks for polymer production and the synthesis of specialty [...] Read more.
A reliable synthetic method based on the already known Blanc–Quelet methodology has been developed for upgrading bio-based phenols into valuable electrophilic mono-, di-, and trifunctional benzyl chlorides. These compounds show significant potential as building blocks for polymer production and the synthesis of specialty chemicals. As an example of their applicability, their direct interaction with formamide has been evaluated, obtaining an effective transformation towards the corresponding N-formylamides. These compounds represent versatile synthetic precursors to a variety of functionalized targets. Full article
(This article belongs to the Special Issue Industrial Chemical Engineering and Organic Chemical Technology)
Show Figures

Figure 1

75 pages, 15988 KB  
Review
Tailoring Polymer Properties Through Lignin Addition: A Recent Perspective on Lignin-Derived Polymer Modifications
by Nawoda L. Kapuge Dona and Rhett C. Smith
Molecules 2025, 30(11), 2455; https://doi.org/10.3390/molecules30112455 - 3 Jun 2025
Cited by 3 | Viewed by 2695
Abstract
Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This [...] Read more.
Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This review provides an updated perspective on the incorporation of lignin into various polymer matrices, focusing on lignin modification techniques, structure–property relationships, and emerging applications. Special emphasis is given to recent innovations in lignin functionalization and its role in developing high-performance, biodegradable, and recyclable materials such as polyurethanes, epoxy resins, phenol-formaldehyde resins, lignin-modified composites, and lignin-based films, coatings, elastomers, and adhesives. These lignin-based materials are gaining attention for potential applications in construction, automated industries, packaging, textiles, wastewater treatment, footwear, supporting goods, automobiles, printing rollers, sealants, and binders. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

20 pages, 476 KB  
Article
Combining Carboxylic-Acid-Based Deep Eutectic Solvents and High Temperatures Enhances Phenolic Acid Extraction from Grape Pomace
by Francesca Lorenzo, Marialaura Frisina, Sonia Bonacci, Monica Nardi, Manuela Oliverio and Antonio Procopio
Antioxidants 2025, 14(6), 643; https://doi.org/10.3390/antiox14060643 - 27 May 2025
Viewed by 784
Abstract
Phenolic acids are contained in grape pomace, mostly in a conjugate form, and can be a natural source of building blocks if they are efficiently hydrolyzed and extracted from the natural matrix. In this study, a comparative study based on the spectrophotometric evaluation [...] Read more.
Phenolic acids are contained in grape pomace, mostly in a conjugate form, and can be a natural source of building blocks if they are efficiently hydrolyzed and extracted from the natural matrix. In this study, a comparative study based on the spectrophotometric evaluation of total phenolic content, hydroxycinnamic acid content, and anthocyanin content was performed on different carboxylic-acid-based NADES with different heating sources. Moreover, a quali–quantitative characterization of the bioactive molecules extracted was performed using UHPLC-ESI-HRMS. We found that the nature of the acidic component of the DES was crucial in selecting the family of molecules to be extracted; ChCl/oxalic acid 1:1 NADES, when combined with MAE at 100 °C, is the best medium for the in situ hydrolysis and extraction of phenolic acids from grape pomace. The ORAC test performed on natural extracts with and without NADES revealed a role for NADES components in antioxidant activity against the ROS of extracted bioactive phenols. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

39 pages, 3887 KB  
Review
A Comprehensive Review of Catalytic Hydrodeoxygenation of Lignin-Derived Phenolics to Aromatics
by Sitong Dong and Gang Feng
Molecules 2025, 30(10), 2225; https://doi.org/10.3390/molecules30102225 - 20 May 2025
Cited by 5 | Viewed by 2742
Abstract
Single-ring aromatic compounds including BTX (benzene, toluene, xylene) serve as essential building blocks for high-performance fuels and specialty chemicals, with extensive applications spanning polymer synthesis, pharmaceutical manufacturing, and aviation fuel formulation. Current industrial production predominantly relies on non-renewable petrochemical feedstocks, posing the dual [...] Read more.
Single-ring aromatic compounds including BTX (benzene, toluene, xylene) serve as essential building blocks for high-performance fuels and specialty chemicals, with extensive applications spanning polymer synthesis, pharmaceutical manufacturing, and aviation fuel formulation. Current industrial production predominantly relies on non-renewable petrochemical feedstocks, posing the dual challenges of resource depletion and environmental sustainability. The catalytic hydrodeoxygenation (HDO) of lignin-derived phenolic substrates emerges as a technologically viable pathway for sustainable aromatic hydrocarbon synthesis, offering critical opportunities for lignin valorization and biorefinery advancement. This article reviews the relevant research on the conversion of lignin-derived phenolic compounds’ HDO to benzene and aromatic hydrocarbons, systematically categorizing and summarizing the different types of catalysts and their reaction mechanisms. Furthermore, we propose a strategic framework addressing current technical bottlenecks, highlighting the necessity for the synergistic development of robust heterogeneous catalysts with tailored active sites and energy-efficient process engineering to achieve scalable biomass conversion systems. Full article
(This article belongs to the Special Issue Renewable Energy, Fuels and Chemicals from Biomass, 2nd Edition)
Show Figures

