Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = radioprotector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4440 KB  
Article
Action of Carnosic Acid Against Melanoma: A Strategy for Selective Radiosensitization with Protection of Non-Tumoral Cells
by Amparo Olivares, Isabel de la Fuente, Daniel Gyingiri Achel, Ana María Mercado, José Antonio Garcia-Gamuz, María del Rosario Tudela and Miguel Alcaraz
Curr. Issues Mol. Biol. 2025, 47(10), 845; https://doi.org/10.3390/cimb47100845 - 14 Oct 2025
Viewed by 353
Abstract
Carnosic acid (CA) is a phenolic diterpene with high antioxidant activity that supports its radioprotective capacity. This study aims to determine whether the radiosensitizing effect of CA established in B16F10 melanoma cells also occurs in other melanin-producing cells. Cell survival analysis, apoptosis, intracellular [...] Read more.
Carnosic acid (CA) is a phenolic diterpene with high antioxidant activity that supports its radioprotective capacity. This study aims to determine whether the radiosensitizing effect of CA established in B16F10 melanoma cells also occurs in other melanin-producing cells. Cell survival analysis, apoptosis, intracellular glutathione levels, and cell cycle progression were evaluated by comparing radiosensitive cells (PNT2) with radioresistant melanin-producing cells (MELAN A, SK-MEL-1, and B16F10). In PNT2 cells, CA exhibited radioprotective capacity, with 100% cell survival after exposure to 20 Gy of X-rays (p < 0.001), decreasing apoptosis (p < 0.001) and increasing the GSH/GSSG ratio (p < 0.01), without significant modification in cell cycle progression. However, CA administration to irradiated cells failed to exert radioprotection in MELAN A and SK-MEL-1 cells, and even doubled cell death in B16F10 cells (p < 0.001). Specifically, CA did not alter apoptosis or prevent the decrease in GSH/GSSG ratio in MELAN A and SK-MEL-1 cells, while it intensified radiation-induced cell cycle disruptions in all melanin-producing cells. All of these led to a loss of radioprotective capacity in the melanin-producing cells (MELAN A and SK-MEL-1) and even induced a radiosensitizing effect in B16F10 cells. Understanding the mechanisms of action of substances such as CA could promote new applications that protect healthy cells and exclusively damage neoplastic cells when both are present within the same irradiated volume in cancer patients requiring radiotherapy. Full article
(This article belongs to the Special Issue Molecular Insights into Radiation Oncology)
Show Figures

Figure 1

13 pages, 1258 KB  
Article
N-Acetylcysteine Amide Is a Potential Novel Radioprotector of Salivary Gland Function
by Amit Ritter, Elad Hikri, Hongyan Li, Ela Markovsky, Gideon Bachar, Noga Kurman, Aron Popovtzer, Adriana Haimovitz-Friedman and Aviram Mizrachi
Cancers 2025, 17(17), 2902; https://doi.org/10.3390/cancers17172902 - 4 Sep 2025
Viewed by 1029
Abstract
Background: Radiation-induced salivary gland (SG) hypofunction is mediated via microvascular dysfunction and radical oxygen species. N-acetylcysteine amide (NACA) has shown antioxidant properties with low toxicity. We explored NACA’s potential as a radioprotector of SG function. Methods: Bovine aortic endothelial cells (BAECs) were treated [...] Read more.
Background: Radiation-induced salivary gland (SG) hypofunction is mediated via microvascular dysfunction and radical oxygen species. N-acetylcysteine amide (NACA) has shown antioxidant properties with low toxicity. We explored NACA’s potential as a radioprotector of SG function. Methods: Bovine aortic endothelial cells (BAECs) were treated with NACA before irradiation with a single 10 Gy dose. Apoptosis was assessed by bis-benzimide staining and quantified via fluorescence microscopy. In vivo, NACA was administered to mice prior to a single 15 Gy head and neck irradiation. Eight weeks post-irradiation, saliva production was measured using pilocarpine stimulation; lysozyme levels were analyzed by ELISA. SGs were collected for immunohistochemistry. Results: BAEC apoptosis was substantially lower in NACA-treated cells vs. radiation-only (10% vs. 23%). In vivo, mice lost significant weight and developed severe hair loss eight weeks post-irradiation—attenuated by NACA pretreatment. Saliva production was reduced by 72% post-radiation, with a corresponding drop in lysozyme. NACA increased salivary flow by 42% and prevented lysozyme reduction. Post-radiation decline in microvessel density was also prevented by NACA. Conclusions: These outcomes suggest NACA may serve as a radioprotector of SG function in patients undergoing radiotherapy for head and neck cancer. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

