Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = primary soot particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 14154 KB  
Article
Differential Cytotoxicity and Inflammatory Responses to Particulate Matter Components in Airway Structural Cells
by Nilofar Faruqui, Sofie Orell, Camilla Dondi, Zaira Leni, Daniel M. Kalbermatter, Lina Gefors, Jenny Rissler, Konstantina Vasilatou, Ian S. Mudway, Monica Kåredal, Michael Shaw and Anna-Karin Larsson-Callerfelt
Int. J. Mol. Sci. 2025, 26(2), 830; https://doi.org/10.3390/ijms26020830 - 20 Jan 2025
Cited by 5 | Viewed by 4087
Abstract
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different [...] Read more.
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition. The objective of this study was to assess the relative hazardous effects of carbonaceous particles (soot), ammonium nitrate, ammonium sulfate, and copper oxide (CuO), which are standard components of ambient air, reflecting contributions from primary combustion, secondary inorganic constituents, and non-exhaust emissions (NEE) from vehicular traffic. Human epithelial cells representing bronchial (BEAS-2B) and alveolar locations (H441 and A549) in the airways, human lung fibroblasts (HFL-1), and rat precision-cut lung slices (PCLS) were exposed in submerged cultures to different concentrations of particles for 5–72 h. Following exposure, cell viability, metabolic activity, reactive oxygen species (ROS) formation, and inflammatory responses were analyzed. CuO and, to a lesser extent, soot reduced cell viability in a dose-dependent manner, increased ROS formation, and induced inflammatory responses. Ammonium nitrate and ammonium sulfate did not elicit any significant cytotoxic responses but induced immunomodulatory alterations at very high concentrations. Our findings demonstrate that secondary inorganic components of PM have a lower hazard cytotoxicity compared with combustion-derived and indicative NEE components, and alveolar epithelial cells are more sensitive to PM exposure. This information should help to inform which sources of PM to target and feed into improved, targeted air quality guidelines. Full article
(This article belongs to the Special Issue Toxicity Mechanism of Emerging Pollutants)
Show Figures

Figure 1

10 pages, 10078 KB  
Article
Study on the Effect of Coal Grain Size on the Morphology of Soot Generated During Combustion
by Jiani Liu, Mengting Si, Yindi Zhang, Bing Liu and Changqian Shi
Energies 2024, 17(22), 5734; https://doi.org/10.3390/en17225734 - 16 Nov 2024
Viewed by 1179
Abstract
This study performed an experimental exploration to analyze the influence of different grain sizes of coal on the nanostructure and morphological parameters of soot generated during combustion. Initially, primary and mature soot samples were gained from the combustion flames of two different grain [...] Read more.
This study performed an experimental exploration to analyze the influence of different grain sizes of coal on the nanostructure and morphological parameters of soot generated during combustion. Initially, primary and mature soot samples were gained from the combustion flames of two different grain sizes of coal (less than 150 μm, named sample #1, and 6–8 mm, named sample #2) by using thermophoresis sampling technology. Subsequently, the transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were employed to investigate and analyze the soot samples, with the aim of obtaining their morphological parameters and nanostructure characteristics. The TEM images indicate that the nascent soot produced during the flame formed by small-sized coal is relatively uniform, with individual particles 8–14 nm in size. The grain size of the nascent soot produced by large-sized coal is much larger, within a wide range of 50–350 nm. Additionally, the nanostructures of the nascent soot particles produced by samples #1 and #2 mainly consist of upright parallel crystal stripes. The crystal stripes of the soot particles formed by sample #1 have obvious microcrystalline structures, whereas only a small amount of microcrystalline structure is found at the edge of sample #2. Compared with sample #2, the soot formed during the combustion of sample #1 exhibits a denser crystalline structure. The SEM results indicate that the mature soot agglomerates formed in sample #2 are larger and more in quantity compared to sample #1. Furthermore, the mature soot agglomerates formed in sample #2 have a stronger coagulation performance and a more compact structure than that formed in sample #1. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