Figure 1

28 pages, 2925 KB  
Review
Cationized Cellulose Materials: Enhancing Surface Adsorption Properties Towards Synthetic and Natural Dyes
by Arvind Negi
Polymers 2025, 17(1), 36; https://doi.org/10.3390/polym17010036 - 27 Dec 2024
Cited by 9 | Viewed by 4212
Abstract
Cellulose is a homopolymer composed of β-glucose units linked by 1,4-beta linkages in a linear arrangement, providing its structure with intermolecular H-bonding networking and crystallinity. The participation of hydroxy groups in the H-bonding network results in a low-to-average nucleophilicity of cellulose, which is [...] Read more.
Cellulose is a homopolymer composed of β-glucose units linked by 1,4-beta linkages in a linear arrangement, providing its structure with intermolecular H-bonding networking and crystallinity. The participation of hydroxy groups in the H-bonding network results in a low-to-average nucleophilicity of cellulose, which is insufficient for executing a nucleophilic reaction. Importantly, as a polyhydroxy biopolymer, cellulose has a high proportion of hydroxy groups in secondary and primary forms, providing it with limited aqueous solubility, highly dependent on its form, size, and other materialistic properties. Therefore, cellulose materials are generally known for their low reactivity and limited aqueous solubility and usually undergo aqueous medium-assisted pretreatment methods. The cationization of cellulose materials is one such example of pretreatment, which introduces a positive charge over its surface, improving its accessibility towards anionic group-containing molecules or application-targeted functionalization. The chemistry of cationization of cellulose has been widely explored, leading to the development of various building blocks for different material-based applications. Specifically, in coloration applications, cationized cellulose materials have been extensively studied, as the dyeing process benefits from the enhanced ionic interactions with anionic groups (such as sulfate, carboxylic groups, or phenolic groups), minimizing/eliminating the need for chemical auxiliaries. This study provides insights into the chemistry of cellulose cationization, which can benefit the material, polymer, textile, and color chemist. This paper deals with the chemistry information of cationization and how it enhances the reactivity of cellulose fibers towards its processing. Full article
(This article belongs to the Special Issue Reactive and Functional Biopolymers)
Show Figures

Figure 1

9 pages, 1686 KB  
Proceeding Paper
Synthesis of 4,4′,4″-(((Benzene-1,2,3-triyltris(oxy))tris(2-oxoethane-2,1-diyl))tris(oxy))tris(2,3-dihydroxy-4-oxobutanoic Acid) and 4,4′,4″-(((Benzene-1,2,4-triyltris(oxy))tris(2-oxoethane-2,1-diyl))tris(oxy))tris(2,3-dihydroxy-4-oxobutanoic Acid)
by Ruzimurod Sattorovich Jurayev
Eng. Proc. 2024, 67(1), 75; https://doi.org/10.3390/engproc2024067075 - 12 Nov 2024
Viewed by 943
Abstract
The potential for triatomic phenols to significantly advance organic chemistry and other fields makes their chloroacetylation and the synthesis of compounds based on chloroacetyl products highly relevant. This diversity enables the creation of novel materials, medicines, and specialized compounds. Chloroacetylation yields functional groups [...] Read more.
The potential for triatomic phenols to significantly advance organic chemistry and other fields makes their chloroacetylation and the synthesis of compounds based on chloroacetyl products highly relevant. This diversity enables the creation of novel materials, medicines, and specialized compounds. Chloroacetylation yields functional groups known as chloroacetyls, which can serve as versatile building blocks for further modifications. This offers a systematic approach to the synthesis of complex compounds, expanding the toolkit available to synthetic chemists. Researching novel synthetic pathways often leads to unexpected discoveries and fresh ideas. By exploring new reaction mechanisms, reactivity patterns, and applications, the study of chloroacetylation in the context of triatomic phenols can inspire scientific innovation. In analytical chemistry, phenols and oxycarboxylic acids are used to identify and quantify metal ions. Therefore, we decided to combine these two classes of compounds. Through synthesis, a wide variety of substances with unique structures and properties can be produced. The syntheses based on the topic “Chloroacetylation of trihydroxybenzenes and Syntheses Based on Chloroacetyl Compounds” are described in this article. O-chloroacetylation reactions were carried out in the presence of trihydroxybenzenes: benzene-1,2,3-triol, benzene-1,2,4-triol and chloroacetyl chloride. 4,4′,4″-(((benzene-1,2,3-triyltris(oxy))tris(2-oxoethane-2,1-diyl))tris(oxy))tris(2,3-dihydroxy-4-oxobutanoic acid) and 4,4′,4″-(((benzene-1,2,4-triyltris(oxy))tris(2-oxoethane-2,1-diyl))tris(oxy))tris(2,3-dihydroxy-4-oxobutanoic acid) were produced as a consequence of the nucleophilic exchange of chlorine atoms. The sodium salt of tartaric acid (sodium (2S,2R)-3-carboxy-2,3-dihydroxypropanoate) was present during the procedure. The solvent that was employed was dimethylformamide. Using contemporary physicochemical techniques, the structure of the substance that was produced as a result of the reaction was examined. Both the reaction’s mechanism and methods were examined. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Processes)
Show Figures

