Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = raffinose synthase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2646 KB  
Article
Genome-Wide Identification of the BnaRFS Gene Family and Functional Characterization of BnaRFS6 in Brassica napus
by Bingqian Zhou, Chunyun Guan and Mei Guan
Genes 2025, 16(9), 1032; https://doi.org/10.3390/genes16091032 - 29 Aug 2025
Viewed by 696
Abstract
Background: Raffinose synthase (RFS) plays a crucial role in plant growth and development, as well as in responses to biotic and abiotic stresses. However, its functions in Brassica napus remain poorly understood. Methods: To investigate the characteristics of the RFS gene family in [...] Read more.
Background: Raffinose synthase (RFS) plays a crucial role in plant growth and development, as well as in responses to biotic and abiotic stresses. However, its functions in Brassica napus remain poorly understood. Methods: To investigate the characteristics of the RFS gene family in B. napus (rapeseed), five Arabidopsis thaliana RFS gene sequences were used as references to identify thirteen RFS genes in B. napus, four in Brassica rapa, and six in Brassica oleracea. A comprehensive analysis was conducted, including molecular characteristics, phylogenetic relationships, conserved protein motifs, gene structures, and chromosomal localization. Results: BnaC02G0100500ZS was selected as a candidate gene due to its unique expression profile. Sequence alignment identified it as BnaRFS6, and subcellular localization revealed that its encoded protein is localized in the mitochondria. Overexpression of BnaRFS6 in rapeseed significantly affected the soluble sugar and starch content in the stalks, resulting in increased levels of fructose, glucose, and raffinose, and a decreased starch content. Conclusions: These findings highlight the role of BnaRFS6 in enhancing sugar metabolism in B. napus, particularly in relation to fructose, glucose, and raffinose accumulation. Understanding its potential function provides a foundation for improving the sugar content and taste of rapeseed stalks through genetic engineering in the future. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