14 pages, 8073 KB  
Article
Effects of Oxygen Concentration on Soot Formation in Ethylene and Ethane Fuel Laminar Diffusion Flames
by Hongling Ju, Renjie Zhou, Deman Zhang, Peng Deng and Zhaowen Wang
Energies 2024, 17(16), 3866; https://doi.org/10.3390/en17163866 - 6 Aug 2024
Cited by 3 | Viewed by 1756
Abstract
In studying the effects of oxygen concentration and molecular structure on the morphologies of the soot particles produced by hydrocarbon fuels, ethylene and ethane were chosen as experimental fuels. With a Gülde laminar coaxial diffusion flame device, a soot particle device was used [...] Read more.
In studying the effects of oxygen concentration and molecular structure on the morphologies of the soot particles produced by hydrocarbon fuels, ethylene and ethane were chosen as experimental fuels. With a Gülde laminar coaxial diffusion flame device, a soot particle device was used to sample soot particles at different oxygen concentrations (21%, 24%, 26%, 28%, and 31%) and at different heights above a burner (HABs = 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm). High-resolution transmission electron microscopy (HRTEM) was used to scrutinize and analyze the soot particles at varying oxygen concentrations. The findings suggest that at the same oxygen concentration, ethylene produces brighter and taller flames. With an increase in the oxygen concentration, ethylene flames and ethane flames gradually decrease in height and become brighter. With an increase in the HAB, the average primary soot particle diameter (Dp) increases initially and then decreases, the fractal dimension (Df) increases, and the aggregates transition from strips and chains to clusters. At the same flame height (HAB = 30 mm), the Dp decreases, the Df increases, the carbon layer torsion resistance (Tf) and the carbon layer spacing (Ds) increase, and the carbon layer changes from a parallel arrangement to a curved arrangement to form denser network aggregations. Full article
Show Figures

Figure 1

18 pages, 4407 KB  
Article
Source Apportionment of PM10 as a Tool for Environmental Sustainability in Three School Districts of Lecce (Apulia)
by Tiziana Siciliano, Antonella De Donno, Francesca Serio and Alessandra Genga
Sustainability 2024, 16(5), 1978; https://doi.org/10.3390/su16051978 - 28 Feb 2024
Cited by 5 | Viewed by 1538
Abstract
Air pollution is a great threat to the sustainable development of the world; therefore, the improvement of air quality through the identification and apportionment of emission sources is a significant tool to reach sustainability. Single particle analysis, by means of a scanning electron [...] Read more.
Air pollution is a great threat to the sustainable development of the world; therefore, the improvement of air quality through the identification and apportionment of emission sources is a significant tool to reach sustainability. Single particle analysis, by means of a scanning electron microscope equipped with X-ray energy dispersive analysis (SEM-EDS), was used to identify the morphological and chemical properties of the PM10 particles in order to identify and quantify the main emission sources in three areas of Lecce, a city in the Apulia region of southern Italy. This type of characterization has not yet been performed for the Lecce site, but it is of particular importance to identify, based on the shape of the particles, the natural sources from the anthropogenic sources that are responsible for the serious health effects of the inhabitants. Three primary schools located in peripheral areas of the city were chosen for the sampling: “School 1” (A site), “School 2” (B site), and “School 3” (C site) to carry out a study of the air quality. The A site is characterized by a greater presence of calcium sulphates probably due both to construction activities present during sampling and to reactions between Ca particles and the sulfur present in the atmosphere. At the C site, there is a relative numerical abundance of different groups of particles that present, in the EDS spectrum, an enrichment in sulfur. At the B site, the number of particle groups is intermediate compared to that of the other two sites. With the source apportionment technique, ten emission sources were identified: combustion, soot, industry, soil, carbonates, sea salt, calcium sulfates, SIA, biological particles, and others. In PM10, the three sites are more affected by the soil source, with an effect greater than 60%. Full article
(This article belongs to the Collection Air Pollution Control and Sustainable Development)
Show Figures