Figure 1

20 pages, 4065 KB  
Article
Solid-State Structures and Properties of Lignin Hydrogenolysis Oil Compounds: Shedding a Unique Light on Lignin Valorization
by Oliver J. Driscoll, Kristof Van Hecke, Christophe M. L. Vande Velde, Frank Blockhuys, Maarten Rubens, Tatsuhiro Kuwaba, Daniel J. van de Pas, Walter Eevers, Richard Vendamme and Elias Feghali
Int. J. Mol. Sci. 2024, 25(19), 10810; https://doi.org/10.3390/ijms251910810 - 8 Oct 2024
Cited by 1 | Viewed by 2102
Abstract
This article explores the important, and yet often overlooked, solid-state structures of selected bioaromatic compounds commonly found in lignin hydrogenolysis oil, a renewable bio-oil that holds great promise to substitute fossil-based aromatic molecules in a wide range of chemical and material industrial applications. [...] Read more.
This article explores the important, and yet often overlooked, solid-state structures of selected bioaromatic compounds commonly found in lignin hydrogenolysis oil, a renewable bio-oil that holds great promise to substitute fossil-based aromatic molecules in a wide range of chemical and material industrial applications. At first, single-crystal X-ray diffraction (SCXRD) was applied to the lignin model compounds, dihydroconiferyl alcohol, propyl guaiacol, and eugenol dimers, in order to elucidate the fundamental molecular interactions present in such small lignin-derived polyols. Then, considering the potential use of these lignin-derived molecules as building blocks for polymer applications, structural analysis was also performed for two chemically modified model compounds, i.e., the methylene-bridging propyl-guaiacol dimer and propyl guaiacol and eugenol glycidyl ethers, which can be used as precursors in phenolic and epoxy resins, respectively, thus providing additional information on how the molecular packing is altered following chemical modifications. In addition to the expected H-bonding interactions, other interactions such as π–π stacking and C–H∙∙∙π were observed. This resulted in unexpected trends in the tendencies towards the crystallization of lignin compounds. This was further explored with the aid of DSC analysis and CLP intermolecular energy calculations, where the relationship between the major interactions observed in all the SCXRD solid-state structures and their physico-chemical properties were evaluated alongside other non-crystallizable lignin model compounds. Beyond lignin model compounds, our findings could also provide important insights into the solid-state structure and the molecular organization of more complex lignin fragments, paving the way to the more efficient design of lignin-based materials with improved properties for industrial applications or improving downstream processing of lignin oils in biorefining processes, such as in enhancing the separation and isolation of specific bioaromatic compounds). Full article
(This article belongs to the Special Issue Valorization of Lignocellulosic Biomass)
Show Figures