17 pages, 1223 KB  
Article
Molecular Hydrogen as an Antioxidant and Radioprotector: Mechanistic Insights from Monte Carlo Radiation-Chemical Simulations
by Sumaiya Akhter Ria, Jintana Meesungnoen and Jean-Paul Jay-Gerin
Antioxidants 2025, 14(9), 1054; https://doi.org/10.3390/antiox14091054 - 27 Aug 2025
Viewed by 1347
Abstract
(1) Background: Water, comprising about 70–80% of cellular mass, is the most abundant constituent of living cells. Upon exposure to ionizing radiation, water undergoes radiolysis, generating a variety of reactive species, including free radicals and molecular products. Among these, hydroxyl radicals ( [...] Read more.
(1) Background: Water, comprising about 70–80% of cellular mass, is the most abundant constituent of living cells. Upon exposure to ionizing radiation, water undergoes radiolysis, generating a variety of reactive species, including free radicals and molecular products. Among these, hydroxyl radicals (OH) are particularly damaging due to their very high reactivity and their capacity to induce oxidative injury to vital biomolecules such as DNA, membrane lipids, and proteins. From a radiation-chemical perspective, this study investigates the selective scavenging ability of molecular hydrogen (H2) toward OH radicals, with the aim of evaluating its potential as an antioxidant and radioprotective agent; (2) Methods: We employed our Monte Carlo track chemistry simulation code, IONLYS-IRT, to model the time-dependent yields of ROS in a neutral, aerated aqueous environment. The simulations included varying concentrations of dissolved H2 and, for comparison, cystamine—a well-known sulfur-containing radioprotector and antioxidant. Irradiation was simulated using 300 MeV protons, chosen to mimic the radiolytic effects of low linear energy transfer (LET) radiation, such as that of 60Co γ-rays or fast (>1 MeV) electrons; (3) Results: Our simulations quantitatively demonstrated that H2 selectively scavenges OH radicals. Nevertheless, its scavenging efficiency was consistently lower than that of cystamine, which produced a faster and more pronounced suppression of OH due to its higher reactivity and superior radical-quenching capacity; (4) Conclusions: Molecular hydrogen offers several unique advantages, including low toxicity, high diffusivity, selective scavenging of OH radicals, and well-documented anti-inflammatory effects. Although it is less potent than cystamine in terms of radical-scavenging efficiency, its excellent safety profile and biological compatibility position H2 as a promising radioprotector and antioxidant for therapeutic applications targeting radiation-induced oxidative stress and inflammation. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