Figure 1

16 pages, 3992 KB  
Article
Investigation into Detection Efficiency Deviations in Aviation Soot and Calibration Particles Based on Condensation Particle Counting
by Liang Chen, Quan Zhou, Guangze Li, Liuyong Chang, Longfei Chen and Yuanhao Li
Symmetry 2024, 16(2), 244; https://doi.org/10.3390/sym16020244 - 16 Feb 2024
Cited by 2 | Viewed by 1820
Abstract
Aviation soot constitutes a significant threat to human well-being, underscoring the critical importance of accurate measurements. The condensation particle counter (CPC) is the primary instrument for quantifying aviation soot, with detection efficiency being a crucial parameter. The properties of small particles and the [...] Read more.
Aviation soot constitutes a significant threat to human well-being, underscoring the critical importance of accurate measurements. The condensation particle counter (CPC) is the primary instrument for quantifying aviation soot, with detection efficiency being a crucial parameter. The properties of small particles and the symmetry of their growth pathways are closely related to the detection efficiency of the CPC. In laboratory environments, sodium chloride is conventionally utilized to calibrate the CPC’s detection efficiency. However, aviation soot exhibits distinctive morphological characteristics compared to the calibration particles, leading to detection efficiencies obtained from calibration particles that may not be applicable to aviation soot. To address this issue, a quantitative study was performed to explore the detection efficiency deviations between aviation soot and calibration particles. The experiment initially utilized a differential mobility analyzer to size select the two types of polydisperse particles into monodisperse particles. Subsequently, measurements of the separated particles were performed using the TSI Corporation’s aerosol electrometer and a rigorously validated CPC (BH-CPC). These allowed for determining the detection efficiency deviation in the BH-CPC for the two types of particles at different particle sizes. Furthermore, the influence of the operating temperature of the BH-CPC on this detection efficiency deviation was investigated. The experimental results indicate a significant detection efficiency deviation between aviation soot and sodium chloride. In the range of 10–40 nm, the absolute detection efficiency deviation can reach a maximum of 0.15, and the relative deviation can reach a maximum of 0.75. And this detection efficiency deviation can be reduced by establishing a relevant relationship between the detection efficiency of the operating temperature and the calibration temperature. Compared to the saturated segment calibration temperature of 50 °C, the aviation soot detection efficiency is closer to the sodium chloride detection efficiency at the calibration temperature of 50 °C when the saturated segment operates at a temperature of 45 °C. These studies provide crucial theoretical guidance for enhancing the precision of aviation soot emission detection and establish a foundation for future research in monitoring and controlling soot emissions within the aviation sector. Full article
Show Figures

Figure 1

14 pages, 5346 KB  
Article
Effect of Temperature on Morphologies and Microstructures of Soot Particles in the Diesel Exhaust Pipe
by Hongling Ju, Fanquan Bian, Mingrui Wei and Yi Zhang
Energies 2023, 16(14), 5488; https://doi.org/10.3390/en16145488 - 20 Jul 2023
Cited by 4 | Viewed by 9028
Abstract
Insulating cotton was used to change the airflow temperature in the exhaust pipe of a diesel engine, and soot particles at different positions in the exhaust pipe under different operating conditions were collected. The morphologies and microstructures of soot particles were observed by [...] Read more.
Insulating cotton was used to change the airflow temperature in the exhaust pipe of a diesel engine, and soot particles at different positions in the exhaust pipe under different operating conditions were collected. The morphologies and microstructures of soot particles were observed by high-resolution transmission electron microscopy (HRTEM). The characteristic parameters, including the mean primary particle diameter (dp), radius of gyration of soot aggregate (Rg), fractal dimension of soot particle (Df), carbon layer spacing (Ds), and carbon layer torsion resistance (Tf), were statistically analyzed. The changes in each characteristic parameter before and after adding insulating cotton were compared. After installing the cotton, soot particles still grew through surface chemical reactions and physical processes in the diesel exhaust pipe, the agglomeration becomes more and more prevalent, the particle size increased, and Df increased. The increase in the airflow temperature in the exhaust pipe promoted the surface growth of primary soot particles and enhanced the turbulence, which made the chain-like soot particles more likely to reunite under the action of turbulent eddies. Consequently, Rg decreased and Df increased. Furthermore, the average Ds and Tf of primary soot particles deceased, especially under high loads. This indicated that the increase in the temperature of the exhaust pipe was conducive to the graphitization of primary soot particles. Full article
(This article belongs to the Special Issue Low-Emission Combustion Techniques: Latest Advances and Prospects)
Show Figures

