Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (574)

Search Parameters:
Keywords = polymer/inorganic composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1837 KB  
Article
Development and Research of Biocompatible Composite Materials Based on Polyvinyl Alcohol and Hydroxyapatite Obtained by 3D Printing
by Rustam Sadykov, Gulnaz Musina, Rymgul Zhaslan, Daria Lytkina, Ulyana Khomutova, Olesya Laput, Lyubov Domracheva, Irina Kurzina, Altynaray Takibayeva, Zhanara Rakhimberlinova and Gaukhar Seitkasymova
J. Compos. Sci. 2025, 9(11), 614; https://doi.org/10.3390/jcs9110614 - 7 Nov 2025
Viewed by 233
Abstract
A composite material based on polyvinyl alcohol (PVA) and hydroxyapatite modified with magnesium (0.3; 0.5; 1.0 mol) was developed using the in situ mineralization method. A thorough analysis confirmed the formation of a two-phase system, with a uniform distribution of HA particles within [...] Read more.
A composite material based on polyvinyl alcohol (PVA) and hydroxyapatite modified with magnesium (0.3; 0.5; 1.0 mol) was developed using the in situ mineralization method. A thorough analysis confirmed the formation of a two-phase system, with a uniform distribution of HA particles within the PVA matrix. In addition, the analysis confirmed the successful incorporation of magnesium into the crystal lattice without the formation of secondary phases. The material exhibited a developed macroporous structure, with porosities ranging from 50 to 200 μm. In order to ensure that the rheological properties of the composition were suitable for 3D printing, 4 wt.% gelatin was added, resulting in stable scaffolds. In vitro studies demonstrated high biocompatibility of the materials and a synergistic effect of the components: PVA has been demonstrated to neutralise the cytotoxic effects of HA, while magnesium has been shown to statistically significantly increase the viability of macrophages. The combination of a polymer matrix with an inorganic phase results in a material that exhibits both elasticity and bioactivity. The structural and functional characteristics of these systems render them promising materials for tissue engineering, particularly for bone regeneration and the creation of biocompatible 3D scaffolds. Full article
(This article belongs to the Special Issue The Properties and Applications of Advanced Functional Biocomposites)
Show Figures

Figure 1

15 pages, 4685 KB  
Article
Enhanced Flame-Retardant Properties of PVDF Using a Multiphase Synergistic Approach with Phytate-Chitosan-Modified Boron Nitride
by Shiyi Ming, Piao Wang, Shaoyuan Wu, Jinghan Hu, Jie Zhang, Lianlian Li, Bingyue Huang, Weijiang Huang, Xingyu Guan, Kui Wang and Wei Yan
Polymers 2025, 17(21), 2904; https://doi.org/10.3390/polym17212904 - 30 Oct 2025
Viewed by 248
Abstract
The morphology and composition of inorganic particles play a vital role in controlling the flame-retardant characteristics of polymers. Halogen-free flame-retardant polymers have also become a current research hotspot. Boron nitride (BN), phytic acid (PA), and chitosan (CS), a natural polysaccharide with a nitrogen [...] Read more.
The morphology and composition of inorganic particles play a vital role in controlling the flame-retardant characteristics of polymers. Halogen-free flame-retardant polymers have also become a current research hotspot. Boron nitride (BN), phytic acid (PA), and chitosan (CS), a natural polysaccharide with a nitrogen content of approximately 6.8–7.5%, show great promise as flame retardants owing to their high thermal stability, P-based flame retardancy, and natural polysaccharide properties, respectively. In this study, BN (BN@PA-CS) particles coated with PA and CS were designed and prepared via a facile modification strategy. The effect of BN@PA-CS on the mechanical and flame-retardant properties of polyvinylidene fluoride (PVDF) was further investigated, and it was found that both characteristics were improved. Compared to pure PVDF, the PVDF composite films exhibited a significantly lower peak heat release rate and total heat release. With a BN@PA-CS content of 20%, the peak was the lowest at 18.25 W/g, corresponding to a decrease of 77.83%. This phenomenon may be attributed to the synergistic effect of the BN nanosheets and PA-CS in the BN@PA-CS particles. This work describes a facile and effective method of modifying the morphology and composition of inorganic particles, thereby controlling the properties of polymers, and provides a new approach to improving the safety of PVDF battery separators. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

