Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (389)

Search Parameters:
Keywords = polyethyleneimine (PEI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1787 KB  
Article
Dual Synthetic Pathways for Organotin-Functionalized Mesoporous Silica Nanoparticles: Targeted Therapeutic Platforms with Folic Acid and PEI Formulation
by Victoria García-Almodóvar, Sanjiv Prashar and Santiago Gómez-Ruiz
Nanomaterials 2025, 15(23), 1791; https://doi.org/10.3390/nano15231791 - 27 Nov 2025
Viewed by 78
Abstract
Breast cancer is the most common cancer in women worldwide, with a high mortality rate. Moreover, the treatments currently used to address this disease are sometimes ineffective and cause numerous side effects. For this reason, the search for new treatments that can overcome [...] Read more.
Breast cancer is the most common cancer in women worldwide, with a high mortality rate. Moreover, the treatments currently used to address this disease are sometimes ineffective and cause numerous side effects. For this reason, the search for new treatments that can overcome these challenges is a growing field of research. One potential solution under investigation is the use of mesoporous silica nanoparticles (MSNs). These materials possess excellent properties, making them attractive as starting platforms for various compounds. In this study, different compounds with distinct properties were anchored onto these nanoplatforms. The first is polyethyleneimine (PEI), which, when formulated within the nanoparticle, increases its bioavailability. The second is folic acid (FA), a molecule that enables active targeting of tumor cells. Finally, an organotin(IV) complex was incorporated via two different anchoring strategies to provide therapeutic action. This multifunctional platform thus combines three activities simultaneously. MTT assay studies revealed that the final material, MSN-TEDTH-PEI-FA-TR-Sn, demonstrates potential against the MCF-7 tumor cell line while showing no toxicity to the healthy Hek 293T cell line. These findings make it an interesting candidate for future in vivo trials. Full article
Show Figures

Graphical abstract

17 pages, 2687 KB  
Article
Electrochemical Sensing of Lead Ions Using Ionophore-Modified Raspberry-like Fe3O4–Au Nanostructures via Differential Pulse Voltammetry
by Giang Huong Dau, Tin Phan Nguy, Tram Thi Ngoc Do, Thanh Van Pham and Lien Thi Ngoc Truong
Polymers 2025, 17(22), 3015; https://doi.org/10.3390/polym17223015 - 13 Nov 2025
Viewed by 444
Abstract
This study presents the design and application of an electrochemical sensor for selective detection of lead ions (Pb2+) based on ionophore-modified raspberry-like Fe3O4–Au nanostructures. The material was engineered with a magnetic Fe3O4 core, coated [...] Read more.
This study presents the design and application of an electrochemical sensor for selective detection of lead ions (Pb2+) based on ionophore-modified raspberry-like Fe3O4–Au nanostructures. The material was engineered with a magnetic Fe3O4 core, coated with polyethyleneimine (PEI) to facilitate nucleation, and subsequently decorated with Au nanoparticles, providing a raspberry-like (Fe3O4@PEI@AuNPs) nanostructure with high surface area and excellent electrochemical conductivity. Surface functionalization with Lead Ionophore IV (ionophore thiol) introduced Pb2+-selective binding sites, whose presence and structural evolution were verified by TEM and Raman spectroscopy. The Fe3O4 core endowed strong magnetic properties, enabling facile manipulation and immobilization onto screen-printed carbon electrodes (SPCEs) via physical adsorption, while the Au nanoparticles enhanced electron transfer, supplied thiol-binding sites for stable ionophore anchoring, and increased the effective electroactive surface area. Operational conditions were systematically optimized, with acetate buffer (HAc/NaAc, pH 5.7) and chronoamperometric preconcentration (CA) at −1.0 V for 175 s identified as optimal for differential pulse voltammetry (DPV) measurements. Under these conditions, the sensor exhibited a linear response toward Pb2+ from 0.025 mM to 2.00 mM with superior sensitivity and reproducibility compared to conventional AuNP-modified SPCEs. Furthermore, the ionophore-modified Fe3O4–Au nanostructure-based sensor demonstrated outstanding selectivity for Pb2+ over competing heavy metal ions (Cd2+, Hg2+, Cr3+), owing to the specific coordination interaction of Lead Ionophore IV with target ions. These findings highlight the potential of raspberry-like Fe3O4@PEI@AuNP nanostructures as a robust and efficient electrochemical platform for the sensitive and selective detection of toxic heavy metal ions. Full article
Show Figures

Graphical abstract

17 pages, 4105 KB  
Article
Ion Exchange Membrane-like Deposited Electrodes for Capacitive De-Ionization: Performance Evaluation and Mechanism Study
by Siyue Xue, Chengyi Wang, Tianxiao Leng, Chenglin Zhang, Long-Fei Ren and Jiahui Shao
Membranes 2025, 15(11), 338; https://doi.org/10.3390/membranes15110338 - 11 Nov 2025
Viewed by 418
Abstract
Capacitive de-ionization (CDI) holds great promise for water desalination, while the widely used activated carbon (AC) electrodes suffer from a low salt adsorption capacity (SAC) and poor long-term stability due to the co-ion effect and electrode oxidation. Inspired by membrane-based CDI, we deposited [...] Read more.
Capacitive de-ionization (CDI) holds great promise for water desalination, while the widely used activated carbon (AC) electrodes suffer from a low salt adsorption capacity (SAC) and poor long-term stability due to the co-ion effect and electrode oxidation. Inspired by membrane-based CDI, we deposited polyethyleneimine (PEI), an ion exchange polymer with positive charge and ion selectivity, onto an AC electrode to serve as an anode for addressing these issues. Firstly, compared to traditional AC and commercial AEM-AC, the PEI-doped AC (PDAC) anode delivered a superior SAC of 36.3 mg/g, as the positively charged PEI enhanced electrostatic attraction, suppressed the co-ion effect, and offered extra sites. However, it showed poor cycling stability with 77.1% retention, owing to mass loss and anode oxidation. We further developed an electrode coated with a PEI-based membrane (PMAC), which exhibited a balanced performance with a high SAC of 33.4 mg/g and significantly improved long-term retention of 97.5%. The hydrophilic PEI membrane, strongly adhered to the AC surface, shortened the ion diffusion resistance and effectively prolonged the electrode lifespan. A systematic comparison between AC, AEM-AC, PDAC, and PMAC revealed the mechanism for PMAC’s notable enhancement. These findings establish a framework for designing novel CDI electrodes and advancing sustainable water desalination. Full article
Show Figures

Figure 1

35 pages, 16280 KB  
Article
Engineering Mesoporous Silica Hosts for Ultrasmall ZnO Nanoparticles: A Dendritic Polymer-Assisted Strategy Towards Sustainable, Safe, and Effective Antibacterial Systems
by Aggeliki Papavasiliou, Kyriaki Marina Lyra, Elias Sakellis, Albany Milena Lozano Násner, Jose Gallego, Fotios K. Katsaros and Zili Sideratou
Nanomaterials 2025, 15(22), 1697; https://doi.org/10.3390/nano15221697 - 9 Nov 2025
Viewed by 583
Abstract
In response to the urgent need for sustainable antibacterial solutions against antibiotic-resistant pathogens, this study presents a facile dendritic polymer-assisted approach for synthesizing highly active ZnO/mesoporous silica nanocomposites (SBA-15, SBA-16, KIT-6, MSU-X). Two hyperbranched polymers—polyethyleneimine (PEI) and carboxy-methylated polyethyleneimine (Trilon-P, TrP)—were employed as [...] Read more.
In response to the urgent need for sustainable antibacterial solutions against antibiotic-resistant pathogens, this study presents a facile dendritic polymer-assisted approach for synthesizing highly active ZnO/mesoporous silica nanocomposites (SBA-15, SBA-16, KIT-6, MSU-X). Two hyperbranched polymers—polyethyleneimine (PEI) and carboxy-methylated polyethyleneimine (Trilon-P, TrP)—were employed as templating and metal-trapping agents. The influence of pore geometry, polymer functionality, and polymer-loading method (wet or dry impregnation) on ZnO nanoparticle (NP) formation was systematically examined. All nanocomposites exhibited high structural homogeneity, incorporating ultrasmall or amorphous ZnO NPs (1–10 nm) even at 8 wt.% Zn loading. Zn uptake was strongly dependent on polymer end groups, while the spatial distribution of ZnO NPs was dictated by the silica host structure. Antibacterial assays against Staphylococcus aureus revealed remarkable activity, particularly for ZnO/SBA-15_PEI, ZnO/SBA-16_PEI, and ZnO/MSU-X_TrP nanocomposites, with minimum inhibitory concentrations of 1–2.5 μg mL−1 Zn and over 90% mammalian cell viability. Life Cycle Assessment identified energy use as the main environmental factor, with ZnO/SBA-15_PEI_WI displaying the lowest impact. Overall, the interplay between silica pore architecture, polymer type, and impregnation method governs ZnO accessibility and bioactivity, establishing a versatile strategy for designing next-generation ZnO/SiO2 nanocomposites with tunable antibacterial efficacy and minimal cytotoxic and environmental footprint. Full article
Show Figures