Figure 1

12 pages, 5981 KB  
Article
2D and 3D TEM Characterisation of Benzene and Ethylene Soot
by Salvatore Lagana, Antonino La Rocca, Alasdair Cairns, Michael W. Fay, Barbara Apicella, Anna Ciajolo and Carmela Russo
Fuels 2023, 4(2), 174-185; https://doi.org/10.3390/fuels4020011 - 28 Apr 2023
Cited by 1 | Viewed by 3940
Abstract
Flame-generated soot particles from two different fuels, benzene (B) and ethylene (E), at different ageing conditions, were analysed to assess their morphological and structural features. Samples were collected at 6, 10 and 14 mm from the nozzle location. Traditional 2D transmission electron microscopy [...] Read more.
Flame-generated soot particles from two different fuels, benzene (B) and ethylene (E), at different ageing conditions, were analysed to assess their morphological and structural features. Samples were collected at 6, 10 and 14 mm from the nozzle location. Traditional 2D transmission electron microscopy (TEM) and a novel 3D TEM were used to investigate morphology variations. High-resolution TEM (HRTEM) was used to capture structural characteristics. Samples were then placed on lacey carbon microgrids. A field emission gun TEM was used to capture images of the agglomerates. Tilt series of ±60 degrees were acquired at 1-degree steps to perform the 3D reconstruction. IMOD software and backwards projection were used to reconstruct the tomogram from the tilt series. The 2D analysis revealed that soot particles’ agglomerations for both fuels change from a bundle to a chain-like structure as they “age”, i.e., extracted at a higher “flame height”. In B, the primary particle diameter increases as they get “older,” whereas in E, the opposite happens, and overall, E particles are bigger than B ones. The nanostructure presents ordered regions with parallel-stacked layers of carbon lamellae. This is more evident in the aged soot samples, with the difference that in E a thick amorphous layer is present at the edge of the particles, which is not observable for B. A nanostructure analysis suggests a trend of increasing fringes length as the soot ages, going from 1.04 nm of B6 to 1.22 nm of B10 to 1.05 nm of B14 and from 1.139 nm of E6 to 1.20 nm of E14 (±0.02 nm). The tortuosity does not vary greatly across all the samples, ranging between 1.132 and 1.149 (±0.004). Separation is also quite similar everywhere, with 0.404 nm of B6, 0.392 nm of B10, 0.399 nm of B14, 0.397 nm of E6 and 0.396 nm of E14 (±0.002 nm). Ring structures and particle overlaps, two examples of geometrical characteristics concealed in 2D, can be seen in the 3D reconstructions. Furthermore, the comparison between 3D and 2D volume and surface area raises questions about the reliability of those parameters as derived from 2D measurements. This study advances knowledge of how soot structure can be affected by the fuel type and emphasises the significance of how soot is investigated. Full article
Show Figures

