Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = phospho-tau (Thr217)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5031 KB  
Article
Loss of AT8 Nuclear Tau as a Marker of Neuronal Ageing and Alzheimer’s Disease Progression
by Francesca Bruno, Laura Gil, Valentina Sturiale, Carmen Guerrero, Ana Belen Rebolledo, Desiree Brancato, Javier Morales, Salvatore Saccone and Concetta Federico
Biomedicines 2025, 13(11), 2587; https://doi.org/10.3390/biomedicines13112587 - 23 Oct 2025
Viewed by 610
Abstract
Background/Objectives: Tau protein, a central player in Alzheimer’s disease (AD) pathology, is classically known for its role in microtubule stabilisation. However, accumulating evidence indicates that tau also localises to the neuronal nucleus, particularly the nucleolus, where it may regulate chromatin organisation and transcription. [...] Read more.
Background/Objectives: Tau protein, a central player in Alzheimer’s disease (AD) pathology, is classically known for its role in microtubule stabilisation. However, accumulating evidence indicates that tau also localises to the neuronal nucleus, particularly the nucleolus, where it may regulate chromatin organisation and transcription. In this study, we investigated whether different phosphorylation states of nuclear tau display age- and disease-dependent patterns, with a specific focus on the AT8 epitope (phospho-Ser202/Thr205). Methods: We analysed nuclear tau epitopes (Tau-1, AT8, PHF1, T181, and S262) by indirect immunofluorescence in SK-N-BE neuroblastoma cells under proliferative and retinoic acid-induced differentiated conditions and in post-mortem hippocampal CA1 neurons from foetal, young, aged, and AD brains. Other functional markers (UBTF, Ki67, fibrillarin and acetylated histone H4) were used to assess nuclear organisation and function. Results: Compared with the other epitopes, AT8 was unique in showing dynamic nuclear localisation: absent in proliferating cells but present after differentiation, abundant in young neurons, and significantly reduced in aged and AD samples. Nuclear AT8 co-localised with Ki67, and its decline was associated with neuronal cell cycle re-entry and nucleolar disorganisation. Conclusions: Among multiple nuclear tau epitopes, AT8 was the only one displaying age- and disease-related changes, and its reduction during ageing and AD correlates with nuclear stress, aberrant cell cycle activity, and neuronal vulnerability. Loss of nuclear AT8 may therefore represent an early marker of dysfunction in ageing and AD brains. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

17 pages, 4499 KB  
Article
Primary Feline Tauopathy: Clinical, Morphological, Immunohistochemical, and Genetic Studies
by Laura Vidal-Palencia, Cristina Font, Agustín Rebollada-Merino, Gabriel Santpere, Pol Andrés-Benito, Isidro Ferrer and Martí Pumarola
Animals 2023, 13(18), 2985; https://doi.org/10.3390/ani13182985 - 21 Sep 2023
Cited by 2 | Viewed by 2740
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the pathological aggregation of hyperphosphorylated tau in neurons and glia. Primary tauopathies are not uncommon in humans but exceptional in other species. We evaluate the clinical, neuropathological, and genetic alterations related to tau pathology [...] Read more.
Tauopathies are a group of neurodegenerative diseases characterized by the pathological aggregation of hyperphosphorylated tau in neurons and glia. Primary tauopathies are not uncommon in humans but exceptional in other species. We evaluate the clinical, neuropathological, and genetic alterations related to tau pathology in 16 cats aged from 1 to 21 years with different clinical backgrounds. Interestingly, a 10-year-old female cat presented a six-year progressive history of mental status and gait abnormalities. The imaging study revealed generalized cortical atrophy. Due to the poor prognosis, the cat was euthanatized at the age of ten. Neuropathological lesions were characterized by massive neuronal loss with marked spongiosis and associated moderate reactive gliosis in the parietal cortex, being less severe in other areas of the cerebral cortex, and the loss of Purkinje cells of the cerebellum. Immunohistochemical methods revealed a 4R-tauopathy with granular pre-tangles in neurons and coiled bodies in oligodendrocytes. Deposits were recognized with several phospho-site antibodies (4Rtau, tau5, AT8, PFH, tau-P Thr181, tau-P-Ser 262, tau-P Ser 422) and associated with increased granular expression of active tau kinases (p38-P Thr180/Tyr182 and SAPK/JNK-P Thr138/Thr185). The genetic study revealed well-preserved coding regions of MAPT. No similar alterations related to tau pathology were found in the other 15 cats processed in parallel. To our knowledge, this is the first case reporting a primary 4R-tauopathy with severe cerebral and Purkinje cell degeneration in an adult cat with neurological signs starting at a young age. Full article
Show Figures