Graphical abstract

12 pages, 1632 KB  
Article
Polyethyleneimine-MOF-235 Composite-Enhanced Electrochemical Detection of Silver Nanoparticles in Cosmetics
by Shuo Duan and Huang Dai
Chemosensors 2025, 13(11), 392; https://doi.org/10.3390/chemosensors13110392 - 8 Nov 2025
Viewed by 395
Abstract
Silver nanoparticles (AgNPs) are extensively utilized in cosmetics and healthcare products, creating an urgent need for sensitive quantification methods. We report the first application of a metal–organic framework for electrochemical AgNPs sensing in cosmetic samples. A glassy carbon electrode was modified with polyethyleneimine-encapsulated [...] Read more.
Silver nanoparticles (AgNPs) are extensively utilized in cosmetics and healthcare products, creating an urgent need for sensitive quantification methods. We report the first application of a metal–organic framework for electrochemical AgNPs sensing in cosmetic samples. A glassy carbon electrode was modified with polyethyleneimine-encapsulated MOF-235 (PEI-MOF-235/GCE); the PEI layer enriches AgNPs through Ag–N coordination, whereas the high-surface-area MOF catalyzes their oxidative dissolution. Under optimized conditions (catalyst loading 1.4 µg mm−3, pH 4.3 PBS), differential-pulse voltammetry provided a linear range of 10–100 ng L−1 and a detection limit of 3.93 ng L−1 (S/N = 3). The sensor exhibited excellent stability (RSD ≤ 4.7%) and good anti-interference capability toward common aquatic ions. Compared with a standard HPLC method, recoveries in spiked cosmetic samples were 97.9–102.6%. This MOF-based strategy offers a sensitive, selective, and field-deployable platform for routine monitoring of trace AgNPs. Full article
(This article belongs to the Special Issue Advancements of Chemosensors and Biosensors in China—3rd Edition)
Show Figures

Graphical abstract

13 pages, 4131 KB  
Article
A Novel Strategy for Introducing Metal-Organic Frameworks into Carbon Fiber to Improve the Interfacial and Mechanical Properties of Carbon Fiber/Epoxy Composites
by Jin Yan, Hongyi Ma, Qiyu Deng, Hongyun Li and Lei Xiong
Materials 2025, 18(21), 4856; https://doi.org/10.3390/ma18214856 - 23 Oct 2025
Viewed by 467
Abstract
The interfacial properties in carbon fiber (CF)-reinforced polymer composites are substantially limited by the chemically inactive and smooth CF surfaces. In this study, zeolitic imidazolate framework 90 (ZIF90) was chemically grafted onto CF surfaces via polyethyleneimine (PEI) as a coupling agent to construct [...] Read more.
The interfacial properties in carbon fiber (CF)-reinforced polymer composites are substantially limited by the chemically inactive and smooth CF surfaces. In this study, zeolitic imidazolate framework 90 (ZIF90) was chemically grafted onto CF surfaces via polyethyleneimine (PEI) as a coupling agent to construct a hierarchical reinforcement interface in CF/epoxy composite. The successful synthesis of CF grafted with PEI and ZIF90 (CF-PEI-ZIF90) was systematically characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The incorporation of ZIF90 nanocrystals and PEI molecules into CF surfaces effectively improved interfacial adhesion through mechanical interlocking and chemical interactions, thereby optimizing stress transfer efficiency at the fiber–matrix interface and improving the interfacial properties of the composite. Additionally, the resultant CF-PEI-ZIF90/epoxy composite demonstrated significant mechanical enhancement, with the tensile and bending strengths increasing by 33.5% and 21.4%, respectively, compared to unmodified CF/epoxy composites. This work provides a novel strategy for enhancing the interfacial performance of CF composites by leveraging the unique properties of metal-organic frameworks, which is critical for advancing high-performance structural materials in aerospace and automotive applications. Full article
Show Figures