Graphical abstract

20 pages, 24073 KB  
Article
Experimental Study of Oxygen Depletion Effects on Soot Morphology and Nanostructure in Coflow Diffusion Aviation Fuel (RP-3) Flames
by Jiaqi Guo, Zhiwen Gan, Jiacheng Li, Hanjing Li, Bin Feng and Xinyu Xing
Energies 2023, 16(7), 3166; https://doi.org/10.3390/en16073166 - 31 Mar 2023
Cited by 5 | Viewed by 2492
Abstract
Oxygen concentration is a significant factor affecting soot formation and oxidation. However, there are few studies that have focused on the morphology and nanostructure characteristics of soot in aviation kerosene, oxygen-depleted combustion flames. In the present paper, five coflow flames under initial oxygen [...] Read more.
Oxygen concentration is a significant factor affecting soot formation and oxidation. However, there are few studies that have focused on the morphology and nanostructure characteristics of soot in aviation kerosene, oxygen-depleted combustion flames. In the present paper, five coflow flames under initial oxygen volume concentrations of 18.5%, 19%, 20%, 21%, and 23.5% were studied. The pneumatic probe sampling method and high-resolution transmission electron microscopy (HRTEM) analysis were conducted to quantify the morphology and nanostructure parameters, and laser extinction (LE) was applied to determine the soot volume fraction. Among the cases of different oxidizer oxygen concentrations (23.5% to 18.5%), the change in soot volume fraction was quantified, and the degree of graphitization of soot particles, i.e., the maturity, were compared. The results show that the peak value of soot volume fraction of the flames increased by 0.73 ppm as the oxygen concentration increased from 21% to 23.5%, and decreased by 1.25 ppm as the oxygen concentration decreased from 21% to 18.5%. When the oxygen concentration decreased from 23.5% to 18.5%, the soot primary particle diameter at the same dimensionless height decreased and then increased, which was attributed to the competition between the changes in the residence time and the growth rate of the soot particles. The quantitative analysis results of the soot nanostructure suggested that reduced oxygen concentration inhibited the graphitization process of carbon lattices and decreased the maturity and oxidation resistance of soot. When the oxygen concentration decreased from 23.5% to 18.5% at the same dimensionless height, the mean fringe length decreased by an average of 0.18 nm, and the mean value of fringe tortuosity and spacing increased by an average of 0.053 and 0.035 nm. Full article
(This article belongs to the Special Issue Thermal Fluids and Energy Systems)
Show Figures

Figure 1

15 pages, 5170 KB  
Article
Formation and Evolution of Soot in Ethylene Inverse Diffusion Flames in Ozone Atmosphere
by Yaoyao Ying and Dong Liu
Nanomaterials 2023, 13(5), 816; https://doi.org/10.3390/nano13050816 - 22 Feb 2023
Cited by 3 | Viewed by 2155
Abstract
Ozone is a prospective additive for enhancing and controlling combustion under lean or very lean conditions, and reduces NOx and particulate matter emissions simultaneously. Typically, in studying the effects of ozone on combustion pollutants, the focus is on the final yield of pollutants, [...] Read more.
Ozone is a prospective additive for enhancing and controlling combustion under lean or very lean conditions, and reduces NOx and particulate matter emissions simultaneously. Typically, in studying the effects of ozone on combustion pollutants, the focus is on the final yield of pollutants, while its detailed effects on the soot formation process remain unknown. Here, the formation and evolution profiles of soot containing morphology and nanostructures in ethylene inverse diffusion flames with different ozone concentration additions were experimentally studied. The surface chemistry and oxidation reactivity of soot particles were also compared. The soot samples were collected by a combination of the thermophoretic sampling method and deposition sampling method. High-resolution transmission electron microscopy analysis, X-ray photoelectron spectroscopy and thermogravimetric analysis were applied to obtain the soot characteristics. The results showed that soot particles experienced inception, surface growth, and agglomeration in the ethylene inverse diffusion flame within a flame axial direction. The soot formation and agglomeration were slightly advanced since the ozone decomposition contributed to promoting the production of free radicals and active substances in the ozone added flames. The diameter of primary particles in the flame with ozone addition was larger. With the increase of ozone concentration, the content of soot surface oxygen increased and the ratio of sp2/sp3 decreased. Furthermore, the addition of ozone increased the volatile content of soot particles and improved soot oxidation reactivity. Full article
Show Figures

Figure 1

13 pages, 1828 KB  
Article
Comprehensive Evaluation of Dust Retention and Metal Accumulation by the Leaves of Roadside Plants in Hangzhou among Seasons
by Ning Dang, Handan Zhang, Haimei Li, Mir Md Abdus Salam and Guangcai Chen
Forests 2022, 13(8), 1290; https://doi.org/10.3390/f13081290 - 14 Aug 2022
Cited by 16 | Viewed by 4961
Abstract
The auto exhaust and dust derived from increased traffic volumes have led to an increasing level of atmospheric particulates in urban areas, which have become a primary pollutant of ambient air in urban zones. Roadside plants can effectively retain atmospheric particulates and clean [...] Read more.
The auto exhaust and dust derived from increased traffic volumes have led to an increasing level of atmospheric particulates in urban areas, which have become a primary pollutant of ambient air in urban zones. Roadside plants can effectively retain atmospheric particulates and clean the urban air via foliar capture of road dust. Five common roadside plants in Hangzhou were selected to evaluate their capacity for the retention of particulate matter (PM) and the accumulation of metals. The results showed that the PM retention capacity of the different plants varied greatly, as was the case with Loropetalum chinense var. rubrum Yieh, Osmanthus fragrans (Thunb.) Loureiro, Pittosporum tobira (Thunb.) Ait, Photinia × fraseri Dress and Cinnamomum camphora (L.) Presl. In addition, the amounts of particles retained by the plants varied among seasons, with the highest retention in winter (12.19 g·m−2) and the lowest retention in spring (6.89 g·m−2). The solids on the leaf surface were mainly irregular particles, such as mineral fragments, soot aggregates, and fly ash particles. Meanwhile, these plant species can effectively accumulate heavy metals that attached to the particles. The leaves of the five tree species had the highest amounts of copper (Cu) and the lowest amounts of cadmium (Cd). Among species, L. chinense and P. tobira had the strongest comprehensive capacity to adsorb particulate matter and heavy metals. The results shed light on the rational selection of road plants, both as ornaments and to purify air via dust suppression in subtropical zones. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Graphical abstract

23 pages, 4080 KB  
Article
Characterization of Propane Fueled Flames: A Significant Source of Brown Carbon
by Jai Prakash, Kalyan Mitra, Harsh Raj Mishra, Xiangyu Pei, Evert Ljungström and Ravi Kant Pathak
Atmosphere 2022, 13(8), 1270; https://doi.org/10.3390/atmos13081270 - 10 Aug 2022
Viewed by 2634
Abstract
In this study, we developed a framework for interpreting the in situ morphological properties of black carbon (BC, also referred to as “soot” due to combustion relevance) mixed with primary organic aerosol. Integration of the experiment considering primary organic aerosol (POA) evaporation from [...] Read more.
In this study, we developed a framework for interpreting the in situ morphological properties of black carbon (BC, also referred to as “soot” due to combustion relevance) mixed with primary organic aerosol. Integration of the experiment considering primary organic aerosol (POA) evaporation from the soot particles was examined using a Differential mass–mobility analyzer (DMA) and showed the untold story of the mixing of BC and POA. We also hypothesize that morphological transformation of soots and determined such as (i) the evaporation of externally and internally mixed POA led to a decline in the particle number and size of monodisperse aerosol; (ii) presence of externally mixed BC was interpreted from the occurrence of two peaks of soot upon heating; (iii) heat-induced collapse of the BC core possibly resulted from the evaporation of material from the voids and effect of heat; (iv) volume equivalent to changes in the mobility diameter represented evaporation of POA from the surface and collapse upon heating. POA constituted a high fraction (20–40% by mass) of aerosol mass from these flames and was predominantly (i.e., 92–97% by mass) internally mixed with BC. POA was found to be highly light absorptive, i.e., an Ångström absorption exponent (AAE) value of (in general) >1.5 was estimated for BC + POA at 405/781 nm wavelengths. Interestingly, a much more highly absorptive POA [mass absorption cross-section (MAC)-5 m2 g−1] at 405 nm was discovered under a specific flame setting, which was comparable to MACs of BC particles (8–9 m2 g−1). Full article
(This article belongs to the Special Issue Feature Papers in Aerosol Research)
Show Figures