31 pages, 15662 KB  
Review
Prussian Blue Analogues and Their Derivatives for the Oxygen Evolution Reaction: A Review on Active Site Engineering Strategies
by Zhen Cao, Haozhe Shi, Tingting Zhou, Wenhui Yan, Jiahong Song, Pengqi Feng, Kaili Wang and Zaiyong Jiang
Inorganics 2025, 13(11), 354; https://doi.org/10.3390/inorganics13110354 - 28 Oct 2025
Viewed by 722
Abstract
The oxygen evolution reaction (OER) is a kinetic bottleneck in electrochemical water splitting, creating an urgent need for the development of efficient electrocatalysts. Prussian blue analogues (PBAs), a significant class of inorganic coordination polymers, have emerged as excellent precursors and pre-catalysts for preparing [...] Read more.
The oxygen evolution reaction (OER) is a kinetic bottleneck in electrochemical water splitting, creating an urgent need for the development of efficient electrocatalysts. Prussian blue analogues (PBAs), a significant class of inorganic coordination polymers, have emerged as excellent precursors and pre-catalysts for preparing various OER nanocatalysts, owing to their numerous advantages such as tunable composition, controllable morphology, and structural derivability. This review systematically summarizes recent advances in PBA-based OER electrocatalysts, beginning with two core strategies: enhancing active site accessibility and utilization, and improving the intrinsic activity of each active site. We provide an in-depth discussion of the design principles for enhancing active site accessibility and utilization through constructing porous architectures, creating hierarchical porosity, and improving electrical conductivity. The review also details key approaches for improving intrinsic activity, including regulating electronic structure via elemental doping and optimizing active sites via defect engineering, while examining the underlying mechanisms for performance enhancement. Finally, current challenges and future research directions are outlined, offering a perspective on the potential applications of PBA-based catalysts in sustainable energy conversion systems. Full article
Show Figures

Figure 1

30 pages, 5026 KB  
Review
Polymer Versus Cementitious Matrix Composites for Retrofitting Reinforced Concrete Columns—A State-of-the-Art Review
by Hussein Elsanadedy, Aref Abadel, Husain Abbas, Tarek Almusallam and Yousef Al-Salloum
Polymers 2025, 17(21), 2865; https://doi.org/10.3390/polym17212865 - 27 Oct 2025
Viewed by 573
Abstract
Fiber-reinforced polymer (FRP) composites have become a popular solution for upgrading reinforced concrete (RC) structures due to their corrosion resistance, high strength-to-weight ratio, and speed of implementation. However, their organic resin binder has issues, including temperature sensitivity, poor performance in moist conditions, a [...] Read more.
Fiber-reinforced polymer (FRP) composites have become a popular solution for upgrading reinforced concrete (RC) structures due to their corrosion resistance, high strength-to-weight ratio, and speed of implementation. However, their organic resin binder has issues, including temperature sensitivity, poor performance in moist conditions, a high cost, and potential health risks. Additionally, reversing FRP repair can be difficult and may damage the original structure, posing a significant reversibility issue. A promising alternative to FRP is the fiber-reinforced cementitious matrix (FRCM), which replaces the organic resin with an inorganic cementitious mortar. This new class of composite uses a breathable textile instead of the tightly packed fibers in FRP. The present article provides a comprehensive assessment of the two composites (FRP and FRCM) used for the retrofitting of RC compression members, with the purpose of identifying existing knowledge gaps and outlining future research objectives. The materials used in different strengthening approaches using both FRP and FRCM have been identified, and their stress–strain characteristics under tensile load have been outlined. The study also explores techniques of implementation using the two materials. This study presents available studies comparing the utilization of FRCM composites with FRP for the axial retrofitting of RC compression members in both ambient and high-temperature conditions. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 13010 KB  
Article
Multiscale Analysis of Styrene–Butadiene Latex Modified Rubber Concrete
by Weiming Wang, Yong Feng and Jingjie Feng
Buildings 2025, 15(21), 3881; https://doi.org/10.3390/buildings15213881 - 27 Oct 2025
Viewed by 336
Abstract
Rubberized concrete is a novel green building material that enhances many features when rubber particles are incorporated into cement mortar, simultaneously yielding economic benefits through the recycling of waste tires. This study applies styrene–butadiene latex (SBL) for toughening treatment. The investigation delves into [...] Read more.
Rubberized concrete is a novel green building material that enhances many features when rubber particles are incorporated into cement mortar, simultaneously yielding economic benefits through the recycling of waste tires. This study applies styrene–butadiene latex (SBL) for toughening treatment. The investigation delves into the mechanism by which SBL improves the interface between rubber and cement, encompassing macroscopic mechanical properties, microscopic structural characteristics, and nano-scale interfacial interactions. Macroscopic mechanical tests reveal a significant increase in flexural strength, shear strength, and compressive strength of the composite concrete upon the introduction of SBL and rubber. Specifically, the compressive strength improved by 8.8%, shear strength by 13.7%, and flexural strength by 18.9% at 28 days. Through electron microscopy observation of corresponding polymer cement concrete sections, observations reveal that SBL reinforces both interfaces and elucidates its bonding impact at the micro-level interface. Molecular dynamics (MD) modeling of SBL/rubber/CSH is employed at the nanoscale to compute and examine the local structure, dynamic behavior, and binding energy of the interface. The findings indicate that SBL mitigates interface impacts, enhances interface hydrogen bonds, van der Waals interactions, CaH coordination bonds, and stability, consequently improving interfacial adhesion and fortifying the feeble interface bonding between organic polymers (rubber) and inorganic silicates (CSH). Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Graphical abstract

38 pages, 1493 KB  
Review
From Mineral Salts to Smart Hybrids: Coagulation–Flocculation at the Nexus of Water, Energy, and Resources—A Critical Review
by Faiçal El Ouadrhiri, Ebraheem Abdu Musad Saleh and Amal Lahkimi
Processes 2025, 13(11), 3405; https://doi.org/10.3390/pr13113405 - 23 Oct 2025
Viewed by 741
Abstract
Coagulation–flocculation, historically reliant on simple inorganic salts, has evolved into a technically sophisticated process that is central to the removal of turbidity, suspended solids, organic matter, and an expanding array of micropollutants from complex wastewaters. This review synthesizes six decades of research, charting [...] Read more.
Coagulation–flocculation, historically reliant on simple inorganic salts, has evolved into a technically sophisticated process that is central to the removal of turbidity, suspended solids, organic matter, and an expanding array of micropollutants from complex wastewaters. This review synthesizes six decades of research, charting the transition from classical aluminum and iron salts to high-performance polymeric, biosourced, and hybrid coagulants, and examines their comparative efficiency across multiple performance indicators—turbidity removal (>95%), COD/BOD reduction (up to 90%), and heavy metal abatement (>90%). Emphasis is placed on recent innovations, including magnetic composites, bio–mineral hybrids, and functionalized nanostructures, which integrate multiple mechanisms—charge neutralization, sweep flocculation, polymer bridging, and targeted adsorption—within a single formulation. Beyond performance, the review highlights persistent scientific gaps: incomplete understanding of molecular-scale interactions between coagulants and emerging contaminants such as microplastics, per- and polyfluoroalkyl substances (PFAS), and engineered nanoparticles; limited real-time analysis of flocculation kinetics and floc structural evolution; and the absence of predictive, mechanistically grounded models linking influent chemistry, coagulant properties, and operational parameters. Addressing these knowledge gaps is essential for transitioning from empirical dosing strategies to fully optimized, data-driven control. The integration of advanced coagulation into modular treatment trains, coupled with IoT-enabled sensors, zeta potential monitoring, and AI-based control algorithms, offers the potential to create “Coagulation 4.0” systems—adaptive, efficient, and embedded within circular economy frameworks. In this paradigm, treatment objectives extend beyond regulatory compliance to include resource recovery from coagulation sludge (nutrients, rare metals, construction materials) and substantial reductions in chemical and energy footprints. By uniting advances in material science, process engineering, and real-time control, coagulation–flocculation can retain its central role in water treatment while redefining its contribution to sustainability. In the systems envisioned here, every floc becomes both a vehicle for contaminant removal and a functional carrier in the broader water–energy–resource nexus. Full article
Show Figures

Figure 1

19 pages, 5641 KB  
Article
One-Pot Preparation of Easily Dispersible Hexagonal Mg(OH)2 Modified with THPS and Its Flame-Retardant EVA Copolymer
by Xia Liu, Haihui Xu and Jinyang Chen
Materials 2025, 18(21), 4847; https://doi.org/10.3390/ma18214847 - 23 Oct 2025
Viewed by 308
Abstract
As an eco-friendly flame-retardant additive, magnesium hydroxide (MH) is widely employed in low-smoking, halogen-free polymer materials due to its environmentally benign nature. In order to enhance flame retardancy performance, the modified MH was modified with tetrakis(hydroxymethyl)phosphonium sulfate (THPS) by a one-pot hydrothermal method. [...] Read more.
As an eco-friendly flame-retardant additive, magnesium hydroxide (MH) is widely employed in low-smoking, halogen-free polymer materials due to its environmentally benign nature. In order to enhance flame retardancy performance, the modified MH was modified with tetrakis(hydroxymethyl)phosphonium sulfate (THPS) by a one-pot hydrothermal method. The resulting morphology was characterized using scanning electron microscopy (SEM), and it shows the dispersion of nanometer particles and almost no aggregation. The X-ray photoelectron spectroscopy (XPS) along with Raman spectroscopy show that the THPS is connected with the Mg(OH)2 by chemical bond. The sample was incorporated into ethylene–vinyl acetate (EVA) to evaluate the flame retardancy was assessed via limiting oxygen index (LOI) and vertical burning tests (UL-94). The results show that THPS modified MH effectively enhanced the flame retardancy, achieving a V-0 rating and an LOI value of 31.3%. In addition, the composites retain good mechanical integrity. The thermal analysis with TGA and DTG shows the formation of the MgO decomposition product, along with water vapor and phosphorus-containing radicals released by modified MH in the combustion process, forming a strong flame-retardant protective layer. In addition, the maximum smoke density of EVA/MHP-3 composite was 155.4, lower than 411.3 for EVA/MH, with a 62.2% reduction in total smoke production. The result shows that THPS is effective for improving the flame-retardant efficiency of inorganic metal hydroxide in polymer composites. Full article
Show Figures

Figure 1

35 pages, 12813 KB  
Review
Polymer Composite Materials for Water Purification: Removal of Organic, Inorganic, and Biological Contaminants
by Carlos Rafael Silva de Oliveira, Jéssica Mulinari, Éllen Francine Rodrigues, Carolina E. Demaman Oro, Rodrigo Schlindwein, Rachel Faverzani Magnago, Luciano da Silva, Adriano da Silva and Afonso Henrique da Silva Júnior
Eng 2025, 6(11), 284; https://doi.org/10.3390/eng6110284 - 23 Oct 2025
Viewed by 606
Abstract
The persistent contamination of water bodies by organic compounds, heavy metals, and pathogenic microorganisms represents a critical environmental and public health concern worldwide. In this context, polymer composite materials have emerged as promising multifunctional platforms for advanced water purification. These materials combine the [...] Read more.
The persistent contamination of water bodies by organic compounds, heavy metals, and pathogenic microorganisms represents a critical environmental and public health concern worldwide. In this context, polymer composite materials have emerged as promising multifunctional platforms for advanced water purification. These materials combine the structural versatility of natural and synthetic polymers with the enhanced physicochemical functionalities of inorganic fillers, such as metal oxides and clay minerals. This review comprehensively analyzes recent developments in polymer composites designed to remove organic, inorganic, and biological pollutants from water systems. Emphasis is placed on key removal mechanisms, adsorption, ion exchange, photocatalysis, and antimicrobial action, alongside relevant synthesis strategies and material properties that influence performance, such as surface area, porosity, functional group availability, and mechanical stability. Representative studies are examined to illustrate contaminant-specific composite designs and removal efficiencies. Despite significant advancements, challenges remain regarding scalability, material regeneration, and the environmental safety of nanostructured components. Future perspectives highlight the potential of bio-based and stimuli-responsive polymers, hybrid systems, and AI-assisted material design in promoting sustainable, efficient, and targeted water purification technologies. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

23 pages, 7308 KB  
Article
Powders Synthesized from Calcium Chloride and Mixed-Anionic Solution Containing Orthophosphate and Carbonate Ions
by Tatiana V. Safronova, Hieu Minh Ngoc Le, Tatiana B. Shatalova, Albina M. Murashko, Tatiana V. Filippova, Egor A. Motorin, Dmitry M. Tsymbarenko, Daniil O. Golubchikov, Olga V. Boytsova and Alexander V. Knotko
Compounds 2025, 5(4), 41; https://doi.org/10.3390/compounds5040041 - 15 Oct 2025
Viewed by 397
Abstract
Low-crystalline hydroxyapatite was synthesized from an aqueous solution of calcium chloride (CaCl2), and a mixed-anionic (HPO42− и CO32−) aqueous solution prepared from potassium hydrophosphate trihydrate (K2HPO42О), and potassium carbonate [...] Read more.
Low-crystalline hydroxyapatite was synthesized from an aqueous solution of calcium chloride (CaCl2), and a mixed-anionic (HPO42− и CO32−) aqueous solution prepared from potassium hydrophosphate trihydrate (K2HPO42О), and potassium carbonate (K2CO3). The interaction of K2CO3 and K2HPO4 salts during synthesis from a mixed-anionic solution in the reaction zone without additional regulation provided the pH level necessary for the synthesis of hydroxyapatite. For comparison, as references, powders were also synthesized from an aqueous solution of CaCl2 and from aqueous solutions of either K2HPO4 or K2CO3. The phase composition of the powder synthesized from aqueous solutions of CaCl2 and K2HPO4 included brushite (CaНРО4·2H2O). The phase composition of the powder synthesized from aqueous solutions of CaCl2 and K2CO3 included calcite (CaCO3). The phase composition of all synthesized powders contained potassium chloride (sylvine, KCl), as a reaction by-product. After heat treatment at 1000 °C of the powder containing low-crystalline hydroxyapatite and KCl, powder of chlorapatite (Са10(РО4)6Cl2) was obtained. After heat treatment of a powder containing brushite (CaНРО4·2H2O) and KCl at 800 and 1000 °C, a powder with the phase composition including β-calcium pyrophosphate (β-Ca2P2O7), β-calcium orthophosphate (β-Ca3(PO4)2), and potassium-calcium pyrophosphate (K2CaP2O7) was obtained. Heat treatment of calcite (CaCO3) powder at 800 °C, as expected, led to the formation of calcium oxide (CaO). Synthesized powders, including biocompatible minerals such as hydroxyapatite, chlorapatite, brushite, monetite, calcium pyrophosphate, calcium potassium pyrophosphate, tricalcium phosphate, and calcite, can be used for the creation of biocompatible inorganic materials or composite materials with a biocompatible polymer matrix. The potassium chloride present in the synthesized powders can act as one of the precursors of biocompatible minerals, such as chlorapatite or calcium potassium pyrophosphate, or it can be treated as a removable inorganic porogen. Full article
Show Figures

Figure 1

64 pages, 10522 KB  
Review
Spectroscopic and Microscopic Characterization of Inorganic and Polymer Thermoelectric Materials: A Review
by Temesgen Atnafu Yemata, Tessera Alemneh Wubieneh, Yun Zheng, Wee Shong Chin, Messele Kassaw Tadsual and Tadisso Gesessee Beyene
Spectrosc. J. 2025, 3(4), 24; https://doi.org/10.3390/spectroscj3040024 - 14 Oct 2025
Viewed by 694
Abstract
Thermoelectric (TE) materials represent a critical frontier in sustainable energy conversion technologies, providing direct thermal-to-electrical energy conversion with solid-state reliability. The optimizations of TE performance demand a nuanced comprehension of structure–property relationships across diverse length scales. This review summarizes established and emerging spectroscopic [...] Read more.
Thermoelectric (TE) materials represent a critical frontier in sustainable energy conversion technologies, providing direct thermal-to-electrical energy conversion with solid-state reliability. The optimizations of TE performance demand a nuanced comprehension of structure–property relationships across diverse length scales. This review summarizes established and emerging spectroscopic and microscopic techniques used to characterize inorganic and polymer TE materials, specifically poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). For inorganic TE, ultraviolet–visible (UV–Vis) spectroscopy, energy-dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS) are widely applied for electronic structure characterization. For phase analysis of inorganic TE materials, Raman spectroscopy (RS), electron energy loss spectroscopy (EELS), and nuclear magnetic resonance (NMR) spectroscopy are utilized. For analyzing the surface morphology and crystalline structure, chemical scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) are commonly used. For polymer TE materials, ultraviolet−visible–near-infrared (UV−Vis−NIR) spectroscopy and ultraviolet photoelectron spectroscopy (UPS) are generally employed for determining electronic structure. For functional group analysis of polymer TE, attenuated total reflectance–Fourier-transform infrared (ATR−FTIR) spectroscopy and RS are broadly utilized. XPS is used for elemental composition analysis of polymer TE. For the surface morphology of polymer TE, atomic force microscopic (AFM) and SEM are applied. Grazing incidence wide-angle X-ray scattering (GIWAXS) and XRD are employed for analyzing the crystalline structures of polymer TE materials. These techniques elucidate electronic, structural, morphological, and chemical properties, aiding in optimizing TE properties like conductivity, thermal stability, and mechanical strength. This review also suggests future research directions, including in situ methods and machine learning-assisted multi-dimensional spectroscopy to enhance TE performance for applications in electronic devices, energy storage, and solar cells. Full article
(This article belongs to the Special Issue Advances in Spectroscopy Research)
Show Figures

Graphical abstract

22 pages, 2732 KB  
Article
PVA- Bentonite-Water Coatings: Experimental and Simulation Studies
by Sarojini Verma, George D. Verros and Raj Kumar Arya
Polymers 2025, 17(19), 2689; https://doi.org/10.3390/polym17192689 - 4 Oct 2025
Viewed by 608
Abstract
This study explores the drying kinetics and film formation behavior of polyvinyl alcohol (PVA)-based and PVA–bentonite composite coatings with initial thicknesses of approximately 2500 µm and 2000 µm. Four coating formulations were investigated, varying in PVA concentration and presence of bentonite as an [...] Read more.
This study explores the drying kinetics and film formation behavior of polyvinyl alcohol (PVA)-based and PVA–bentonite composite coatings with initial thicknesses of approximately 2500 µm and 2000 µm. Four coating formulations were investigated, varying in PVA concentration and presence of bentonite as an inorganic filler. The drying process was monitored through changes in solid concentration, residual solvent content, and film thickness over time. Results revealed that coatings with higher PVA content exhibit slower drying rates, due to the transition from evaporation-controlled to diffusion-limited mechanisms, attributed to polymer densification and reduced solvent diffusivity. In contrast, coatings incorporating bentonite dried more rapidly despite their similar or higher total solids content, indicating a beneficial role of bentonite in facilitating moisture transport. Thinner coatings demonstrated faster drying but retained the characteristic mechanistic transitions observed in thicker films. A simple realistic model to simulate the drying rate was also proposed. Overall, the study highlights the significant influence of formulation variables on drying behavior and final film properties, offering valuable guidance for the design and optimization of waterborne coatings in industrial applications. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

20 pages, 2989 KB  
Review
Polymer-Based Electrolytes for Organic Batteries
by Chetna Tewari, Kundan Singh Rawat, Somi Yoon and Yong Chae Jung
Energies 2025, 18(19), 5168; https://doi.org/10.3390/en18195168 - 28 Sep 2025
Viewed by 495
Abstract
The pursuit of sustainable and environmentally benign energy storage solutions has propelled significant interest in organic batteries, which utilize redox-active organic compounds as electrode materials. A pivotal component in determining their electrochemical performance, safety, and long-term stability is the electrolyte. Polymer-based electrolytes (PBEs) [...] Read more.
The pursuit of sustainable and environmentally benign energy storage solutions has propelled significant interest in organic batteries, which utilize redox-active organic compounds as electrode materials. A pivotal component in determining their electrochemical performance, safety, and long-term stability is the electrolyte. Polymer-based electrolytes (PBEs) have emerged as promising candidates owing to their intrinsic advantages, such as enhanced thermal stability, mechanical integrity, and the mitigation of leakage and flammability risks associated with conventional liquid electrolytes. Unlike previous reviews that broadly cover solid electrolytes, this review specifically focuses on the unique developments of polymer-based electrolytes tailored for organic batteries over the past few years. This review presents a comprehensive overview of the recent progress in PBEs specifically designed for organic battery systems. It systematically examines various categories, including solid polymer electrolytes (SPEs), valued for their structural simplicity and stability; gel polymer electrolytes (GPEs), noted for their high ionic conductivity and processability; and polymer-inorganic composite electrolytes, which synergistically integrate the mechanical flexibility of polymers with the ionic conductivity of inorganic fillers. Additionally, the review delves into the latest advancements in ionogels and poly(ionic liquid) electrolytes, highlighting their potential to overcome existing limitations and enable next-generation battery performance. The article concludes with a critical discussion on prevailing challenges and prospective research directions, emphasizing the importance of advanced material design, interfacial engineering, and sustainable synthesis approaches to facilitate the practical realization of high-performance organic batteries. Full article
Show Figures

Figure 1

15 pages, 23278 KB  
Article
Assessing the Influence of Inorganic Nanoparticles on the Mechanical and Tribological Performance of PPS-Based Composites: A Comparative Study
by Jixiang Li, Mei Liang, Xiaowen Zhao, Shengtai Zhou and Huawei Zou
Polymers 2025, 17(19), 2573; https://doi.org/10.3390/polym17192573 - 23 Sep 2025
Viewed by 418
Abstract
In this work, γ-irradiated poly(tetrafluoroethylene) (i-PTFE) and short carbon fibre (SCF) along with different types of ceramic inorganic nanoparticles (i.e., SiC, SiO2, ZnO, TiO2, and CaCO3) were employed to improve the mechanical and tribological performance of polyphenylene [...] Read more.
In this work, γ-irradiated poly(tetrafluoroethylene) (i-PTFE) and short carbon fibre (SCF) along with different types of ceramic inorganic nanoparticles (i.e., SiC, SiO2, ZnO, TiO2, and CaCO3) were employed to improve the mechanical and tribological performance of polyphenylene sulphide (PPS) composites. The results showed that the flexural strength and modulus of PPS composites increased with the addition of inorganic nanoparticles. Moreover, the inorganic nanoparticles not only exhibited a ‘micro-bearing’ effect during friction tests, but also promoted the formation of high-quality transfer film on the surface of a friction pair, significantly improving the self-lubricating performance of PPS composites. XPS analysis confirmed the occurrence of friction-induced chemical reactions during the friction process in nanoparticle-containing PPS/i-PTFE/SCF composites, which was helpful in improving the tribological performance. PPS/i-PTFE/SCF/SiC composite demonstrated an average friction coefficient of 0.083 and specific wear rate of 9.04 × 10−6 mm3/Nm, which was the best among the studied systems. This work provided valuable insights for developing high-performance self-lubricating polymer composites that can be applied in high-end engineering sectors. Full article
Show Figures

Graphical abstract

23 pages, 4793 KB  
Article
Undoped Polybenzimidazole Membranes Composited with CeP5O14 for Use in Hydrogen Fuel Cells at 200 °C
by Oksana Zholobko, Abdul Salam, Muhammad Muzamal. Ashfaq, Xiaoning Qi and Xiang-Fa Wu
Hydrogen 2025, 6(3), 70; https://doi.org/10.3390/hydrogen6030070 - 16 Sep 2025
Viewed by 1314
Abstract
Intermediate-temperature (IT) proton-exchange membranes (PEMs) play vital roles in hydrogen and direct liquid fuel cells, electrolyzers, and other electrochemical membrane reactors at elevated temperatures of higher than 150 °C. This article reports the fabrication and performance assessment of a type of new IT [...] Read more.
Intermediate-temperature (IT) proton-exchange membranes (PEMs) play vital roles in hydrogen and direct liquid fuel cells, electrolyzers, and other electrochemical membrane reactors at elevated temperatures of higher than 150 °C. This article reports the fabrication and performance assessment of a type of new IT polymer–inorganic composite (PIC) PEMs that were made of cerium ultraphosphate (CeP5O14-CUP) as the durable solid-state proton conductor and undoped polybenzimidazole (PBI) as the high-temperature (HT) polymeric binder. The proton conductivity and electrochemical performance of the PIC PEMs were characterized at 200 °C with varying membrane thickness, processing parameters, and operating conditions using a single-stack hydrogen fuel cell connected to a fuel cell test station. Experimental results show that the PIC membranes (with CUP of 75 wt.%) carried high mechanical flexibility and strength as well as noticeably reduced water uptake of 4.4 wt.% compared to pristine PBI membranes of 14.0 wt.%. Single-stack hydrogen fuel cell tests at 200 °C in a humidified hydrogen and air environment showed that the proton conductivity of the PIC PEMs was measured up to 0.105 S/cm, and the electrochemical performance exhibited its dependence upon the membrane thickness with the power density of up to 191.7 mW/cm2. Discussions are made to explore performance dependence and improvement strategies. The present study expects the promising future of the IT-PIC-PEMs for broad applications in high-efficiency electrochemical energy conversion and value-added chemical production at elevated temperatures of 200 °C or higher. Full article
Show Figures

Figure 1

38 pages, 6969 KB  
Review
Nanotechnology for Biomedical Applications: Synthesis and Properties of Ti-Based Nanocomposites
by Maciej Tulinski, Mieczyslawa U. Jurczyk, Katarzyna Arkusz, Marek Nowak and Mieczyslaw Jurczyk
Nanomaterials 2025, 15(18), 1417; https://doi.org/10.3390/nano15181417 - 15 Sep 2025
Viewed by 720
Abstract
Nanobiocomposites are a class of biomaterials that include at least one phase with constituents in the nanometer range. Nanobiocomposites, a new class of materials formed by combining natural and inorganic materials (metals, ceramics, polymers, and graphene) at the nanoscale dimension, are expected to [...] Read more.
Nanobiocomposites are a class of biomaterials that include at least one phase with constituents in the nanometer range. Nanobiocomposites, a new class of materials formed by combining natural and inorganic materials (metals, ceramics, polymers, and graphene) at the nanoscale dimension, are expected to revolutionize tissue engineering and bone implant applications because of their enhanced corrosion resistance, mechanical properties, biocompatibility, and antimicrobial activity. Titanium-based nanocomposites are gaining attention in biomedical applications due to their exceptional biocompatibility, corrosion resistance, and mechanical properties. These composites typically consist of a titanium or titanium alloy matrix that is embedded with nanoscale bioactive phases, such as hydroxyapatite, bioactive glass, polymers, or carbon-based nanomaterials. Common methods for synthesizing Ti-based nanobiocomposites and their parts, including bottom-up and top-down approaches, are presented and discussed. The synthesis conditions and appropriate functionalization influence the final properties of nanobiomaterials. By modifying the surface roughness at the nanoscale level, composite implants can be enhanced to improve tissue integration, leading to increased cell adhesion and protein adsorption. The objective of this review is to illustrate the most recent research on the synthesis and properties of Ti-based biocomposites and their scaffolds. Full article
(This article belongs to the Special Issue Nanobiocomposite Materials: Synthesis, Properties and Applications)
Show Figures

Figure 1

Back to TopTop