18 pages, 2472 KB  
Article
Serum Metabolomic Signatures in Nonhuman Primates Treated with a Countermeasure and Exposed to Partial- or Total-Body Radiation
by Alana D. Carpenter, Yaoxiang Li, Benjamin E. Packer, Oluseyi O. Fatanmi, Stephen Y. Wise, Sarah A. Petrus, Martin Hauer-Jensen, Amrita K. Cheema and Vijay K. Singh
Metabolites 2025, 15(8), 546; https://doi.org/10.3390/metabo15080546 - 12 Aug 2025
Viewed by 725
Abstract
Background: Irradiation-induced injury is a common fallout of radiological/nuclear accidents or therapeutic exposures to high doses of radiation at high dose rates. Currently, there are no prophylactic drugs available to mitigate radiation injury as a result of exposure to lethal doses of [...] Read more.
Background: Irradiation-induced injury is a common fallout of radiological/nuclear accidents or therapeutic exposures to high doses of radiation at high dose rates. Currently, there are no prophylactic drugs available to mitigate radiation injury as a result of exposure to lethal doses of ionizing radiation. Gamma-tocotrienol (GT3) of vitamin E is a promising radioprotector under advanced development which has been tested for efficacy in both murine and nonhuman primate (NHP) models. Previously, we have demonstrated that GT3 has radioprotective efficacy in intestinal epithelial and crypt cells, and restores transcriptomic changes in NHPs with a supralethal dose of 12 Gy total-body irradiation (TBI). Methods: In this study, we evaluated the effect of 12 Gy partial-body irradiation (PBI) or TBI on metabolomic changes in serum samples and the extent to which GT3 was able to modulate these irradiation-induced changes. A total of 32 nonhuman primates were used for this study, and blood sample were collected 3 days (d) prior to irradiation, and 4 h, 8 h, 12 h, 1 d, 2 d, and 6 d post-irradiation. Results: Our results demonstrate that exposure to a supralethal dose of radiation induces a complex range of metabolomic shifts with similar degrees of dysregulation in both partial- and total-body irradiated animals. The C21-steroid hormone biosynthesis and metabolism pathway was significantly dysregulated in both PBI and TBI groups, with minimal protection afforded by GT3 administration. Conclusions: GT3 offered a differential response in terms of protected metabolites and pathways in either group that was most effective at the early post-irradiation time points. Full article
(This article belongs to the Section Advances in Metabolomics)
Show Figures

Figure 1

52 pages, 3834 KB  
Review
Nitroxides: Chemistry, Antioxidant Properties, and Biomedical Applications
by Krzysztof Gwozdzinski, Anna Pieniazek and Lukasz Gwozdzinski
Molecules 2025, 30(10), 2159; https://doi.org/10.3390/molecules30102159 - 14 May 2025
Cited by 3 | Viewed by 2316
Abstract
Nitroxides are stable organic free radicals with a wide range of applications. They have found applications in chemistry, biochemistry, biophysics, molecular biology, and biomedicine as EPR/NMR imaging techniques. As spin labels and probes, they are used in electron paramagnetic resonance (EPR) spectroscopy in [...] Read more.
Nitroxides are stable organic free radicals with a wide range of applications. They have found applications in chemistry, biochemistry, biophysics, molecular biology, and biomedicine as EPR/NMR imaging techniques. As spin labels and probes, they are used in electron paramagnetic resonance (EPR) spectroscopy in the study of proteins, lipids, nucleic acids, and enzymes, as well as for measuring oxygen concentration in cells and cellular organelles, as well as tissues and intracellular pH. Their unique redox properties have allowed them to be used as exogenous antioxidants. In this review, we have discussed the chemical properties of nitroxides and their antioxidant properties. Furthermore, we have considered their use as radioprotectors and protective agents in ischemia/reperfusion in vivo and in vitro. We also presented other applications of nitroxides in protecting cells and tissues from oxidative stress and in protein studies and discussed their use in EPR/MRI. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

21 pages, 2926 KB  
Article
Identification of Potential Prophylactic Medical Countermeasures Against Acute Radiation Syndrome (ARS)
by Kia T. Liermann-Wooldrik, Arpita Chatterjee, Elizabeth A. Kosmacek, Molly S. Myers, Oluwaseun Adebisi, Louise Monga-Wells, Liu Mei, Michelle P. Takacs, Patrick H. Dussault, Daniel R. Draney, Robert Powers, James W. Checco, Chittibabu Guda, Tomáš Helikar, David B. Berkowitz, Kenneth W. Bayles, Alan H. Epstein, Lynnette Cary, Daryl J. Murry and Rebecca E. Oberley-Deegan
Int. J. Mol. Sci. 2025, 26(9), 4055; https://doi.org/10.3390/ijms26094055 - 25 Apr 2025
Cited by 1 | Viewed by 1595
Abstract
Acute radiation syndrome (ARS) occurs when hematopoietic or gastrointestinal cells are damaged by radiation exposure causing DNA damage to the bone marrow and gastrointestinal epithelial stem cell populations. In these highly proliferative cell types, DNA damage inhibits stem cell repopulation. In humans and [...] Read more.
Acute radiation syndrome (ARS) occurs when hematopoietic or gastrointestinal cells are damaged by radiation exposure causing DNA damage to the bone marrow and gastrointestinal epithelial stem cell populations. In these highly proliferative cell types, DNA damage inhibits stem cell repopulation. In humans and animals, this inability to regenerate stem cells is lethal. Within this manuscript, several compounds, Amifostine, Captopril, Ciprofloxacin, PrC-210, 5-AED (5-androstene-3β,17β-diol), and 5-AET (5-androstene-3β,7β,17B-triol), are assessed for their ability to protect against ARS in an in vitro and/or in vivo setting. ARS was accomplished by irradiating mouse bone marrow cells or rat intestinal epithelial (IEC-6) cells in vitro with 4–8 Gy and in vivo by exposing Mus musculus to 7.3 Gy of whole-body irradiation. The primary endpoints of this study include cellular viability, DNA damage via γ-H2AX, colony formation, and overall survival at 30-days post-irradiation. In addition to evaluating the radioprotective performance of each compound, this study establishes a distinct set of in vitro assays to predict the overall efficacy of potential radioprotectors in an in vivo model of ARS. Furthermore, these results highlight the need for FDA-approved medical intervention to protect against ARS. Full article
(This article belongs to the Special Issue New Insight into Radiation Biology and Radiation Exposure)
Show Figures