Figure 1

25 pages, 8379 KB  
Article
Activity of Catalytic Ceramic Papers to Remove Soot Particles—A Study of Different Types of Soot
by Sabrina Antonela Leonardi, Eduardo Ernesto Miró and Viviana Guadalupe Milt
Catalysts 2022, 12(8), 855; https://doi.org/10.3390/catal12080855 - 3 Aug 2022
Cited by 8 | Viewed by 2755
Abstract
Diesel soot particles are of concern for both the environment and health. To catalytically remove them, it is important to know their structure and composition. There is little described in the literature on how catalysts favor the combustion of different soot fractions. In [...] Read more.
Diesel soot particles are of concern for both the environment and health. To catalytically remove them, it is important to know their structure and composition. There is little described in the literature on how catalysts favor the combustion of different soot fractions. In this work, programmed temperature oxidation (TPO) experiments were carried out using Co,Ce or Co,Ba,K catalysts supported on ceramic papers. Soot particles were obtained by burning diesel fuel in a vessel (LabSoot) or by filtering exhaust gases from a turbo diesel engine in a DPF filter (BenchSoot), and compared with a commercial diesel soot: Printex U. Various characterization techniques were useful to relate the characteristics of both the soot particles and the catalysts with the TPO results. The maximum catalytic soot burn rate (TM) temperatures were in the range of diesel exhaust temperatures that would facilitate in-situ regeneration of the DPF. The Co,Ba,K catalyst showed a higher catalytic effect in LabSoot, as the latter exhibited the largest primary particles and the higher order of graphene layers, for which the potassium-containing catalyst improves the contact between soot and catalyst and favors the combustion of soot, while the Co,Ce catalyst preferentially enhanced the combustion of commercial soot by supplying active oxygen. Full article
(This article belongs to the Special Issue Catalysts for Air Pollution Control: Present and Future)
Show Figures

Figure 1

13 pages, 1443 KB  
Article
Simulation of the Formation and Growth of Soot Aerosol Particles in a Premixed Combustion Process Using a Soot Aerosol Dynamics Model
by Sung Hoon Park
Atmosphere 2022, 13(5), 847; https://doi.org/10.3390/atmos13050847 - 23 May 2022
Cited by 1 | Viewed by 2969
Abstract
Recently, an aerosol dynamics model—the Soot Aggregate Moment Model (SAMM)—that can efficiently trace the size distribution and morphology of soot particles was developed. In order to examine the applicability of SAMM in association with open-source CFD and combustion chemistry solvers, the formation and [...] Read more.
Recently, an aerosol dynamics model—the Soot Aggregate Moment Model (SAMM)—that can efficiently trace the size distribution and morphology of soot particles was developed. In order to examine the applicability of SAMM in association with open-source CFD and combustion chemistry solvers, the formation and growth of soot particles in a premixed ethylene/air combustion were simulated by connecting SAMM with OpenSMOKE++ in this study. The simulation results were compared with available measurements and with the results of a previous study conducted using SAMM connected with an in-house CFD code and the CHEMKIN combustion chemistry package. Both CHEMKIN and OpenSMOKE++ underestimated C2H2 concentration compared to previous measurements, with deviation from the measured data being smaller for OpenSMOKE++. The chemical mechanism adopted in the CHEMKIN package was found to underestimate pyrene concentration by a factor of several tens. OpenSMOKE++ predicted much higher soot precursor concentrations than CHEMKIN, leading to a higher nucleation rate and a faster surface growth in the latter part of the reactor. This resulted in a reasonable soot production rate without introducing an artificial condensation enhancement factor. The overestimation of low-molecular-weight polycyclic aromatic hydrocarbons in the latter part of the reactor and the neglect of sintering led to an overprediction of soot production and primary particle number. This result indicates that accounting only for obliteration without sintering in SAMM could not simulate the merging of primary particles sufficiently. This indication merits further investigation. Full article
(This article belongs to the Special Issue Physical, Chemical and Optical Properties of Aerosols)
Show Figures

Figure 1

12 pages, 2237 KB  
Article
Impact of Vehicle Soot Agglomerates on Snow Albedo
by Sofía González-Correa, Diego Gómez-Doménech, Rosario Ballesteros, Magín Lapuerta, Diego Pacheco-Ferrada, Raúl P. Flores, Lina Castro, Ximena Fadic-Ruiz and Francisco Cereceda-Balic
Atmosphere 2022, 13(5), 801; https://doi.org/10.3390/atmos13050801 - 13 May 2022
Cited by 3 | Viewed by 2620
Abstract
Snow covers are very sensitive to contamination from soot agglomerates derived from vehicles. A spectroradiometric system covering a wavelength from 300 to 2500 nm with variable resolution (from 2.2 to 7.0 nm) was used to characterize the effect of soot derived from a [...] Read more.
Snow covers are very sensitive to contamination from soot agglomerates derived from vehicles. A spectroradiometric system covering a wavelength from 300 to 2500 nm with variable resolution (from 2.2 to 7.0 nm) was used to characterize the effect of soot derived from a diesel vehicle whose exhaust stream was oriented towards a limited snowed area. The vehicle was previously tested in a rolling test bench where particle number emissions and size distributions were measured, and fractal analysis of particle microscopic images was made after collecting individual agglomerates by means of an electrostatizing sampler. Finally, the experimental results were compared to modelled results of contaminated snow spectral albedo obtained with a snow radiative transfer model developed by our research group (OptiPar) and with other models. Both experimental and modelled results show that increasingly accumulated soot mass reduces the snow albedo with a constant rate of around 0.03 units per mg/kg, with a predominant effect on the UV-VIS range. Based on the small size of the primary particles (around 25 nm), the Rayleigh-Debye-Gans approximation, further corrected to account for the effect of multiple scattering within the agglomerates, was revealed as an appropriate technique in the model. Full article
(This article belongs to the Special Issue Global Black Carbon Aerosols)
Show Figures

Figure 1

14 pages, 26291 KB  
Article
Production of Carbon Black in Turbulent Spray Flames of Coal Tar Distillates
by Helena Rodriguez-Fernandez, Shruthi Dasappa, Kaylin Dones Sabado and Joaquin Camacho
Appl. Sci. 2021, 11(21), 10001; https://doi.org/10.3390/app112110001 - 26 Oct 2021
Cited by 11 | Viewed by 4456
Abstract
Conventional carbon black production occurs by pyrolysis after heavy aromatic feedstock is injected into the post-combustor region of furnace black reactors. The current work examines the conversion of the coal tar distillate in turbulent spray flames to demonstrate a more compact reactor configuration. [...] Read more.
Conventional carbon black production occurs by pyrolysis after heavy aromatic feedstock is injected into the post-combustor region of furnace black reactors. The current work examines the conversion of the coal tar distillate in turbulent spray flames to demonstrate a more compact reactor configuration. Coal tar distillates diluted in toluene is atomized and burned in a standardized flame spray synthesis configuration, known as SpraySyn. Flame conditions are characterized by thermocouple, soot pyrometry and image analysis and product particle properties are examined by TEM and Raman spectroscopy. The measured flame temperature corresponds to the range of temperatures used in the furnace black process, but the current synthesis includes oxidizing conditions and faster residence times. The resulting carbon black particles are aggregates with primary particle sizes on the small end of the carbon black size spectrum, according to analysis of TEM images. Carbon black, formed under a range of flame temperatures, show Raman spectra with features resembling typical carbon black materials. Conversion of coal tar distillate to carbon black by direct flame synthesis may be a scalable method to produce high-surface area grades without a conventional pyrolysis reactor stage. Full article
Show Figures

Graphical abstract

Back to TopTop