Figure 1

11 pages, 8725 KB  
Article
Nano-Silica-Modified Hydrophobic PDMS Encapsulation on CNT Thermoelectric Fibers for Waterproof Thermoelectric Textiles
by Boxuan Zhang, Mingyuan Ma, Shengyu Wang, Hanyu Cai, Dawei Li and Peng Gu
Textiles 2025, 5(4), 52; https://doi.org/10.3390/textiles5040052 - 22 Oct 2025
Viewed by 378
Abstract
Flexible and wearable thermoelectric devices can convert body waste heat into electricity, showing a new direction to solve the long-lasting issue of energy supply on portable devices. However, thermoelectric fibers are prone to short circuits and failure due to sweat stains and washing [...] Read more.
Flexible and wearable thermoelectric devices can convert body waste heat into electricity, showing a new direction to solve the long-lasting issue of energy supply on portable devices. However, thermoelectric fibers are prone to short circuits and failure due to sweat stains and washing practices. Therefore, it is quite necessary to solve this problem to realize the practical thermoelectric device. PDMS, with its excellent insulation and flexibility, can effectively address short-circuit issues by encapsulating the surface of thermoelectric fibers. In this work, hydrophilic nano-silica (H-SiO2)-modified PDMS that insulates materials was prepared and coated on the surfaces of polyethyleneimine (PEI)- and hydrochloric acid (HCl)-treated dual-surface-modified thermoelectric fibers. The encapsulated fibers were then woven into spacer fabric to prepare thermoelectric textiles (TETs). After 50 water washing cycles, the fibers retained 97% of their conductivity, and the textiles continued to function normally underwater, indicating that the thermoelectric fibers are effectively protected under PDMS encapsulation. Full article
Show Figures

Figure 1

21 pages, 3449 KB  
Article
Synthesis and Characterization of Chromium Ion-Imprinted Biochar for Selective Removal of Cr(VI) from Wastewater
by Xinchi Zong, Tianliang Duan, Linyan Chen, Zhengwei Luo, Hui Jiang and Wenhua Geng
Water 2025, 17(19), 2910; https://doi.org/10.3390/w17192910 - 9 Oct 2025
Viewed by 475
Abstract
The escalating issue of water pollution driven by rapid industrialization necessitates the development of advanced remediation technologies. In this study, a novel method for producing chromium (Cr(VI)) ion-imprinted biochar (Cr(VI)-IIP-PEI@NBC) from wheat residue was proposed. After acid-oxidative modifications, polyethyleneimine (PEI) and glutaraldehyde (GA) [...] Read more.
The escalating issue of water pollution driven by rapid industrialization necessitates the development of advanced remediation technologies. In this study, a novel method for producing chromium (Cr(VI)) ion-imprinted biochar (Cr(VI)-IIP-PEI@NBC) from wheat residue was proposed. After acid-oxidative modifications, polyethyleneimine (PEI) and glutaraldehyde (GA) were employed as the functional monomer and crosslinker, respectively, to enhance the biochar’s selectivity and adsorption capacity. Under optimized conditions (pH 2.0, 55 °C), the adsorbent achieved a maximum Cr(VI) uptake of 212.63 mg/g, which was 2.3 times higher than that of the non-imprinted biochar. The material exhibited exceptional specificity (99.64%) for Cr(VI) and maintained >80% adsorption efficiency after five regeneration cycles, demonstrating excellent reusability. Comprehensive structural characterization via Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), Brunner–Emmet–Teller measurements (BET), and Scanning Electron Microscopy (SEM) confirmed successful Cr(VI) imprinting in the biochar and its high thermal stability and mesoporous architecture, elucidating the mechanisms behind its superior performance. This study presents a sustainable and high-performance adsorbent for the efficient treatment of chromium-contaminated wastewater, with significant potential for industrial applications. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 4123 KB  
Article
Dynamic Ultra-Fast Sorption/Desorption of Indigo Carmine onto/from Versatile Core-Shell Composite Microparticles
by Florin Bucatariu, Larisa-Maria Petrila, Timeea-Anastasia Ciobanu, Marius-Mihai Zaharia and Marcela Mihai
Appl. Sci. 2025, 15(19), 10725; https://doi.org/10.3390/app151910725 - 5 Oct 2025
Viewed by 447
Abstract
The direct deposition of highly concentrated polyelectrolyte complexes based on poly(ethyleneimine) (PEI) and poly(sodium methacrylate) (PMANa) onto inorganic sand microparticles (F100 and F200) resulted in the formation of versatile core-shell composites with fast removal properties in dynamic conditions toward anionic charged pollutants. Herein, [...] Read more.
The direct deposition of highly concentrated polyelectrolyte complexes based on poly(ethyleneimine) (PEI) and poly(sodium methacrylate) (PMANa) onto inorganic sand microparticles (F100 and F200) resulted in the formation of versatile core-shell composites with fast removal properties in dynamic conditions toward anionic charged pollutants. Herein, in situ-generated nonstoichiometric PEI/PMANa polyelectrolyte complexes were directly precipitated as a soft organic shell onto solid sand microparticles at a 5% mass ratio (organic/inorganic part = 5%, w/w%). The sorption of an anionic model pollutant (Indigo Carmine (IC)) onto the composite particles in dynamic conditions depended on the inorganic core size, the flow rate, the bed type (fixed or fluidized) and the initial dye concentration. The maximum sorption capacity, after 10 cycles of sorption/desorption of IC onto F100@P5% and F200@P5%, was between 16 and 18 mg IC/mL composite. The newly synthesized core-shell composites could immobilize IC at a high flow rate (8 mL/min), either from concentrated (CIC = 60 mg/L) or very diluted (CIC = 0.2 mg/L) IC aqueous solution, demonstrating that this type of material could be promising in water treatment or efficient in solid-phase extraction (concentration factor of 2000). Full article
(This article belongs to the Special Issue Water Pollution and Wastewater Treatment Chemistry)
Show Figures

Figure 1

12 pages, 1810 KB  
Article
Polyethyleneimine-Assisted Fabrication of Poly(Lactic-Co-Glycolic Acid) Nanoparticles Loaded with Tamibarotene (Am80) for Meflin Expression Upregulation
by Tomoya Inose, Tadashi Iida, Hiroki Kawashima, Atsushi Enomoto, Maki Nakamura and Ayako Oyane
J. Funct. Biomater. 2025, 16(10), 368; https://doi.org/10.3390/jfb16100368 - 1 Oct 2025
Viewed by 1047
Abstract
Tamibarotene (Am80) is a promising anti-tumor drug that induces the expression of Meflin (a glycosylphosphatidyl inositol-anchored protein) in cancer-associated fibroblasts, thereby improving the tumor microenvironment. However, Am80, which is approved only for oral administration owing to its poor water solubility, has the challenge [...] Read more.
Tamibarotene (Am80) is a promising anti-tumor drug that induces the expression of Meflin (a glycosylphosphatidyl inositol-anchored protein) in cancer-associated fibroblasts, thereby improving the tumor microenvironment. However, Am80, which is approved only for oral administration owing to its poor water solubility, has the challenge of poor tumor penetration. In this study, we developed poly(lactic-co-glycolic acid) nanoparticles loaded with Am80 (Am80–PLGA nanoparticles) as a potential intravenous drug for targeted Am80 delivery to the tumor site. The Am80–PLGA nanoparticles were fabricated using the single-emulsion method in the presence of cationic polyethyleneimine (PEI). The loading efficiency of Am80 in the nanoparticles was controlled by tuning the PEI concentration in the preparation mixture. Nanoparticles with the highest Am80-loading efficiency were dispersible and showed a hydrodynamic diameter of approximately 190 nm in phosphate-buffered saline for up to 2 weeks. The Am80 release from the nanoparticles started in a day and lasted for weeks. The nanoparticles upregulated Meflin expression in human fibroblasts (fHDF/TERT166 cells). These results suggest the potential of Am80–PLGA nanoparticles as a new intravenous anti-tumor drug that can improve the tumor microenvironment, thereby enhancing the efficacy of chemotherapy and immunotherapy. Full article
Show Figures

Figure 1

19 pages, 6326 KB  
Article
Ecofriendly Flame-Retardant Polystyrene Composites: Exploiting the Synergistic Effects of Phytic Acid, Polyethyleneimine, and Expandable Graphite
by Zhunzhun Li, Qimei Zhang, Jian Cui and Yehai Yan
Materials 2025, 18(18), 4308; https://doi.org/10.3390/ma18184308 - 14 Sep 2025
Viewed by 873
Abstract
Ecofriendly flame-retardant polystyrene (PS) composites were developed using the synergistic effects of phytic acid (PA), polyethyleneimine (PEI), and expandable graphite (EG). PA was chemically hybridized with PEI, and the hybrid (PAE) was incorporated into PS together with EG. The flame-retardant performances of the [...] Read more.
Ecofriendly flame-retardant polystyrene (PS) composites were developed using the synergistic effects of phytic acid (PA), polyethyleneimine (PEI), and expandable graphite (EG). PA was chemically hybridized with PEI, and the hybrid (PAE) was incorporated into PS together with EG. The flame-retardant performances of the resulting composites were evaluated using the limiting oxygen index (LOI), UL-94 vertical burning test, and cone calorimetry test. The strong interaction between EG and PAE provided an effective barrier against heat and oxygen, thereby improving the flame retardancy. The best-performing composite (PA:PEI:EG = 1:1:1 (w/w/w), total flame-retardant loading = 10 parts per 100 parts of PS) exhibited an LOI of 27.7% and a UL-94 V-0 rating. The peak heat release rate (148.8 kW/m2) and total heat release (91.2 MJ/m2) of this composite were lower than those of pure PS by 79.2% and 34.0%, respectively. This study provides guidelines for the production of flame-retardant PS and other polymeric materials. Full article
Show Figures

Figure 1

22 pages, 6464 KB  
Article
Evaluation and Experiment of High-Strength Temperature- and Salt-Resistant Gel System
by Changhua Yang, Di Xiao, Jun Wang and Tuo Liang
Gels 2025, 11(8), 669; https://doi.org/10.3390/gels11080669 - 21 Aug 2025
Viewed by 689
Abstract
To address the issues of poor thermal stability, inadequate salt tolerance, and environmental risks in conventional gel systems for the development of high-temperature, high-salinity heterogeneous reservoirs, a triple-synergy gel system comprising anionic polyacrylamide (APAM), polyethyleneimine (PEI), and phenolic resin (SMP) was developed in [...] Read more.
To address the issues of poor thermal stability, inadequate salt tolerance, and environmental risks in conventional gel systems for the development of high-temperature, high-salinity heterogeneous reservoirs, a triple-synergy gel system comprising anionic polyacrylamide (APAM), polyethyleneimine (PEI), and phenolic resin (SMP) was developed in this study. The optimal synthesis parameters—APAM of 180 mg/L, PEI:SMP = 3:1, salinity of 150,000 ppm, and temperature of 110 °C—were determined via response surface methodology, and a time–viscosity model was established. Compared with existing binary systems, the proposed gel exhibited a mass retention rate of 93.48% at 110 °C, a uniform porous structure (pore size of 2–8 μm), and structural stability under high salinity (150,000 ppm). Nuclear magnetic resonance displacement tests showed that the utilization efficiency of crude oil in 0.1–1 μm micropores increased to 21.32%. Parallel dual-core flooding experiments further confirmed the selective plugging capability in heterogeneous systems with a permeability contrast of 10:1: The high-permeability layer (500 mD) achieved a plugging rate of 98.7%, while the recovery factor of the low-permeability layer increased by 13.6%. This gel system provides a green and efficient profile control solution for deep, high-temperature, high-salinity reservoirs. Full article
(This article belongs to the Special Issue Applications of Gels for Enhanced Oil Recovery)
Show Figures

Figure 1

19 pages, 1169 KB  
Article
Hyperbranched Polyethyleneimine–Coordinated Copper(II) Metallopolymers with Preferential Targeting to Prostate Cancer Cells
by Barbara Mavroidi, Kyriaki Marina Lyra, Stergios Pispas, Zili Sideratou and Dimitris Tsiourvas
Pharmaceuticals 2025, 18(8), 1189; https://doi.org/10.3390/ph18081189 - 12 Aug 2025
Viewed by 796
Abstract
Background/Objectives: Copper levels are significantly elevated in both the sera and tumor tissues of various cancers, including prostate cancer. It has therefore been suggested that targeting the elevated copper levels with copper chelators could lead to selective cancer treatment. Thus, several classes [...] Read more.
Background/Objectives: Copper levels are significantly elevated in both the sera and tumor tissues of various cancers, including prostate cancer. It has therefore been suggested that targeting the elevated copper levels with copper chelators could lead to selective cancer treatment. Thus, several classes of low molecular weight copper-coordinating lipophilic compounds, as well as the newly developed copper complexes of appropriately functionalized polymers, are being investigated as promising novel anticancer therapeutics. Particularly, metal-containing polymers, or metallopolymers, are systematically investigated as anticancer agents or as drug delivery systems. This study aims to utilize the strong copper-chelating properties of hyperbranched polyethyleneimine (PEI) to develop PEI:Cu metallopolymers and evaluate their selectivity and anticancer properties against several prostate cancer cell lines. Methods: A series of PEI:Cu complexes at PEI/Cu ratios that ensure that no free copper ions are present in the solution are prepared and investigated against a human non-cancerous cell line and three prostate cancer cell lines of increasing metastatic potential. Results: PEI:Cu derivatives are cytotoxic against the human prostate carcinoma metastatic PC3 and DU145 cell lines, even at the lowest tested concentrations of 5 μg/mL, while against the non-cancerous HEK293 cells, all metallopolymer derivatives exhibit insignificant cytotoxicity up concentrations of 50 μg/mL. Their cytotoxic effect is associated with mitochondria membrane potential loss and ROS production increase. Conclusions: Hyperbranched polyethyleneimine–coordinated copper(II) metallopolymers, at low concentrations, selectively induce cytotoxicity in metastatic prostate cancer cell lines without compromising the viability of non-cancerous embryonic kidney cells. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

8 pages, 1944 KB  
Proceeding Paper
Fabrication of Thin-Film Composite Nanofiltration Membrane Employing Polyelectrolyte and Metal–Organic Framework (MOF) via Spin-Spray-Assisted Layer-by-Layer Assembly
by Farid Fadhillah
Eng. Proc. 2025, 105(1), 3; https://doi.org/10.3390/engproc2025105003 - 11 Aug 2025
Viewed by 731
Abstract
Spin-spray-assisted layer-by-layer (LbL) assembly is an innovative method for producing nanostructured thin films due to its rapid assembly and extensive coverage of substrates. In this study, a nanofiltration (NF) membrane consisting of multilayers of polyethyleneimine (PEI) and poly(sodium-4-styrene sulfonate) (PSS) was fabricated on [...] Read more.
Spin-spray-assisted layer-by-layer (LbL) assembly is an innovative method for producing nanostructured thin films due to its rapid assembly and extensive coverage of substrates. In this study, a nanofiltration (NF) membrane consisting of multilayers of polyethyleneimine (PEI) and poly(sodium-4-styrene sulfonate) (PSS) was fabricated on a polysulfone (PSF) support. The resulting membrane was further coated with a metal–organic framework (MOF303). The resulting (PEI/PSS)5-MOF303 showed a rejection rate of 18.94 ± 1.58% and a permeability of 0.91 ± 0.13 L/(h·bar·m2)while also showing enhanced antifouling properties. This work explores the possibility of spin-spray-assisted LbL assembly as a promising method for fabricating membranes. Full article
(This article belongs to the Proceedings of The 4th Coatings and Interfaces Online Conference)
Show Figures

Figure 1

15 pages, 2424 KB  
Article
Cyanuric Chloride with the s-Triazine Ring Fabricated by Interfacial Polymerization for Acid-Resistant Nanofiltration
by Zhuangzhuang Tian, Yun Yin, Jiandong Wang, Xiuling Ao, Daijun Liu, Yang Jin, Jun Li and Jianjun Chen
Membranes 2025, 15(8), 231; https://doi.org/10.3390/membranes15080231 - 1 Aug 2025
Viewed by 990
Abstract
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane [...] Read more.
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane technologies for impurity removal under harsh conditions are still immature. In this work, we develop a novel strategy of acid-resistant nanofiltration membranes based on interfacial polymerization (IP) of polyethyleneimine (PEI) and cyanuric chloride (CC) with the s-triazine ring. The IP process was optimized by orthogonal experiments to obtain positively charged PEI-CC membranes with a molecular weight cut-off (MWCO) of 337 Da. We further applied it to the approximate industrial phosphoric acid purification condition. In the tests using a mixed solution containing 20 wt% P2O5, 2 g/L Fe3+, 2 g/L Al3+, and 2 g/L Mg2+ at 0.7 MPa and 25 °C, the NF membrane achieved 56% rejection of Fe, Al, and Mg and over 97% permeation of phosphorus. In addition, the PEI-CC membrane exhibited excellent acid resistance in the 48 h dynamic acid permeation experiment. The simple fabrication procedure of PEI-CC membrane has excellent acid resistance and great potential for industrial applications. Full article
(This article belongs to the Special Issue Nanofiltration Membranes for Precise Separation)
Show Figures

Figure 1

Back to TopTop