Graphical abstract

17 pages, 2946 KB  
Review
Application of Mass Spectrometry for Analysis of Nucleobases, Nucleosides and Nucleotides in Tea and Selected Herbs: A Critical Review of the Mass Spectrometric Data
by Magdalena Frańska and Rafał Frański
Foods 2024, 13(18), 2959; https://doi.org/10.3390/foods13182959 - 18 Sep 2024
Viewed by 6133
Abstract
The main and most commonly known biological function of nucleobases, nucleosides, and nucleotides is usually associated with the fact that they are the building blocks of nucleic acids. However, these compounds also belong to plant secondary metabolites, although in that role they have [...] Read more.
The main and most commonly known biological function of nucleobases, nucleosides, and nucleotides is usually associated with the fact that they are the building blocks of nucleic acids. However, these compounds also belong to plant secondary metabolites, although in that role they have attracted less attention than the others, e.g., terpenes, phenolics, or alkaloids. The former compounds are also important constituents of the human diet, e.g., as ingredients of tea and herbs, endowing them with specific taste qualities and pharmacological activities. Liquid chromatography–mass spectrometry seems to be the most important analytical method that permits the identification and determination of nucleobases, nucleosides, and nucleotides, along with the other metabolites. The main goal of this review is to discuss in detail the aspects of mass spectrometric detection of nucleobases, nucleosides, and nucleotides in tea and selected herbs. An important conclusion is that the identification of the compounds of interest should be performed not only on the basis of [M + H]+/[M − H] ions but should also be confirmed by the respective product ions; however, as discussed in detail in this review, it may sometimes be problematic. It also clear that all difficulties that may be encountered when analyzing plant material are caused by the complexity of the analyzed samples and the need to analyze different classes of compounds, and this review absolutely does not debase any of the mentioned papers. Full article
Show Figures

Figure 1

13 pages, 6251 KB  
Article
Using the Groundwater Cooling System and Phenolic Aldehyde Isolation Layer on Building Walls to Evaluation of Heat Effect
by Ting-Yu Chen and Wen-Pei Sung
Buildings 2024, 14(9), 2848; https://doi.org/10.3390/buildings14092848 - 10 Sep 2024
Viewed by 1051
Abstract
This study examines the thermal performance of building walls under full sunlight conditions using various insulation strategies. Specifically, it evaluates: (1) the effects of heat on building walls and indoor spaces; (2) the impact of groundwater cooling systems on thermal environments; (3) the [...] Read more.
This study examines the thermal performance of building walls under full sunlight conditions using various insulation strategies. Specifically, it evaluates: (1) the effects of heat on building walls and indoor spaces; (2) the impact of groundwater cooling systems on thermal environments; (3) the influence of phenolic aldehyde insulation layers on heat transfer; and (4) the combined effects of groundwater cooling and phenolic aldehyde thermal insulation. Fluent–CFD (Computational Fluid Dynamics) was used in the study to simulate temperature transmission between the sun, the groundwater cooling system, and both indoor and outdoor spaces. Experimental analysis and simulations reveal that both the phenolic aldehyde insulation layer and the groundwater cooling system effectively reduce heat transfer, with the groundwater cooling system demonstrating the most significant impact. The phenolic aldehyde layer decreases the temperature difference between inner and outer walls by approximately 8 °C. The groundwater cooling system further reduces both inner and outer wall temperatures, helping to maintain cooler indoor environments. Simulation results indicate that, while the phenolic aldehyde layer effectively prevents external heat from penetrating into the room, it does not eliminate heat accumulation. In contrast, the groundwater cooling system efficiently dissipates heat, mitigating this issue. Groundwater analysis shows that maximum temperature differences occur at specific times of the day, with water flow effectively cooling the space. The combined use of the phenolic aldehyde insulation layer and the groundwater cooling system offers superior thermal performance. The phenolic layer provides effective heat blocking, while the groundwater system facilitates heat dissipation, optimizing indoor temperature and reducing air conditioning loads. This combination enhances overall comfort and energy efficiency, with the groundwater cooling system benefiting from reduced flow velocity and lower energy consumption. Full article
(This article belongs to the Collection Sustainable Buildings in the Built Environment)
Show Figures

Figure 1

16 pages, 8032 KB  
Article
Turn-on Coumarin Precursor: From Hydrazine Sensor to Covalent Inhibition and Fluorescence Detection of Rabbit Muscle Aldolase
by Sara Amer, Uri Miles, Michael Firer and Flavio Grynszpan
Molecules 2024, 29(10), 2175; https://doi.org/10.3390/molecules29102175 - 7 May 2024
Cited by 1 | Viewed by 2099
Abstract
Hydrazine, a highly toxic compound, demands sensitive and selective detection methods. Building upon our previous studies with pre-coumarin OFF–ON sensors for fluoride anions, we extended our strategy to hydrazine sensing by adapting phenol protecting groups (propionate, levulinate, and γ-bromobutanoate) to our pre-coumarin scaffold. [...] Read more.
Hydrazine, a highly toxic compound, demands sensitive and selective detection methods. Building upon our previous studies with pre-coumarin OFF–ON sensors for fluoride anions, we extended our strategy to hydrazine sensing by adapting phenol protecting groups (propionate, levulinate, and γ-bromobutanoate) to our pre-coumarin scaffold. These probes reacted with hydrazine, yielding a fluorescent signal with low micromolar limits of detection. Mechanistic studies revealed that hydrazine deprotection may be outperformed by a retro-Knoevenagel reaction, where hydrazine acts as a nucleophile and a base yielding a fluorescent diimide compound (6,6′-((1E,1′E)-hydrazine-1,2diylidenebis(methaneylylidene))bis(3(diethylamino)phenol, 7). Additionally, our pre-coumarins unexpectedly reacted with primary amines, generating a fluorescent signal corresponding to phenol deprotection followed by cyclization and coumarin formation. The potential of compound 3 as a theranostic Turn-On coumarin precursor was also explored. We propose that its reaction with ALDOA produced a γ-lactam, blocking the catalytic nucleophilic amine in the enzyme’s binding site. The cleavage of the ester group in compound 3 induced the formation of fluorescent coumarin 4. This fluorescent signal was proportional to ALDOA concentration, demonstrating the potential of compound 3 for future theranostic studies in vivo. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

16 pages, 3112 KB  
Article
1,2,3-Triazole Hybrids Containing Isatins and Phenolic Moieties: Regioselective Synthesis and Molecular Docking Studies
by Loredana Maiuolo, Matteo Antonio Tallarida, Angelo Meduri, Giulia Fiorani, Antonio Jiritano, Antonio De Nino, Vincenzo Algieri and Paola Costanzo
Molecules 2024, 29(7), 1556; https://doi.org/10.3390/molecules29071556 - 30 Mar 2024
Cited by 4 | Viewed by 3195
Abstract
The synthesis of hybrid molecules is one of the current strategies of drug discovery for the development of new lead compounds. The 1,2,3-triazole moiety represents an important building block in Medicinal Chemistry, extensively present in recent years. In this paper, we presented the [...] Read more.
The synthesis of hybrid molecules is one of the current strategies of drug discovery for the development of new lead compounds. The 1,2,3-triazole moiety represents an important building block in Medicinal Chemistry, extensively present in recent years. In this paper, we presented the design and the synthesis of new 1,2,3-triazole hybrids, containing both an isatine and a phenolic core. Firstly, the non-commercial azide and the alkyne synthons were prepared by different isatines and phenolic acids, respectively. Then, the highly regioselective synthesis of 1,4-disubstituted triazoles was obtained in excellent yields by a click chemistry approach, catalyzed by Cu(I). Finally, a molecular docking study was performed on the hybrid library, finding four different therapeutic targets. Among them, the most promising results were obtained on 5-lipoxygenase, an enzyme involved in the inflammatory processes. Full article
(This article belongs to the Special Issue Small Molecule Hybrids for Anticancer and Antiviral Therapy)
Show Figures

Graphical abstract

11 pages, 2389 KB  
Article
Synthesis of Enantiopure (S)-Atenolol by Utilization of Lipase-Catalyzed Kinetic Resolution of a Key Intermediate
by Mari Bergan Hansen, Anna Lifen Tennfjord, Fredrik Heen Blindheim, Lucas Hugo Yvan Bocquin and Elisabeth Egholm Jacobsen
Int. J. Mol. Sci. 2024, 25(6), 3497; https://doi.org/10.3390/ijms25063497 - 20 Mar 2024
Cited by 1 | Viewed by 1931
Abstract
(S)-Atenolol ((S)-2-(4-(2-Hydroxy-3-(isopropylamino)propoxy)phenyl)acetamide) has been synthesized in >99% enantiomeric excess (ee) with the use of Candida antarctica lipase B from Syncozymes (Shanghai, China), in a kinetic resolution of the corresponding racemic chlorohydrin. A catalytic amount of base was [...] Read more.
(S)-Atenolol ((S)-2-(4-(2-Hydroxy-3-(isopropylamino)propoxy)phenyl)acetamide) has been synthesized in >99% enantiomeric excess (ee) with the use of Candida antarctica lipase B from Syncozymes (Shanghai, China), in a kinetic resolution of the corresponding racemic chlorohydrin. A catalytic amount of base was used in deprotonation of the phenol building block. The enantiopurity of the chlorohydrin building block remained unchanged upon subsequent amination to yield the final drug. All four steps in the synthesis protocol have been optimized compared to previously reported methods, which makes this new protocol more sustainable and in accordance with green chemistry principles. The overall yield of (S)-atenolol was 9.9%, which will be further optimized. Full article
(This article belongs to the Special Issue Recent Trends in Stereoselective Synthesis and Chiral Catalysis)
Show Figures