Figure 1

16 pages, 1339 KB  
Review
Genistein Implications in Radiotherapy: Kill Two Birds with One Stone
by Xiongxiong Liu, Tong Zheng, Yanyu Bao, Ping Li, Ting Zhao, Yan Liu, Hui Wang and Chao Sun
Molecules 2025, 30(1), 188; https://doi.org/10.3390/molecules30010188 - 5 Jan 2025
Cited by 2 | Viewed by 2305
Abstract
More than 70% of cancer patients receive radiotherapy during their treatment, with consequent various side effects on normal cells due to high ionizing radiation doses despite tumor shrinkage. To date, many radioprotectors and radiosensitizers have been investigated in preclinical studies, but their use [...] Read more.
More than 70% of cancer patients receive radiotherapy during their treatment, with consequent various side effects on normal cells due to high ionizing radiation doses despite tumor shrinkage. To date, many radioprotectors and radiosensitizers have been investigated in preclinical studies, but their use has been hampered by the high toxicity to normal cells or poor tumor radiosensitization effects. Genistein is a naturally occurring isoflavone found in soy products. It selectively sensitizes tumor cells to radiation while protecting normal cells from radiation-induced damage, thus improving the efficacy of radiotherapy and consequent therapeutic outcomes while reducing adverse effects. Genistein protects normal cells by its potent antioxidant effect that reduces oxidative stress and mitigates radiation-induced apoptosis and inflammation. Conversely, genistein increases the radiosensitivity of tumor cells through specific mechanisms such as the inhibition of DNA repair, the arrest of the cell cycle in the G2/M phase, the generation of reactive oxygen species (ROS), and the modulation of apoptosis. These effects increase the cytotoxicity of radiation. Preclinical studies demonstrated genistein efficacy in various cancer models, such as breast, prostate, and lung cancer. Despite limited clinical studies, the existing evidence supports the potential of genistein in improving the therapeutic effect of radiotherapy. Future research should focus on dosage optimization and administration, the exploration of combination therapies, and long-term clinical trials to establish genistein benefits in clinical settings. Hence, the unique ability of genistein to improve the radiosensitivity of tumor cells while protecting normal cells could be a promising strategy to improve the efficacy and safety of radiotherapy. Full article
Show Figures