16 pages, 5765 KB  
Article
Integrative Analyses of Metabolome and Transcriptome Reveal Scion–Stock Asymmetry Reduction and Shift of Sugar Metabolism During Graft Junction Formation in Malus Domestica (‘Hanfu’) Homograft
by Wenting Huang, Shengyuan Wang, Chong Mao, Ling Xiang, Xiao Zhang, Feng Jiang, Yuqin Cheng and Tianzhong Li
Int. J. Mol. Sci. 2025, 26(11), 5290; https://doi.org/10.3390/ijms26115290 - 30 May 2025
Cited by 1 | Viewed by 705
Abstract
Grafting is widely used as a breeding method to enhance productivity and resilience. However, the mechanisms of graft healing remain poorly understood. In this study, we performed Malus domestica (‘Hanfu’) homograft and observed morphological and anatomical changes during the healing process in the [...] Read more.
Grafting is widely used as a breeding method to enhance productivity and resilience. However, the mechanisms of graft healing remain poorly understood. In this study, we performed Malus domestica (‘Hanfu’) homograft and observed morphological and anatomical changes during the healing process in the graft junction within 40 days after grafting (DAG). The results showed that the healing process was divided into two phases: 0–20 days (callus proliferation phase) and 20–40 days (vascular bundle reconnection phase). During the early stage (20 DAG), gene expression exhibited asymmetry between the scion and rootstock, whereas synchronization occurred in the late stage (40 DAG). Transcriptomic and metabolomic analyses of the scion and rootstock during these two critical phases identified that differentially expressed genes (DEGs) were enriched in “Carbon fixation by Calvin cycle” and “photosynthesis-related pathways”, while differentially expressed metabolites (DEMs) were clustered in “Galactose metabolism”, implying a critical role of carbohydrates in grafting. Genes encoding enzymes involved in sugar biosynthesis, such as amylase (MdAMY), invertase (MdINV), galactinol synthase (MdGS), raffinose synthase (MdRS), and stachyose synthase (MdSS), were generally more highly expressed during Phase I than Phase II. In contrast, genes encoding enzymes related to sugar consumption, such as fructose kinases (MdSUS), cellulose synthases (MdCESA), and galacturonosyltransferase (MdGAUT), showed weak expression in Phase I but were strongly activated in Phase II. Glucose, sucrose, galactose, and melibiose levels increased significantly at 20 DAG compared with 0 DAG and subsequently decreased by 40 DAG. Exogenous application of 0.5% sucrose, raffinose, or melibiose significantly enhanced vascular bundle reconnection rates at 7 DAG compared with the control group (p < 0.01), confirming the pivotal role of sugar metabolism in graft healing. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 6542 KB  
Article
Unveiling the Cold Acclimation of Alfalfa: Insights into Its Starch-Soluble Sugar Dynamic Transformation
by Lin Zhu, Zhiyong Li, Xiaoqing Zhang, Guomei Yin, Siqi Liu, Jinmei Zhao, Ying Yun, Maowei Guo and Jiaqi Zhang
Plants 2025, 14(9), 1313; https://doi.org/10.3390/plants14091313 - 26 Apr 2025
Viewed by 625
Abstract
Alfalfa (Medicago sativa) is a globally distributed economic legume crop used for forage and ecological restoration. We aimed to explore the mechanisms underlying the cold acclimation observed in this species. Our results for fall plant growth showed that non-dormant alfalfa (SD) [...] Read more.
Alfalfa (Medicago sativa) is a globally distributed economic legume crop used for forage and ecological restoration. We aimed to explore the mechanisms underlying the cold acclimation observed in this species. Our results for fall plant growth showed that non-dormant alfalfa (SD) maintained a vigorous growth rate compared to that of fall-dormant alfalfa (ZD); however, the winter survival rate of ZD was higher than that of SD. Among the ZD samples, the starch content first accumulated and then decreased; the sucrose content was consumed first along with simultaneous raffinose accumulation, which was followed by sucrose content accumulation, with consistent changes in the corresponding related synthase and hydrolase activity. SD exhibited the opposite trend. The transcriptome data showed that most of the differentially expressed genes were involved in carbon metabolism (ko01200), amino acid biosynthesis (ko01230), and starch and sucrose metabolism (ko00500). Our data clearly show that alfalfa’s cold acclimation mechanism is a complex process, with the establishment of stable carbon homeostasis; sucrose is first converted into starch and raffinose, and then, starch is converted into sucrose, which enables alfalfa’s cold resistance. The process is accompanied by CBF/DREB1A TF regulation. This study provides important insights into the cold acclimation mechanisms of alfalfa. Full article
(This article belongs to the Special Issue Carbon Management during Plant Acclimation to Abiotic Stresses)
Show Figures

Figure 1

19 pages, 2563 KB  
Article
Insulin-Sensitizing Properties of Decoctions from Leaves, Stems, and Roots of Cucumis prophetarum L.
by Zewdie Mekonnen, Giuseppe Petito, Getasew Shitaye, Gianluca D’Abrosca, Belete Adefris Legesse, Sisay Addisu, Maurizio Ragni, Antonia Lanni, Roberto Fattorusso, Carla Isernia, Lara Comune, Simona Piccolella, Severina Pacifico, Rosalba Senese, Gaetano Malgieri and Solomon Tebeje Gizaw
Molecules 2025, 30(1), 98; https://doi.org/10.3390/molecules30010098 - 30 Dec 2024
Viewed by 1732
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resistance and impaired beta-cell secretory function. Since existing treatments often present side effects based on different mechanisms, alternative therapeutic options are needed. In this scenario, the present study first evaluates the [...] Read more.
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resistance and impaired beta-cell secretory function. Since existing treatments often present side effects based on different mechanisms, alternative therapeutic options are needed. In this scenario, the present study first evaluates the cytotoxicity of decoctions from the leaves, stems, and roots of Cucumis prophetarum L. on HepG2 and L6C5 cells. The extracts were chemically investigated by UV–Vis and ATR-FTIR spectroscopic techniques and by ultra high-performance chromatographic techniques, coupled with high-resolution mass spectrometry. Briefly, decoctions from the leaves and stems were mainly composed of apigenin C-glycosides, while the root decoction was rich in raffinose and cucumegastigmane II. To evaluate the insulin-sensitizing properties of the extracts in insulin-resistant L6 myoblasts, an evaluation by Western blot analysis of the proteins in the insulin signaling pathway was then performed. Particularly, key proteins of insulin signaling were investigated, i.e., insulin receptor substrate (IRS-1), protein kinase B (PKB/AKT), and glycogen synthase kinase-3 (GSK-3β), which have gained considerable attention from scientists for the treatment of diabetes. Under all conditions tested, the three decoctions showed low cytotoxicity. The stem and root decoction (300 μg/mL) resulted in a significant increase in the levels of p-IRS-1 (Tyr612), GSK3β (Ser9), and p-AMPK (Thr172) compared to those of the palmitic acid-treated group, and the leaf decoction resulted an increase in the level of p-IRS-1 (Tyr612) and p-AMPK (Thr172) and a decrease in p-GSK3β (Ser9) compared to the levels for the palmitic acid-treated group. The root decoction also reduced the level of p-mToR (Ser2448). Overall, the acquired data demonstrate the effect of reducing insulin resistance induced by the investigated decoctions, opening new scenarios for the evaluation of these effects aimed at counteracting diabetes and related diseases in animal models. Full article
Show Figures

Figure 1

13 pages, 5076 KB  
Article
Raffinose Priming Improves Seed Vigor by ROS Scavenging, RAFS, and α-GAL Activity in Aged Waxy Corn
by Min Zhu, Ru Xiao, Tong Yu, Tao Guo, Xuemei Zhong, Jianzhou Qu, Wanli Du and Wei Xue
Agronomy 2024, 14(12), 2843; https://doi.org/10.3390/agronomy14122843 - 28 Nov 2024
Cited by 3 | Viewed by 1555
Abstract
Raffinose family oligosaccharides (RFOs) are known to benefit plants under stress conditions; however, the role of exogenous raffinose in seed germination remains poorly understood. In this study, we investigated the potential role of raffinose in promoting seed germination and elucidated the underlying mechanisms. [...] Read more.
Raffinose family oligosaccharides (RFOs) are known to benefit plants under stress conditions; however, the role of exogenous raffinose in seed germination remains poorly understood. In this study, we investigated the potential role of raffinose in promoting seed germination and elucidated the underlying mechanisms. The results showed that artificial aging significantly reduced the germination rate and vigor of waxy corn seeds. Conversely, exogenous raffinose significantly enhanced the germination of these artificially aged seeds. Exogenous raffinose significantly reduced the levels of reactive oxygen species (O2 and H2O2) and enhanced the activity of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Additionally, the levels of α-galactosidase (α-GAL) and raffinose synthase (RAFS) were significantly elevated in raffinose-treated aged seeds. These findings suggest that exogenous raffinose induces the expression of α-GAL and RAFS, thereby providing energy and reducing excessive reactive oxygen species (ROS), which in turn promotes the germination of artificially aged seeds. This study provides a theoretical foundation for enhancing seed vigor and extending seed longevity in crop management. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 4102 KB  
Article
The Role of PLATZ6 in Raffinose Family Oligosaccharides Loading of Leaves via PLATZ Family Characterization in Cucumber
by Peiqi Wang, Haofeng Teng, Dan Qiao, Fei Liang, Kaikai Zhu, Minmin Miao and Bing Hua
Plants 2024, 13(19), 2825; https://doi.org/10.3390/plants13192825 - 9 Oct 2024
Cited by 3 | Viewed by 1430
Abstract
The plant AT protein and zinc-binding protein (PLATZ) genes, a novel cluster of plant-specific zinc-finger-dependent DNA-binding proteins, play a crucial role in regulating stress response and plant development. However, there has been little study focus on the role of the cucumber [...] Read more.
The plant AT protein and zinc-binding protein (PLATZ) genes, a novel cluster of plant-specific zinc-finger-dependent DNA-binding proteins, play a crucial role in regulating stress response and plant development. However, there has been little study focus on the role of the cucumber PLATZ family in assimilating loading in leaves. (1) In this study, a total of 12 PLATZ genes were identified from the cucumber genome. The cucumber PLATZ genes were clustered into five groups, and unevenly distributed on five chromosomes. A single pair of cucumber PLATZ genes underwent segmental duplication. (2) The results of genome-wide expression analysis suggested that the cucumber PLATZ genes were widely expressed in a wide range of cucumber tissues, with three PLATZ (PLATZ2, PLATZ6, and PLATZ12) genes exhibiting high expression in the vascular tissues of cucumber leaves. PLATZ2, PLATZ6, and PLATZ12 proteins were primarily located in cytomembrane and nucleus. (3) In VIGS-PLATZ6 plants, the expression of Galactinol synthase 1 (GolS1) and STACHYOSE SYNTHASE (STS), two genes involved in the synthesis of raffinose family oligosaccharides (RFOs) were observed to be decreased in cucumber leaves. In conclusion, the comprehensive analysis of the cucumber PLATZ family and the preliminary functional verification of PLATZ6 lay the foundation for the molecular and physiological functions of cucumber PLATZ genes. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

19 pages, 9897 KB  
Article
Analysis of the Rice Raffinose Synthase (OsRS) Gene Family and Haplotype Diversity
by Jinguo Zhang, Dezhuang Meng, Jianfeng Li, Yaling Bao, Peng Yu, Guohui Dou, Jinmeng Guo, Chenghang Tang, Jiaqi Lv, Xinchen Wang, Xingmeng Wang, Fengcai Wu and Yingyao Shi
Int. J. Mol. Sci. 2024, 25(18), 9815; https://doi.org/10.3390/ijms25189815 - 11 Sep 2024
Cited by 2 | Viewed by 1667
Abstract
Based on the genome information of rice (Nipponbare), this study screened and identified six raffinose synthase (RS) genes and analyzed their physical and chemical properties, phylogenetic relationship, conserved domains, promoter cis-acting elements, and the function and genetic diversity of the gene-CDS-haplotype (gcHap). The [...] Read more.
Based on the genome information of rice (Nipponbare), this study screened and identified six raffinose synthase (RS) genes and analyzed their physical and chemical properties, phylogenetic relationship, conserved domains, promoter cis-acting elements, and the function and genetic diversity of the gene-CDS-haplotype (gcHap). The results showed that these genes play key roles in abiotic stress response, such as OsRS5, whose expression in leaves changed significantly under high salt, drought, ABA, and MeJA treatments. In addition, the OsRS genes showed significant genetic variations in different rice populations. The main gcHaps of most OsRS loci had significant effects on key agronomic traits, and the frequency of these alleles varied significantly among different rice populations and subspecies. These findings provide direction for studying the RS gene family in other crops. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress: 2nd Edition)
Show Figures

Figure 1

20 pages, 21594 KB  
Article
Cadmium-Induced Changes in the Accumulation of Sugars and the PsGolS Transcript in Pisum sativum L.
by Katarzyna Głowacka, Wioletta E. Pluskota, Janusz Najdzion, Adam Okorski, Jacek Olszewski and Lesław B. Lahuta
Appl. Sci. 2024, 14(13), 5486; https://doi.org/10.3390/app14135486 - 25 Jun 2024
Cited by 2 | Viewed by 1575
Abstract
Cadmium (Cd) is a key stress factor that affects plant development. To examine the influence of Cd stress, we analysed the tissue localisation of polysaccharides (Periodic Acid Schiff reaction), qualitative and quantitative changes in soluble carbohydrates (High-Resolution Gas Chromatography), and the expression of [...] Read more.
Cadmium (Cd) is a key stress factor that affects plant development. To examine the influence of Cd stress, we analysed the tissue localisation of polysaccharides (Periodic Acid Schiff reaction), qualitative and quantitative changes in soluble carbohydrates (High-Resolution Gas Chromatography), and the expression of the galactinol synthase (PsGolS) and raffinose synthase (PsRS) genes in 4-week-old Pisum sativum L. ‘Pegaz’. The plants were treated with 10, 50, 100, and 200 µM CdSO4 for one week and analysed on the 1st, 7th, and 28th days after Cd application. Pea as an excluder plant accumulated Cd mainly in the roots. Cd induced starch grain storage in the stems and the accumulation of soluble carbohydrates in roots and shoots after 28 days of Cd treatment. In controls, soluble carbohydrate levels decreased during the plant growth. In addition, Cd increased galactinol and raffinose levels, indicating their important role in response to Cd stress in peas. Moreover, the analysis confirmed that the expression of PsGolS was induced by Cd. Overall, the results of the distribution of carbohydrates in pea plants, together with the inhibition of seed production by Cd, indicate that plants tend to allocate energy to stress response mechanisms rather than to reproductive processes. Full article
(This article belongs to the Special Issue Environmental Bioaccumulation and Assessment of Toxic Elements)
Show Figures

Figure 1

16 pages, 10272 KB  
Article
The Sink-Source Relationship in Cucumber (Cucumis sativus L.) Is Modulated by DNA Methylation
by Yudan Wang, Huimin Zhang, Jiawen Gu, Chen Chen, Jiexia Liu, Zhiping Zhang, Bing Hua and Minmin Miao
Plants 2024, 13(1), 103; https://doi.org/10.3390/plants13010103 - 28 Dec 2023
Cited by 2 | Viewed by 2237
Abstract
The optimization of the sink-source relationship is of great importance for crop yield regulation. Cucumber is a typical raffinose family oligosaccharide (RFO)-transporting crop. DNA methylation is a common epigenetic modification in plants, but its role in sink-source regulation has not been demonstrated in [...] Read more.
The optimization of the sink-source relationship is of great importance for crop yield regulation. Cucumber is a typical raffinose family oligosaccharide (RFO)-transporting crop. DNA methylation is a common epigenetic modification in plants, but its role in sink-source regulation has not been demonstrated in RFO-translocating species. Here, whole-genome bisulfite sequencing (WGBS-seq) was conducted to compare the nonfruiting-node leaves (NFNLs) and leaves of fruit setting (FNLs) at the 12th node by removing all female flowers in other nodes of the two treatments. We found considerable differentially methylated genes enriched in photosynthesis and carbohydrate metabolic processes. Comparative transcriptome analysis between FNLs and NFNLs indicated that many differentially expressed genes (DEGs) with differentially methylated regions were involved in auxin, ethylene and brassinolide metabolism; sucrose metabolism; and RFO synthesis pathways related to sink-source regulation. Moreover, DNA methylation levels of six sink-source-related genes in the pathways mentioned above decreased in leaves after 5-aza-dC-2′-deoxycytidine (5-Aza-dC, a DNA methyltransferase inhibitor) treatment on FNLs, and stachyose synthase (CsSTS) gene expression, enzyme activity and stachyose content in RFO synthesis pathway were upregulated, thereby increasing fruit length and dry weight. Taken together, our findings proposed an up-to-date inference for the potential role of DNA methylation in the sink-source relationship, which will provide important references for further exploring the molecular mechanism of DNA methylation in improving the yield of RFO transport plants. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

14 pages, 4990 KB  
Article
Molecular Mechanism Underlying the Sorghum sudanense (Piper) Stapf. Response to Osmotic Stress Determined via Single-Molecule Real-Time Sequencing and Next-Generation Sequencing
by Qiuxu Liu, Fangyan Wang, Yalin Xu, Chaowen Lin, Xiangyan Li, Wenzhi Xu, Hong Wang and Yongqun Zhu
Plants 2023, 12(14), 2624; https://doi.org/10.3390/plants12142624 - 12 Jul 2023
Cited by 4 | Viewed by 1848
Abstract
Drought, as a widespread environmental factor in nature, has become one of the most critical factors restricting the yield of forage grass. Sudangrass (Sorghum sudanense (Piper) Stapf.), as a tall and large grass, has a large biomass and is widely used as [...] Read more.
Drought, as a widespread environmental factor in nature, has become one of the most critical factors restricting the yield of forage grass. Sudangrass (Sorghum sudanense (Piper) Stapf.), as a tall and large grass, has a large biomass and is widely used as forage and biofuel. However, its growth and development are limited by drought stress. To obtain novel insight into the molecular mechanisms underlying the drought response and excavate drought tolerance genes in sudangrass, the first full-length transcriptome database of sudangrass under drought stress at different time points was constructed by combining single-molecule real-time sequencing (SMRT) and next-generation transcriptome sequencing (NGS). A total of 32.3 Gb of raw data was obtained, including 20,199 full-length transcripts with an average length of 1628 bp after assembly and correction. In total, 11,921 and 8559 up- and down-regulated differentially expressed genes were identified between the control group and plants subjected to drought stress. Additionally, 951 transcription factors belonging to 50 families and 358 alternative splicing events were found. A KEGG analysis of 158 core genes exhibiting continuous changes over time revealed that ‘galactose metabolism’ is a hub pathway and raffinose synthase 2 and β-fructofuranosidase are key genes in the response to drought stress. This study revealed the molecular mechanism underlying drought tolerance in sudangrass. Furthermore, the genes identified in this study provide valuable resources for further research into the response to drought stress. Full article
(This article belongs to the Topic Tolerance to Drought and Salt Stress in Plants)
Show Figures

Figure 1

37 pages, 20027 KB  
Article
Analysis of Raffinose Synthase Gene Family in Bread Wheat and Identification of Drought Resistance and Salt Tolerance Function of TaRS15-3B
by Jiagui Guo, Yan Yang, Tingting Wang, Yizhen Wang, Xin Zhang, Donghong Min and Xiaohong Zhang
Int. J. Mol. Sci. 2023, 24(13), 11185; https://doi.org/10.3390/ijms241311185 - 6 Jul 2023
Cited by 8 | Viewed by 2632
Abstract
Raffinose synthase (RS) plays a crucial role in plant growth and development, as well as in responses to biotic stresses and abiotic stresses, yet few studies have been conducted on its role in bread wheat. Therefore, in this study we screened and identified [...] Read more.
Raffinose synthase (RS) plays a crucial role in plant growth and development, as well as in responses to biotic stresses and abiotic stresses, yet few studies have been conducted on its role in bread wheat. Therefore, in this study we screened and identified a family of bread wheat raffinose synthase genes based on bread wheat genome information and analyzed their physicochemical properties, phylogenetic evolutionary relationships, conserved structural domains, promoter cis-acting elements, and expression patterns. The BSMV-induced silencing of TaRS15-3B resulted in the bread wheat seedlings being susceptible to drought and salt stress and reduced the expression levels of stress-related and ROS-scavenging genes in bread wheat plants. This further affected the ability of bread wheat to cope with drought and salt stress. In conclusion, this study revealed that the RS gene family in bread wheat plays an important role in plant response to abiotic stresses and that the TaRS15-3B gene can improve the tolerance of transgenic bread wheat to drought and salt stresses, provide directions for the study of other RS gene families in bread wheat, and supply candidate genes for use in molecular breeding of bread wheat for stress resistance. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant: From Gene to the Fields 2.0)
Show Figures

Figure 1

20 pages, 4300 KB  
Article
Identification and Alternative Splicing Profile of the Raffinose synthase Gene in Grass Species
by Junhao Xu, Xiangkai You, Yanan Leng, Youyue Li, Zeyu Lu, Yinan Huang, Moxian Chen, Jianhua Zhang, Tao Song and Tieyuan Liu
Int. J. Mol. Sci. 2023, 24(13), 11120; https://doi.org/10.3390/ijms241311120 - 5 Jul 2023
Cited by 4 | Viewed by 2497
Abstract
Raffinose synthase (Rafs) is an important enzyme in the synthesis pathway of raffinose from sucrose and galactinol in higher plants and is involved in the regulation of seed development and plant responses to abiotic stresses. In this study, we analyzed the [...] Read more.
Raffinose synthase (Rafs) is an important enzyme in the synthesis pathway of raffinose from sucrose and galactinol in higher plants and is involved in the regulation of seed development and plant responses to abiotic stresses. In this study, we analyzed the Rafs families and profiled their alternative splicing patterns at the genome-wide scale from 10 grass species representing crops and grasses. A total of 73 Rafs genes were identified from grass species such as rice, maize, foxtail millet, and switchgrass. These Rafs genes were assigned to six groups based the phylogenetic analysis. We compared the gene structures, protein domains, and expression patterns of Rafs genes, and also unraveled the alternative transcripts of them. In addition, different conserved sequences were observed at these putative splice sites among grass species. The subcellular localization of PvRafs5 suggested that the Rafs gene was expressed in the cytoplasm or cell membrane. Our findings provide comprehensive knowledge of the Rafs families in terms of genes and proteins, which will facilitate further functional characterization in grass species in response to abiotic stress. Full article
Show Figures

Figure 1

15 pages, 3620 KB  
Article
Systematic Analysis of Galactinol Synthase and Raffinose Synthase Gene Families in Potato and Their Expression Patterns in Development and Abiotic Stress Responses
by Quankai Jing, Airu Chen, Zhaoyan Lv, Zhihao Dong, Lixia Wang, Xiaoke Meng, Yue Feng, Yu Wan, Chengyun Su, Yanjie Cui, Wenjuan Xu, Hualan Hou and Xiaobiao Zhu
Genes 2023, 14(7), 1344; https://doi.org/10.3390/genes14071344 - 26 Jun 2023
Cited by 16 | Viewed by 2477
Abstract
Raffinose family oligosaccharides (RFOs) are very important for plant growth, development, and abiotic stress tolerance. Galactinol synthase (GolS) and raffinose synthase (RFS) are critical enzymes involved in RFO biosynthesis. However, the whole-genome identification and stress responses of their coding genes in potato remain [...] Read more.
Raffinose family oligosaccharides (RFOs) are very important for plant growth, development, and abiotic stress tolerance. Galactinol synthase (GolS) and raffinose synthase (RFS) are critical enzymes involved in RFO biosynthesis. However, the whole-genome identification and stress responses of their coding genes in potato remain unexplored. In this study, four StGolS and nine StRFS genes were identified and classified into three and five subgroups, respectively. Remarkably, a total of two StGolS and four StRFS genes in potato were identified to form collinear pairs with those in both Arabidopsis and tomato, respectively. Subsequent analysis revealed that StGolS4 exhibited significantly high expression levels in transport-related tissues, PEG-6000, and ABA treatments, with remarkable upregulation under salt stress. Additionally, StRFS5 showed similar responses to StGolS4, but StRFS4 and StRFS8 gene expression increased significantly under salt treatment and decreased in PEG-6000 and ABA treatments. Overall, these results lay a foundation for further research on the functional characteristics and molecular mechanisms of these two gene families in response to ABA, salt, and drought stresses, and provide a theoretical foundation and new gene resources for the abiotic-stress-tolerant breeding of potato. Full article
Show Figures