Figure 1

18 pages, 4637 KB  
Article
Broccoli Leaves (Brassica oleracea var. italica) as a Source of Bioactive Compounds and Chemical Building Blocks: Optimal Extraction Using Dynamic Maceration and Life Cycle Assessment
by Aranza Nallely Manríquez-Zúñiga, Argelia Rosillo de la Torre, Laura Valdés-Santiago, Diana A. Hernández-Bustos, Samantha Cuéllar-Sojo, Angélica Hernández-Rayas, Samuel Perez-Vega and Carlos Eduardo Molina-Guerrero
Sustainability 2023, 15(24), 16616; https://doi.org/10.3390/su152416616 - 6 Dec 2023
Cited by 5 | Viewed by 3637
Abstract
Bioactive compounds (BACs) and chemical building blocks (CBBs) play a pivotal role in driving economic growth. These compounds, known for their diverse applications in pharmaceuticals, agriculture, and manufacturing, have become integral to meeting the increasing demand for sustainable and innovative products. In this [...] Read more.
Bioactive compounds (BACs) and chemical building blocks (CBBs) play a pivotal role in driving economic growth. These compounds, known for their diverse applications in pharmaceuticals, agriculture, and manufacturing, have become integral to meeting the increasing demand for sustainable and innovative products. In this research, we used and characterized dynamic maceration to extract BACs and CBBs from broccoli leaves (BLs). A central composite design (CCD) was selected to evaluate the effect of temperature (from 4 °C to 70 °C), ethanol concentration (from 30% to 70% (v/v)), and exposition time (15 to 60 min) on total phenolic content (TPC) (mg of gallic acid equivalents (GAEs) per 100 g of dry biomass (db)). A confirmation experiment (CE) was performed to reproduce the optimal conditions (50 °C, 36.92 min, and 30% (v/v)) for BAC extraction. Results indicated a GAE concentration of 112.95 ± 0.92 mg/100 g db, while the statistical model predicted a value of 111.87 mg of GAEs/100 g db (error of 0.95%) with a rate constant (k) value of 0.0154 mg/g·min (R2 of 0.9894). BACs and CBBs were identified with gas chromatography–electron impact mass spectrometry detecting l-isoleucine, l-leucine, malonic acid, and succinic acid, among others. Finally, a life cycle inventory (LCI) was developed to determine global warming (GW) and water consumption (WC), among others, for 10 g of BL extract. Findings reported herein prove the sustainability of eco-friendly extraction of BACs and CBBs for the effective use of agricultural by-products. Full article
Show Figures

Graphical abstract

18 pages, 5019 KB  
Review
Advances in Nanomaterials Based on Cashew Nut Shell Liquid
by Ermelinda Bloise, Maria Rosaria Lazzoi, Lucia Mergola, Roberta Del Sole and Giuseppe Mele
Nanomaterials 2023, 13(17), 2486; https://doi.org/10.3390/nano13172486 - 4 Sep 2023
Cited by 11 | Viewed by 4507
Abstract
Cashew nut shell liquid (CNSL), obtained as a byproduct of the cashew industry, represents an important natural source of phenolic compounds, with important environmental benefits due to the large availability and low cost of the unique renewable starting material, that can be used [...] Read more.
Cashew nut shell liquid (CNSL), obtained as a byproduct of the cashew industry, represents an important natural source of phenolic compounds, with important environmental benefits due to the large availability and low cost of the unique renewable starting material, that can be used as an alternative to synthetic substances in many industrial applications. The peculiarity of the functional groups of CNSL components, such as phenolic hydroxyl, the aromatic ring, acid functionality, and unsaturation(s) in the C15 alkyl side chain, permitted the design of interesting nanostructures. Cardanol (CA), anacardic acid (AA), and cardol (CD), opportunely isolated from CNSL, served as building blocks for generating an amazing class of nanomaterials with chemical, physical, and morphological properties that can be tuned in view of their applications, particularly focused on their bioactive properties. Full article
(This article belongs to the Special Issue Recent Advances in Green Nanomaterials: Design and Applications)
Show Figures

Figure 1

Back to TopTop