Figure 1

10 pages, 1262 KB  
Perspective
Microbiota-Induced Radioprotection: A Novel Approach to Enhance Human Radioresistance with In-Situ Genetically Engineered Gut Bacteria
by Anna O. Yakimova, Anastasiia Nikolaeva, Olesya Galanova, Victoria A. Shestakova, Ekaterina I. Smirnova, Alina Levushkina, Denis S. Baranovskii, Anna N. Smirnova, Vasiliy N. Stepanenko, Dmitry A. Kudlay, Peter V. Shegay, Andrey D. Kaprin, Dmitry V. Sosin and Ilya D. Klabukov
Appl. Microbiol. 2025, 5(1), 1; https://doi.org/10.3390/applmicrobiol5010001 - 24 Dec 2024
Cited by 2 | Viewed by 2600
Abstract
The high sensitivity of living organic forms to space radiation remains the critical issue during spaceflight, to which they will be chronically exposed during months of interplanetary or even decades of interstellar spaceflight. In the human body, all actively dividing and poorly differentiated [...] Read more.
The high sensitivity of living organic forms to space radiation remains the critical issue during spaceflight, to which they will be chronically exposed during months of interplanetary or even decades of interstellar spaceflight. In the human body, all actively dividing and poorly differentiated cells are always close to being damaged by radiological or chemical agents. The chronic exposure to ionizing radiation primarily causes changes in blood counts and intestinal damage such as fibrosis, obliterative vasculitis, changes in the gut microbiota, and atrophy or degeneration of muscle fibers. The project “MISS: Microbiome Induced Space Suit” was presented at the Giant Jamboree of the International Genetically Engineered Machine Competition 2021, with the aim to investigate the ability of the novel microbiota-mediated approach to enhance human resistance to ionizing radiation. The key innovative part of the project was the idea to create a novel radioprotector delivery mechanism based on human gut microbiota with the function of outer membrane vesicles (OMVs) secretion. The project concept proposed the feasibility of genetically modifying the human microbiota in situ through the delivery of genetic constructs to the host’s crypts using silicon nanoparticles with chemically modified surfaces. In this perspective, we discuss the advances in modifying microbiota-mediated secretory activity as a promising approach for radioprotection and as an alternative to hormone therapy and other health conditions that currently require continuous drug administration. Future clinical trials of in situ methods to genetic engineering the crypt microbiota may pave the way for indirect regulation of human cells. Full article
Show Figures

Figure 1

15 pages, 744 KB  
Review
Molecular Insights into Radiation Effects and Protective Mechanisms: A Focus on Cellular Damage and Radioprotectors
by Blanca Ibáñez, Ana Melero, Alegría Montoro, Nadia San Onofre and Jose M. Soriano
Curr. Issues Mol. Biol. 2024, 46(11), 12718-12732; https://doi.org/10.3390/cimb46110755 - 9 Nov 2024
Cited by 13 | Viewed by 8945
Abstract
Ionizing radiation has been a critical tool in various fields, such as medicine, agriculture, and energy production, since its discovery in 1895. While its applications—particularly in cancer treatment and diagnostics—offer significant benefits, ionizing radiation also poses risks due to its potential to cause [...] Read more.
Ionizing radiation has been a critical tool in various fields, such as medicine, agriculture, and energy production, since its discovery in 1895. While its applications—particularly in cancer treatment and diagnostics—offer significant benefits, ionizing radiation also poses risks due to its potential to cause molecular and cellular damage. This damage can occur through the direct ionization of biological macromolecules, such as deoxyribonucleic acid (DNA), or indirectly through the radiolysis of water, which generates reactive oxygen species (ROS) that further damage cellular components. Radioprotectors, compounds that protect against radiation-induced damage, have been extensively researched since World War II. These agents work by enhancing DNA repair, scavenging free radicals, and boosting antioxidant defenses, thereby protecting healthy tissues. Furthermore, some radioprotective agents also stimulate DNA repair mechanisms even after radiation exposure, aiding in recovery from radiation-induced damage. This article explores the molecular mechanisms of radiation-induced damage, focusing on both direct and indirect effects on DNA, and discusses the role of radioprotectors, their mechanisms of action, and recent advancements in the field. The findings underscore the importance of developing effective radioprotective strategies, particularly in medical and industrial settings, where radiation exposure is prevalent. Full article
(This article belongs to the Special Issue Radiation-Induced Cellular and Molecular Responses)
Show Figures