Figure 1

14 pages, 5266 KB  
Article
New Monoterpenoid Indole Alkaloids from Tabernaemontana crassa Inhibit β-Amyloid42 Production and Phospho-Tau (Thr217)
by Sheng Li, Ling-Ling Han, Ke-Pu Huang, Ye-Han Ma, Ling-Li Guo, Yarong Guo, Xiaoqian Ran, Yong-Gang Yao, Xiao-Jiang Hao, Rongcan Luo and Yu Zhang
Int. J. Mol. Sci. 2023, 24(2), 1487; https://doi.org/10.3390/ijms24021487 - 12 Jan 2023
Cited by 5 | Viewed by 3198
Abstract
Eleven monoterpenoid indole alkaloids, including three new ones, tabercrassines A–C (13), were isolated from the seeds of Tabernaemontana crassa. Tabercrassine A (1) is an ibogan–ibogan-type bisindole alkaloid which is formed by the polymerization of two classic [...] Read more.
Eleven monoterpenoid indole alkaloids, including three new ones, tabercrassines A–C (13), were isolated from the seeds of Tabernaemontana crassa. Tabercrassine A (1) is an ibogan–ibogan-type bisindole alkaloid which is formed by the polymerization of two classic ibogan-type monomers through a C3 unit aliphatic chain. Their structures were established by extensive analysis of HRESIMS, NMR, and ECD spectra. Cellular assays showed that alkaloids 13 all reduce Aβ42 production and inhibit phospho-tau (Thr217), a new biomarker of Alzheimer’s disease [AD] associated with BACE1-, NCSTN-, GSK3β-, and CDK5-mediated pathways, suggesting these alkaloids’ potential against AD. Full article
(This article belongs to the Special Issue Natural Bioactive Compounds for Human Health)
Show Figures

Figure 1

24 pages, 3797 KB  
Article
Targeting Microtubule-Associated Protein Tau in Chemotherapy-Resistant Models of High-Grade Serous Ovarian Carcinoma
by Maria V. Barbolina
Cancers 2022, 14(18), 4535; https://doi.org/10.3390/cancers14184535 - 19 Sep 2022
Cited by 7 | Viewed by 3011
Abstract
Relapsed, recurrent, chemotherapy-resistant high-grade serous ovarian carcinoma is the deadliest stage of this disease. Expression of microtubule-associated protein tau (tau) has been linked to resistance to paclitaxel treatment. Here, I used models of platinum-resistant and created models of platinum/paclitaxel-resistant high-grade serous ovarian carcinoma [...] Read more.
Relapsed, recurrent, chemotherapy-resistant high-grade serous ovarian carcinoma is the deadliest stage of this disease. Expression of microtubule-associated protein tau (tau) has been linked to resistance to paclitaxel treatment. Here, I used models of platinum-resistant and created models of platinum/paclitaxel-resistant high-grade serous ovarian carcinoma to examine the impact of reducing tau expression on cell survival and tumor burden in cell culture and xenograft and syngeneic models of the disease. Tau was overexpressed in platinum/paclitaxel-resistant models; expression of phosphoSer396 and phosphoThr181 species was also found. A treatment with leucomethylene blue reduced the levels of tau in treated cells, was cytotoxic in cell cultures, and efficiently reduced the tumor burden in xenograft models. Furthermore, a combination of leucomethylene blue and paclitaxel synergized in eliminating cancer cells in cell culture and xenograft models. These findings underscore the feasibility of targeting tau as a treatment option in terminal-stage high-grade serous ovarian cancer. Full article
Show Figures

Figure 1

15 pages, 1092 KB  
Article
Dysregulated Brain Protein Phosphorylation Linked to Increased Human Tau Expression in the hTau Transgenic Mouse Model
by Isidro Ferrer, Pol Andrés-Benito, Karina Ausín, Paz Cartas-Cejudo, Mercedes Lachén-Montes, José Antonio del Rio, Joaquín Fernández-Irigoyen and Enrique Santamaría
Int. J. Mol. Sci. 2022, 23(12), 6427; https://doi.org/10.3390/ijms23126427 - 8 Jun 2022
Cited by 2 | Viewed by 3104
Abstract
Altered protein phosphorylation is a major pathologic modification in tauopathies and Alzheimer’s disease (AD) linked to abnormal tau fibrillar deposits in neurofibrillary tangles (NFTs) and pre-tangles and β-amyloid deposits in AD. hTau transgenic mice, which express 3R and less 4R human tau with [...] Read more.
Altered protein phosphorylation is a major pathologic modification in tauopathies and Alzheimer’s disease (AD) linked to abnormal tau fibrillar deposits in neurofibrillary tangles (NFTs) and pre-tangles and β-amyloid deposits in AD. hTau transgenic mice, which express 3R and less 4R human tau with no mutations in a murine knock-out background, show increased tau deposition in neurons but not NFTs and pre-tangles at the age of nine months. Label-free (phospho)proteomics and SWATH-MS identified 2065 proteins in hTau and wild-type (WT) mice. Only six proteins showed increased levels in hTau; no proteins were down-regulated. Increased tau phosphorylation in hTau was detected at Ser199, Ser202, Ser214, Ser396, Ser400, Thr403, Ser404, Ser413, Ser416, Ser422, Ser491, and Ser494, in addition to Thr181, Thr231, Ser396/Ser404, but not at Ser202/Thr205. In addition, 4578 phosphopeptides (corresponding to 1622 phosphoproteins) were identified in hTau and WT mice; 64 proteins were differentially phosphorylated in hTau. Sixty proteins were grouped into components of membranes, membrane signaling, synapses, vesicles, cytoskeleton, DNA/RNA/protein metabolism, ubiquitin/proteasome system, cholesterol and lipid metabolism, and cell signaling. These results showed that over-expression of human tau without pre-tangle and NFT formation preferentially triggers an imbalance in the phosphorylation profile of specific proteins involved in the cytoskeletal–membrane-signaling axis. Full article
Show Figures

Figure 1

Back to TopTop