Figure 1

17 pages, 7802 KB  
Article
Alterations in Carbohydrate Quantities in Freeze-Dried, Relative to Fresh or Frozen Maize Leaf Disks
by Lynnette M. A. Dirk, Tianyong Zhao, John May, Tao Li, Qinghui Han, Yumin Zhang, Mohammad R. Sahib and Allan Bruce Downie
Biomolecules 2023, 13(1), 148; https://doi.org/10.3390/biom13010148 - 11 Jan 2023
Viewed by 2467
Abstract
For various reasons, leaves are occasionally lyophilized prior to storage at −80 °C and preparing extracts. Soluble carbohydrate identity and quantity from maize leaf disks were ascertained in two separate years using anion exchange HPLC with pulsed electrochemical detection. Analyses were made from [...] Read more.
For various reasons, leaves are occasionally lyophilized prior to storage at −80 °C and preparing extracts. Soluble carbohydrate identity and quantity from maize leaf disks were ascertained in two separate years using anion exchange HPLC with pulsed electrochemical detection. Analyses were made from disks after freezing in liquid nitrogen with or without subsequent lyophilization (both years) or directly after removal from plants with or without lyophilization (only in the second year). By adding the lyophilizing step, galactose content consistently increased and, frequently, so did galactoglycerols. The source of the galactose increase with the added lyophilizing step was not due to metabolizing raffinose, as the raffinose synthase (rafs) null mutant leaves, which do not make that trisaccharide, also had a similar increase in galactose content with lyophilization. Apparently, the ester linkages attaching free fatty acids to galactoglycerolipids of the chloroplast are particularly sensitive to cleavage during lyophilization, resulting in increases in galactoglycerols. Regardless of the galactose source, a systematic error is introduced for carbohydrate (and, most likely, also chloroplast mono- or digalactosyldiacylglycerol) amounts when maize leaf samples are lyophilized prior to extraction. The recognition of lyophilization as a source of galactose increase provides a cautionary note for investigators of soluble carbohydrates. Full article
(This article belongs to the Section Biomacromolecules: Carbohydrates)
Show Figures

Figure 1

15 pages, 5786 KB  
Article
Identification, Characterization and Expression Profiling of the RS Gene Family during the Withering Process of White Tea in the Tea Plant (Camellia sinensis) Reveal the Transcriptional Regulation of CsRS8
by Tao Wang, Yiqing Wang, Jiamin Zhao, Jiumei Kong, Lingzhi Zhang, Siyu Qi, Jiajia Chen, Zhidan Chen, Wen Zeng and Weijiang Sun
Int. J. Mol. Sci. 2023, 24(1), 202; https://doi.org/10.3390/ijms24010202 - 22 Dec 2022
Cited by 7 | Viewed by 2928
Abstract
Raffinose synthetase (RS) is a key enzyme in the process of raffinose (Raf) synthesis and is involved in plant development and stress responses through regulating Raf content. As a sweetener, Raf makes an important contribution to the sweet taste of white tea. However, [...] Read more.
Raffinose synthetase (RS) is a key enzyme in the process of raffinose (Raf) synthesis and is involved in plant development and stress responses through regulating Raf content. As a sweetener, Raf makes an important contribution to the sweet taste of white tea. However, studies on the identification, analysis and transcriptional regulation of CsRSs (Camellia sinensis RS genes) are still lacking. In this study, nine CsRSs were identified from the tea plant (Camellia sinensis) genome database. The CsRSs were classified into five groups in the phylogenetic tree. Expression level analysis showed that the CsRSs varied in different parts of the tea plant. Transcriptome data showed that CsRSs could respond to persistent drought and cold acclimation. Except for CsRS5 and CsRS9, the expression pattern of all CsRSs increased at 12 h and decreased at 30 h during the withering process of white tea, consistent with the change trend of the Raf content. Furthermore, combining yeast one-hybrid assays with expression analysis, we found that CsDBB could potentially regulate the expression of CsRS8. Our results provide a new perspective for further research into the characterization of CsRS genes and the formation of the white tea flavour. Full article
(This article belongs to the Special Issue Regulatory Mechanism and Network of Abiotic Stress-Response in Plants)
Show Figures

Figure 1

Back to TopTop