Figure 1

14 pages, 1659 KB  
Article
A Novel Deinococcus Antioxidant Peptide Mitigates Oxidative Stress in Irradiated CHO-K1 Cells
by Sangyong Lim, Ha-Yeon Song, Hae Ran Park and Ki Bum Ahn
Microorganisms 2024, 12(11), 2161; https://doi.org/10.3390/microorganisms12112161 - 26 Oct 2024
Cited by 1 | Viewed by 2812
Abstract
Reactive oxygen species (ROS), byproducts of cellular metabolism and environmental factors, are linked to diseases like cancer and aging. Antioxidant peptides (AOPs) have emerged as effective countermeasures against ROS-induced damage. The Deinococcus genus is well known for its extraordinary resilience to ionizing radiation [...] Read more.
Reactive oxygen species (ROS), byproducts of cellular metabolism and environmental factors, are linked to diseases like cancer and aging. Antioxidant peptides (AOPs) have emerged as effective countermeasures against ROS-induced damage. The Deinococcus genus is well known for its extraordinary resilience to ionizing radiation (IR) and possesses complex antioxidant systems designed to neutralize ROS generated by IR. In this study, we developed four peptides, each containing 9 to 11 amino acids, from the leaderless mRNA (lmRNA) sequences of D. deserti. Lacking a 5′ untranslated region, lmRNAs directly initiate protein synthesis, potentially encoding small peptides such as AOPs. Of the four peptides, Ddes-P3 was found to exhibit significant antioxidant capabilities in vitro, effectively scavenging ABTS radicals. Ddes-P3 provided considerable defense against IR-induced oxidative stress in CHO-K1 cells, demonstrating a notable reduction in ROS production and lipid peroxidation. The peptide’s potential was highlighted by its ability to enhance cell survival and maintain mitochondrial membrane potential under irradiative stress, suggesting its utility as a nontoxic and effective radioprotector in mitigating radiation-induced cellular damage. This study explores the potential role of lmRNA in synthesizing AOPs within Deinococcus. Identifying lmRNAs that encode AOPs could deepen our understanding of their cellular resistance to oxidative stress and pave the way for creating innovative biotechnological and therapeutic AOPs. Full article
(This article belongs to the Special Issue Bioactive Molecules from Microbial Sources)
Show Figures

Figure 1

21 pages, 5052 KB  
Article
Curcumin’s Radioprotective Effects on Zebrafish Embryos
by Gaia Pucci, Gaetano Savoca, Giuseppina Iacoviello, Giorgio Russo, Giusi I. Forte and Vincenzo Cavalieri
Antioxidants 2024, 13(11), 1281; https://doi.org/10.3390/antiox13111281 - 23 Oct 2024
Cited by 2 | Viewed by 1970
Abstract
Radiation modifiers are largely studied for their contribution to enlarging the treatment window. Curcumin is already known for its antioxidant properties; however, its role as a radioprotector in preclinical studies is affected by the well-known low absorption and bioavailability of curcumin. In this [...] Read more.
Radiation modifiers are largely studied for their contribution to enlarging the treatment window. Curcumin is already known for its antioxidant properties; however, its role as a radioprotector in preclinical studies is affected by the well-known low absorption and bioavailability of curcumin. In this study, curcumin’s radioprotection ability has been evaluated in zebrafish larvae, by taking advantage of quantifying curcumin absorption and evaluating its fluorescence in transparent embryos. A curcumin range of 1–10 μM was tested to select the non-toxic concentrations to be used for a pre-treatment of photon beam irradiation using a 2–15 Gy range of doses. The post-treatment analysis within 120 h post-fertilization (hpf) included an assessment of mortality and malformation rates and behavioral and gene expression analysis. A total of 2.5 and 5 μM of curcumin pre-treatment showed a radioprotective role, significantly reducing the frequency of embryo malformations and damaged entities. This sparing effect disappeared using 15 Gy, showing the radiation effect’s prevalence. Gene expression analysis reconducted this radioprotective ability for antioxidant gene network activation. The curcumin-induced activation of the antioxidant gene network promoted radioprotection in zebrafish. Full article
(This article belongs to the Special Issue Radioprotective Effects of Antioxidants)
Show Figures

Figure 1

23 pages, 2031 KB  
Article
Comparative Analysis of Cystamine and Cysteamine as Radioprotectors and Antioxidants: Insights from Monte Carlo Chemical Modeling under High Linear Energy Transfer Radiation and High Dose Rates
by Samafou Penabeï, Jintana Meesungnoen and Jean-Paul Jay-Gerin
Int. J. Mol. Sci. 2024, 25(19), 10490; https://doi.org/10.3390/ijms251910490 - 29 Sep 2024
Cited by 2 | Viewed by 1813
Abstract
This study conducts a comparative analysis of cystamine (RSSR), a disulfide, and cysteamine (RSH), its thiol monomer, to evaluate their efficacy as radioprotectors and antioxidants under high linear energy transfer (LET) and high-dose-rate irradiation conditions. It examines their interactions with reactive primary species [...] Read more.
This study conducts a comparative analysis of cystamine (RSSR), a disulfide, and cysteamine (RSH), its thiol monomer, to evaluate their efficacy as radioprotectors and antioxidants under high linear energy transfer (LET) and high-dose-rate irradiation conditions. It examines their interactions with reactive primary species produced during the radiolysis of the aqueous ferrous sulfate (Fricke) dosimeter, offering insights into the mechanisms of radioprotection and highlighting their potential to enhance the therapeutic index of radiation therapy, particularly in advanced techniques like FLASH radiotherapy. Using Monte Carlo multi-track chemical modeling to simulate the radiolytic oxidation of ferrous to ferric ions in Fricke-cystamine and Fricke-cysteamine solutions, this study assesses the radioprotective and antioxidant properties of these compounds across a variety of irradiation conditions. Concentrations were varied in both aerated (oxygen-rich) and deaerated (hypoxic) environments, simulating conditions akin to healthy tissue and tumors. Both cystamine and cysteamine demonstrate radioprotective and strong antioxidant properties. However, their effectiveness varies significantly depending on the concentration employed, the conditions of irradiation, and whether or not environmental oxygen is present. Specifically, excluding potential in vivo toxicity, cysteamine substantially reduces the adverse effects of ionizing radiation under aerated, low-LET conditions at concentrations above ~1 mM. However, its efficacy is minimal in hypoxic environments, irrespective of the concentration used. Conversely, cystamine consistently offers robust protective effects in both oxygen-rich and oxygen-poor conditions. The distinct protective capacities of cysteamine and cystamine underscore cysteamine’s enhanced potential in radiotherapeutic settings aimed at safeguarding healthy tissues from radiation-induced damage while effectively targeting tumor tissues. This differential effectiveness emphasizes the need for personalized radioprotective strategies, tailored to the specific environmental conditions of the tissue involved. Implementing such approaches is crucial for optimizing therapeutic outcomes and minimizing collateral damage in cancer treatment. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

22 pages, 1472 KB  
Article
Effects of Recombinant α1-Microglobulin on Early Proteomic Response in Risk Organs after Exposure to 177Lu-Octreotate
by Charlotte Ytterbrink, Emman Shubbar, Toshima Z. Parris, Britta Langen, Malin Druid, Emil Schüler, Sven-Erik Strand, Bo Åkerström, Magnus Gram, Khalil Helou and Eva Forssell-Aronsson
Int. J. Mol. Sci. 2024, 25(13), 7480; https://doi.org/10.3390/ijms25137480 - 8 Jul 2024
Cited by 2 | Viewed by 1621
Abstract
Recombinant α1-microglobulin (A1M) is proposed as a protector during 177Lu-octreotate treatment of neuroendocrine tumors, which is currently limited by bone marrow and renal toxicity. Co-administration of 177Lu-octreotate and A1M could result in a more effective treatment by protecting healthy [...] Read more.
Recombinant α1-microglobulin (A1M) is proposed as a protector during 177Lu-octreotate treatment of neuroendocrine tumors, which is currently limited by bone marrow and renal toxicity. Co-administration of 177Lu-octreotate and A1M could result in a more effective treatment by protecting healthy tissue, but the radioprotective action of A1M is not fully understood. The aim of this study was to examine the proteomic response of kidneys and bone marrow early after 177Lu-octreotate and/or A1M administration. Mice were injected with 177Lu-octreotate and/or A1M, while control mice received saline or A1M vehicle solution. Bone marrow, kidney medulla, and kidney cortex were sampled after 24 h or 7 d. The differential protein expression was analyzed with tandem mass spectrometry. The dosimetric estimation was based on 177Lu activity in the kidney. PHLDA3 was the most prominent radiation-responsive protein in kidney tissue. In general, no statistically significant difference in the expression of radiation-related proteins was observed between the irradiated groups. Most canonical pathways were identified in bone marrow from the 177Lu-octreotate+A1M group. Altogether, a tissue-dependent proteomic response followed exposure to 177Lu-octreotate alone or together with A1M. Combining 177Lu-octreotate with A1M did not inhibit the radiation-induced protein expression early after exposure, and late effects should be further studied. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

52 pages, 8424 KB  
Review
Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy
by Anna Stasiłowicz-Krzemień, Anna Gościniak, Dorota Formanowicz and Judyta Cielecka-Piontek
Int. J. Mol. Sci. 2024, 25(13), 6937; https://doi.org/10.3390/ijms25136937 - 25 Jun 2024
Cited by 17 | Viewed by 6047
Abstract
Cancer remains a significant global health challenge, with millions of deaths attributed to it annually. Radiotherapy, a cornerstone in cancer treatment, aims to destroy cancer cells while minimizing harm to healthy tissues. However, the harmful effects of irradiation on normal cells present a [...] Read more.
Cancer remains a significant global health challenge, with millions of deaths attributed to it annually. Radiotherapy, a cornerstone in cancer treatment, aims to destroy cancer cells while minimizing harm to healthy tissues. However, the harmful effects of irradiation on normal cells present a formidable obstacle. To mitigate these effects, researchers have explored using radioprotectors and mitigators, including natural compounds derived from secondary plant metabolites. This review outlines the diverse classes of natural compounds, elucidating their roles as protectants of healthy cells. Furthermore, the review highlights the potential of these compounds as radioprotective agents capable of enhancing the body’s resilience to radiation therapy. By integrating natural radioprotectors into cancer treatment regimens, clinicians may improve therapeutic outcomes while minimizing the adverse effects on healthy tissues. Ongoing research in this area holds promise for developing complementary strategies to optimize radiotherapy efficacy and enhance patient quality of life. Full article
Show Figures

Figure 1

29 pages, 1163 KB  
Review
Taxonomic Diversity and Functional Traits of Soil Bacterial Communities under Radioactive Contamination: A Review
by Elena Belykh, Tatiana Maystrenko, Ilya Velegzhaninov, Marina Tavleeva, Elena Rasova and Anna Rybak
Microorganisms 2024, 12(4), 733; https://doi.org/10.3390/microorganisms12040733 - 3 Apr 2024
Cited by 10 | Viewed by 3020
Abstract
Studies investigating the taxonomic diversity and structure of soil bacteria in areas with enhanced radioactive backgrounds have been ongoing for three decades. An analysis of data published from 1996 to 2024 reveals changes in the taxonomic structure of radioactively contaminated soils compared to [...] Read more.
Studies investigating the taxonomic diversity and structure of soil bacteria in areas with enhanced radioactive backgrounds have been ongoing for three decades. An analysis of data published from 1996 to 2024 reveals changes in the taxonomic structure of radioactively contaminated soils compared to the reference, showing that these changes are not exclusively dependent on contamination rates or pollutant compositions. High levels of radioactive exposure from external irradiation and a high radionuclide content lead to a decrease in the alpha diversity of soil bacterial communities, both in laboratory settings and environmental conditions. The effects of low or moderate exposure are not consistently pronounced or unidirectional. Functional differences among taxonomic groups that dominate in contaminated soil indicate a variety of adaptation strategies. Bacteria identified as multiple-stress tolerant; exhibiting tolerance to metals and antibiotics; producing antioxidant enzymes, low-molecular antioxidants, and radioprotectors; participating in redox reactions; and possessing thermophilic characteristics play a significant role. Changes in the taxonomic and functional structure, resulting from increased soil radionuclide content, are influenced by the combined effects of ionizing radiation, the chemical toxicity of radionuclides and co-contaminants, as well as the physical and chemical properties of the soil and the initial bacterial community composition. Currently, the quantification of the differential contributions of these factors based on the existing published studies presents a challenge. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop