Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = raw bamboo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3466 KB  
Review
Sustainable Development Advantages of Cross-Laminated Timber (CLT) and Cross-Laminated Bamboo and Timber (CLBT)
by Jinping Li and Kang Zhao
Materials 2025, 18(21), 4913; https://doi.org/10.3390/ma18214913 - 27 Oct 2025
Viewed by 417
Abstract
As an innovative advancement beyond cross-laminated timber (CLT), cross-laminated bamboo and timber (CLBT) combines sustainability with enhanced structural performance. This review critically assesses the current state of CLBT research, focusing on its failure mechanisms, mechanical properties, and predictive theoretical models. Key findings indicate [...] Read more.
As an innovative advancement beyond cross-laminated timber (CLT), cross-laminated bamboo and timber (CLBT) combines sustainability with enhanced structural performance. This review critically assesses the current state of CLBT research, focusing on its failure mechanisms, mechanical properties, and predictive theoretical models. Key findings indicate that CLBT exhibits superior rolling shear strength, bending stiffness, and stability compared to conventional CLT, achieved through optimized hybrid layering and manufacturing techniques. The integration of bamboo not only improves mechanical performance but also promotes diversification of raw materials and more efficient use of regional biomass. This paper highlights the potential of CLBT as a high-performance, eco-friendly construction material and identifies key research gaps and future directions to facilitate its standardized application. Full article
Show Figures

Figure 1

18 pages, 1656 KB  
Article
Stakeholder Perception and Priority Gaps in Ecosystem Services of Different Land-Uses in Rural Laos
by Bohwi Lee and Hakjun Rhee
Forests 2025, 16(10), 1581; https://doi.org/10.3390/f16101581 - 14 Oct 2025
Viewed by 384
Abstract
Conflicting priorities between policymakers and local communities often compromise conservation outcomes in landscapes reliant on natural resources. Understanding how diverse stakeholders value ecosystem services (ESs) across coexisting land uses is essential; however, empirical evidence from rural Southeast Asia remains limited. This study examined [...] Read more.
Conflicting priorities between policymakers and local communities often compromise conservation outcomes in landscapes reliant on natural resources. Understanding how diverse stakeholders value ecosystem services (ESs) across coexisting land uses is essential; however, empirical evidence from rural Southeast Asia remains limited. This study examined ES perceptions and priorities among community members (n = 500) and experts (n = 30) within a bamboo forest, rice paddy, and teak plantation in Sangthong District, Lao PDR. A two-step survey methodology was employed: initially assessing ES perceptions to filter locally relevant services using a ≥50% recognition threshold, followed by quantifying priorities for this subset through a 100-point allocation task. The results revealed a systematic divergence in priorities rooted in differing knowledge systems. Communities, grounded in traditional ecological knowledge (TEK), prioritized tangible provisioning and cultural services (e.g., food and raw materials). In contrast, experts emphasized regulating services (e.g., carbon sequestration and hazard regulation) and habitat services (e.g., biodiversity and habitat provision). Distinct “ES bundles” also emerged by land use: bamboo (raw materials and freshwater), rice (food and medicine), and teak (timber/bioenergy and regulating services). Our findings suggest a policy transition from single-objective management toward optimizing landscape-level ES portfolios, alongside institutionalizing participatory co-management that formally integrates local knowledge and enhances ES literacy. Full article
(This article belongs to the Special Issue Forest Ecosystem Services and Sustainable Management)
Show Figures

Figure 1

18 pages, 1538 KB  
Article
The Hygroscopicity and Strength Properties of Thermally Modified Gigantochloa scortechinii Bamboo from Peninsular Malaysia
by Zahidah Zafhian, Adlin Sabrina Muhammad Roseley, Sabiha Salim, Sik Huei Shing and Zairul Amin Rabidin
Forests 2025, 16(9), 1422; https://doi.org/10.3390/f16091422 - 5 Sep 2025
Viewed by 759
Abstract
Bamboo is a lignocellulosic material characterized by its high hygroscopicity, which refers to the ability of material to absorb and retain moisture from the surrounding environment. This attribute could adversely affect its dimensional stability and resistance against deterioration agents. Thus, a study was [...] Read more.
Bamboo is a lignocellulosic material characterized by its high hygroscopicity, which refers to the ability of material to absorb and retain moisture from the surrounding environment. This attribute could adversely affect its dimensional stability and resistance against deterioration agents. Thus, a study was conducted to investigate the effect of thermal modification on the hygroscopic, mechanical, and chemical properties of three-year-old Gigantochloa scortechinii, a native and highly exploited bamboo species in Malaysia. Overall, heat treatment effectively reduced the equilibrium moisture content and improved the dimensional stability of bamboo, with samples treated at 210 °C exhibited the most significant moisture resistance of up to 95.6% anti-swelling efficiency (ASE). The heat-treated bamboo exhibited an improvement in modulus of elasticity (MOE) at intermediate temperatures (170–190 °C) whereas modulus of rupture (MOR) declined at 210 °C. Chemical analysis indicated that a significant reduction in hemicellulose content and a relative increase in α-cellulose and lignin contributed to the improved moisture resistance of heat-treated bamboo. The results demonstrate the viability of heat treatment in producing quality thermally modified bamboo as an alternative raw material for construction materials and furniture manufacturing, thereby contributing to the development of Malaysia’s bamboo industry. Full article
Show Figures

Graphical abstract

15 pages, 1238 KB  
Article
Assessment of Environmental Dynamics and Ecosystem Services of Guadua amplexifolia J. Presl in San Jorge River Basin, Colombia
by Yiniva Camargo-Caicedo, Jorge Augusto Montoya Arango and Fredy Tovar-Bernal
Resources 2025, 14(7), 115; https://doi.org/10.3390/resources14070115 - 18 Jul 2025
Viewed by 1114
Abstract
Guadua amplexifolia J. Presl is a Neotropical bamboo native to southern Mexico through Central America to Colombia, where it thrives in riparian zones of the San Jorge River basin. Despite its ecological and socio-economic importance, its environmental dynamics and provision of ecosystem services [...] Read more.
Guadua amplexifolia J. Presl is a Neotropical bamboo native to southern Mexico through Central America to Colombia, where it thrives in riparian zones of the San Jorge River basin. Despite its ecological and socio-economic importance, its environmental dynamics and provision of ecosystem services remain poorly understood. This study (1) quantifies spatial and temporal land use/cover changes in the municipality of Montelíbano between 2002 and 2022 and (2) evaluates the ecosystem services that local communities derive from in 2002, 2012, and 2022, and they were classified in QGIS using G. amplexifolia. We applied a supervised classification of Landsat imagery (2002, 2012, 2022) in QGIS, achieving 85% overall accuracy and a Cohen’s Kappa of 0.82 (n = 45 reference points). For the social assessment, we held participatory workshops and conducted semi-structured interviews with artisans, fishers, authorities, and NGO representatives; responses were manually coded to extract key themes. The results show a 12% decline in total vegetated area from 2002 to 2012, followed by an 8% recovery by 2022, with bamboo-dominated stands following a similar pattern. Communities identified raw material provision (87% of mentions), climate regulation (82%), and cultural–recreational benefits (58%) as the most important services provided by G. amplexifolia. This is the first integrated assessment of G. amplexifolia’s landscape dynamics and community-valued services in the San Jorge basin, highlighting its dual function as a renewable resource and a natural safeguard against environmental risks. Our findings offer targeted recommendations for management practices and land use policies to support the species’ conservation and sustainable utilization. Full article
Show Figures

Figure 1

19 pages, 7489 KB  
Article
Biochar-Coconut Shell Mixtures as Substrates for Phalaenopsis ‘Big Chili’
by Yun Pan, Daoyuan Chen, Yan Deng, Shunshun Wang, Feng Chen, Fei Wang, Luyu Xue, Yanru Duan, Yunxiao Guan, Jinliao Chen, Xiaotong Ji and Donghui Peng
Plants 2025, 14(14), 2092; https://doi.org/10.3390/plants14142092 - 8 Jul 2025
Viewed by 1435
Abstract
Phalaenopsis is a widely cultivated ornamental plant of considerable economic value worldwide. However, traditional growing medium, sphagnum moss, is limited and non-renewable. It also decomposes slowly and is prone to environmental issues. Therefore, there is an urgent need to identify more environmentally friendly [...] Read more.
Phalaenopsis is a widely cultivated ornamental plant of considerable economic value worldwide. However, traditional growing medium, sphagnum moss, is limited and non-renewable. It also decomposes slowly and is prone to environmental issues. Therefore, there is an urgent need to identify more environmentally friendly and efficient alternatives. Biochar, a sustainable material with excellent physical and chemical properties, has been recognized as an effective promoter of plant growth. In this study, we investigated the influence of biochar derived from three raw materials (corn straw, bamboo, and walnut) mixed1 with coconut shell at ratios of 1:2, 1:10, and 4:1, on the growth of Phalaenopsis ‘Big Chili’. Over a 150-day controlled experiment, we evaluated multiple growth parameters, including plant height, crown width, total root length, total projected area, total surface area, and root volume. Compared to the traditional growing medium, the optimal biochar-coconut shell mixture (maize straw biochar: coconut shell = 1:2) increased plant height and crown width by 7.55% and 6.68%, respectively. Root metrics improved substantially, with total root length increasing by 10.96%, total projected area by 22.82%, total surface area by 22.14%, and root volume by 38.49%. Root biomass in the optimal treatment group increased by 42.47%, while aboveground and belowground dry weights increased by 6.16% and 77.11%, respectively. These improvements were closely associated with favorable substrate characteristics, including low bulk density, high total and water-holding porosity, moderate aeration, and adequate nutrient availability. These findings demonstrate that substrate characteristics critically influence plant performance and that biochar–coconut shell mixtures, particularly at a 1:2 ratio, represent a viable and sustainable alternative to sphagnum moss for commercial cultivation of Phalaenopsis. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

19 pages, 1980 KB  
Article
Durability Assessment of Binary and Ternary Eco-Friendly Mortars with Low Cement Content
by Lucas Henrique Pereira Silva, Jacqueline Roberta Tamashiro, Fabio Friol Guedes de Paiva, João Henrique da Silva Rego, Miguel Angel de la Rubia, Angela Kinoshita and Amparo Moragues Terrades
Solids 2025, 6(2), 28; https://doi.org/10.3390/solids6020028 - 3 Jun 2025
Viewed by 909
Abstract
Global cement manufacturing generated 1.6 billion metric tons of CO2 in 2022 and relies heavily on non-renewable raw materials. Utilizing agro-industrial waste as supplementary cementitious material (SCM) can help mitigate the demand for these resources. SCMs have been integrated into cement production [...] Read more.
Global cement manufacturing generated 1.6 billion metric tons of CO2 in 2022 and relies heavily on non-renewable raw materials. Utilizing agro-industrial waste as supplementary cementitious material (SCM) can help mitigate the demand for these resources. SCMs have been integrated into cement production to deliver both technical and environmental benefits to mortars and concrete. This study examines mortar blends containing blast furnace slag (BFS), Brazilian calcined clay (BCC), and bamboo leaf ash (BLA). While BFS and BCC are already established in the cement industry, recent research has highlighted BLA as a promising pozzolanic material. The SCMs were characterized, and mortars were produced to assess their flexural and compressive strength, as well as durability indicators such as electrical resistivity, chloride diffusion, migration coefficient, and carbonation resistance. The findings reveal significant performance enhancements. Partial cement replacement (20% and 40%) maintained the strength of both binary and ternary mortars, demonstrating statistical equivalence to the reference mortar (p > 0.05). It also contributed to an improved pore structure, reducing the migration coefficient by up to four times in the 20BLA20BCC mix (which replaces 20% of cement with BLA and 20% with BCC) compared to the reference mix. Chemically, the SCMs enhanced the chloride-binding capacity of the cementitious matrix by up to seven times in the case of the 20BCC mortar, thereby improving its durability. Therefore, all tested compositions—binary and ternary—showed mechanical and durability advantages over the reference while also contributing to the reduction in environmental impacts associated with the cement industry. Full article
Show Figures

Figure 1

21 pages, 17847 KB  
Article
Tensile Behavior and Failure Mechanism of Bamboo Fiber Bundle and Its Scrimber Under Different Strain Rates
by Kai Zhang, Haoran Xia, Lizhi Xu, Shengbo Zhou, Li Gao, Gong Zuo, Xiaotao Zhang and Quan Li
Materials 2025, 18(11), 2550; https://doi.org/10.3390/ma18112550 - 29 May 2025
Viewed by 795
Abstract
In this study, bamboo fiber bundles were directly extracted from raw bamboo material to fabricate reconstituted bamboo using the traditional hot-pressing method. The tensile behaviors and failure mechanisms of both the bamboo fiber bundle and its bamboo scrimber under various strain rates (quasi-static, [...] Read more.
In this study, bamboo fiber bundles were directly extracted from raw bamboo material to fabricate reconstituted bamboo using the traditional hot-pressing method. The tensile behaviors and failure mechanisms of both the bamboo fiber bundle and its bamboo scrimber under various strain rates (quasi-static, 350/s, 950/s and 1700/s) were investigated by the SHTB system (split-Hopkinson tensile bar, high-speed camera and digital image correlation method). The results showed that the bamboo scrimber exhibited an obvious positive strain rate effect. The ultimate tensile strength of the bamboo scrimber at a strain rate of 1700/s was close to 200 MPa, but it was only about 80 MPa under quasi-static loading. This experimental result was further validated by the tensile behaviors of single bamboo fiber bundles at different strain rates (quasi-static, 300/s, 700/s and 1500/s). In addition, as the strain rate increased, the fracture surface of the bamboo changed from a linear shape to a discontinuous folded shape. Full article
Show Figures

Figure 1

13 pages, 8078 KB  
Article
Edgewise Compressive Properties of Ecological Sandwich Panels with Engineered Bamboo Face Sheets and Bamboo Culm Core
by Xiaoran Liu, Jingjing Deng, Mao Wang, Xinmiao Meng and Lu Xu
Materials 2025, 18(9), 2158; https://doi.org/10.3390/ma18092158 - 7 May 2025
Cited by 1 | Viewed by 602
Abstract
Bamboo is a green, renewable material with high strength and low cost, but raw bamboo has limited application in residential buildings due to its irregular shape and dry cracking. In this regard, this work proposed a novel ecological sandwich panel to explore the [...] Read more.
Bamboo is a green, renewable material with high strength and low cost, but raw bamboo has limited application in residential buildings due to its irregular shape and dry cracking. In this regard, this work proposed a novel ecological sandwich panel to explore the potential combination of engineered bamboo and raw bamboo culms. Face sheets made of glued laminated bamboo panels were bonded to the bamboo culm core via epoxy resin and mortise–tenon joints. Two groups of specimens with height-to-thickness ratios of 4.63 and 5.37 were tested through edgewise compression to investigate the failure modes, strength and rigidity. The results revealed that the specimens had no overall stability problem under axial loading, but exhibited delamination and local bulging to the face sheets. When the height-to-thickness ratio increased from 4.63 to 5.37, but still belonged to the short member range, the area of the adhesive interface increased by 16.13%, and the edgewise compressive strength and rigidity increased by 17.57% and 35.04%, respectively. This indicated that the capacity and rigidity were mainly determined by the connection strength, which was obviously affected by the manufacturing and assembly errors. Accordingly, increasing the connection strength could be helpful for improving the load-carrying capacity and ductility of such panels. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

16 pages, 3199 KB  
Article
Thin-Layer Drying Model and Antifungal Properties of Rubber Sheets Produced with Wood Vinegar as a Substitute for Formic and Acetic Acids
by Wassachol Wattana, Putipong Lakachaiworakun, Natworapol Rachsiriwatcharabul, Visit Eakvanich, Panya Dangwilailux and Wachara Kalasee
Polymers 2025, 17(9), 1201; https://doi.org/10.3390/polym17091201 - 27 Apr 2025
Viewed by 966
Abstract
Currently, workers in the ribbed smoked sheet (RSS) rubber production industry face increasing health risks, primarily due to their direct involvement in converting fresh latex into raw rubber sheets. This process involves the manual addition of appropriately diluted commercial formic acid and acetic [...] Read more.
Currently, workers in the ribbed smoked sheet (RSS) rubber production industry face increasing health risks, primarily due to their direct involvement in converting fresh latex into raw rubber sheets. This process involves the manual addition of appropriately diluted commercial formic acid and acetic acid to induce coagulation, resulting in a tofu-like consistency, which is subsequently processed into rubber sheets. Previous studies have indicated that the use of commercial formic and acetic acids poses significant health hazards to workers and contributes to environmental pollution. Therefore, this study explores the feasibility of replacing commercial formic and acetic acids with wood vinegar derived from para-rubber wood, bamboo, and eucalyptus in the RSS production process. Wood vinegar samples from the three biomass sources were analyzed for their organic compound compositions using gas chromatography and subsequently used as coagulants in the preparation of raw rubber sheets. The drying kinetics and antifungal properties of the resulting sheets were then evaluated. The results revealed that wood vinegar derived from para-rubber wood contained the highest concentration of acetic acid (41.34%), followed by bamboo (38.19%) and eucalyptus (31.25%). Rubber sheets coagulated with wood vinegar from para-rubber wood and bamboo exhibited drying kinetics comparable to those obtained using acetic acid, with the two-term exponential model providing the best fit. Conversely, rubber sheets coagulated with eucalyptus-derived wood vinegar, which had a relatively high concentration of phenolic derivatives (22.08%), followed drying behavior consistent with the Midilli et al. model, similar to sheets treated with formic acid. In terms of antifungal properties, five fungal genera—Aspergillus, Penicillium, Fusarium, Trichoderma, and Paecilomyces—were identified on the rubber sheets. Fungal growth was most pronounced in the control samples (untreated with wood vinegar), whereas samples treated with wood vinegar exhibited significantly reduced fungal colonization. These findings indicate that wood vinegar is effective in inhibiting fungal growth on the surface of rubber sheets and may serve as a safer and more environmentally friendly alternative to commercial acid coagulants. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

14 pages, 3604 KB  
Article
Extraction Process Research and Characterization of Microcrystalline Cellulose Derived from Bamboo (Phyllostachys edulis (Carrière) J. Houz.) Fibers
by Zhu Liu, Zhongwei Wang, Shoulu Yang, Ning Ji and Dan Li
Polymers 2025, 17(9), 1143; https://doi.org/10.3390/polym17091143 - 23 Apr 2025
Viewed by 1573
Abstract
Microcrystalline cellulose (MCC) possesses important attributes, including high crystallinity, a large surface area, excellent mechanical strength, chemical stability, and biodegradability. This study aims to research MCC extraction from bamboo (Phyllostachys edulis (Carrière) J. Houz.) fiber by assessing the impact of key processing [...] Read more.
Microcrystalline cellulose (MCC) possesses important attributes, including high crystallinity, a large surface area, excellent mechanical strength, chemical stability, and biodegradability. This study aims to research MCC extraction from bamboo (Phyllostachys edulis (Carrière) J. Houz.) fiber by assessing the impact of key processing variables such as acid concentration, temperature, and hydrolysis duration. Experimental results indicate that hydrolysis time and hydrochloric acid (HCl) concentration significantly influence yield. After evaluating the effects of various hydrolysis conditions, the optimal parameters were determined to be a 2.0 M HCl concentration, 90 °C, and 10 min of reaction time. The MCC produced under optimal conditions displayed improved crystallinity (77.2%) while retaining functional groups similar to those found in raw bamboo. Morphological analysis revealed an irregular rod-like shape with rough surfaces. This optimized hydrolysis process offers a viable approach for MCC production from raw bamboo and holds potential as a precursor for developing environmentally friendly biodegradable fiber materials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 4992 KB  
Article
Degradation of Acid Orange II by FeOCl/Biochar-Catalyzed Heterogeneous Fenton Oxidation
by Jiren Yuan, Dongao Xie, Dan Li and Feigao Xu
Separations 2025, 12(4), 101; https://doi.org/10.3390/separations12040101 - 21 Apr 2025
Cited by 2 | Viewed by 842
Abstract
In recent years, the rapid development of industry has led to the discharge of large quantities of pollutants, including harmful dyes, into water sources, thereby posing potential threats to human health and the environment. FeOCl and biochar have their own shortcomings as a [...] Read more.
In recent years, the rapid development of industry has led to the discharge of large quantities of pollutants, including harmful dyes, into water sources, thereby posing potential threats to human health and the environment. FeOCl and biochar have their own shortcomings as a mediator in the heterogeneous Fenton process. To make both materials useful, FeOCl supported on bamboo biochar (FeOCl/BC) was prepared by calcination using FeCl3·6H2O and bamboo powder as raw materials, and the composite’s catalytic activities were explored with acid orange II (AO-II) as the target pollutant. The degradation efficiency of FeOCl/BC composites on AO-II was determined by testing the mass ratio of FeOCl and BC, initial pH, temperature, H2O2 concentration, catalyst addition, addition of coexisting inorganic anions, and natural organic matter. The addition of biochar to FeOCl increased the activation of H2O2 to generate •OH for the removal of AO-II and accelerated the cycle of Fe3+/Fe2+. The removal rate of AO-II by the Fe1C0.2 composite was 97.1% when the mass ratio of FeOCl and BC was 1:0.2 (Fe1C0.2), which was higher than that of the pure components (FeOCl or BC) at pH = 6.1. Moreover, after five reuses, the Fe1C0.2 composite still showed high degradation activity for AO-II, with 83.3% degradation and low activity loss. The capture experiments on the active material showed that the removal of AO-II by the Fe1C0.2 composite was mainly dominated by •OH; however, •O2 and h+ played minor roles. The synthesized Fe1C0.2 composite could be applied for organic contaminants such as AO-II with high removal efficiency. Full article
(This article belongs to the Special Issue Advances in Photocatalysis for Environmental Pollutant Removal)
Show Figures

Figure 1

29 pages, 5924 KB  
Article
Investigation of the Flexural and Tensile Properties of Hybrid Polyester Composites Reinforced with Bamboo Fibers and Red Mud Waste
by Alessandro José Gomes dos Santos, Maurício Maia Ribeiro, Alessandro de Castro Corrêa, Jean da Silva Rodrigues, Douglas Santos Silva, Raí Felipe Pereira Junio and Sergio Neves Monteiro
Polymers 2025, 17(8), 1060; https://doi.org/10.3390/polym17081060 - 15 Apr 2025
Cited by 2 | Viewed by 855
Abstract
This article discusses research on utilizing natural fibers and red mud waste as eco-friendly alternatives in the production of polymer matrix composites. In this study, composites of isophthalic unsaturated polyester matrix were produced by combining bamboo fibers (Bambusa vulgaris) and red [...] Read more.
This article discusses research on utilizing natural fibers and red mud waste as eco-friendly alternatives in the production of polymer matrix composites. In this study, composites of isophthalic unsaturated polyester matrix were produced by combining bamboo fibers (Bambusa vulgaris) and red mud waste. The red mud waste utilized had a particle size of 50–100 mesh, and the fibers measured 15 mm and 30 mm in length, distributed randomly throughout the matrix. Bamboo fibers were utilized in their raw form and underwent treatment with NaOH (5% for 2 h). The composites underwent mechanical assessment via flexural and tensile testing. The mechanical properties measured were analyzed using analysis of variance (ANOVA) and Tukey’s test. The fracture surfaces of the composites were examined using Scanning Electron Microscopy (SEM). Composites featuring 30 mm long treated fibers and 30% red mud exhibited improved flexural strength (124.71 MPa), along with a deformation of 2.16 mm and a flexural modulus of 15.79 GPa. Tensile tests revealed that incorporating red mud waste significantly enhanced the tensile strength by 68% (15BTRMW10) compared to neat polyester. ANOVA confirmed the dependability of the findings, emphasizing the viability of producing hybrid composites from red mud waste and bamboo fiber. Full article
(This article belongs to the Special Issue Biobased Polymers and Its Composites)
Show Figures

Figure 1

16 pages, 8102 KB  
Article
Co-Production of Furfural, Xylo-Oligosaccharides, and Reducing Sugars from Waste Yellow Bamboo Through the Solid Acid-Assisted Hydrothermal Pretreatment
by Dan Yang, Qizhen Yang, Ruiqing Yang, Yifeng Zhou and Yucai He
Catalysts 2025, 15(4), 325; https://doi.org/10.3390/catal15040325 - 28 Mar 2025
Cited by 2 | Viewed by 839
Abstract
Lignocellulosic waste biomass, a versatile natural resource derived from plants, has gained significant attention for its potential in the sustainable production of biobased chemicals. Furfural (FAL), xylo-oligosaccharides (XOSs), and reducing sugars are important platform chemicals, which can be obtained through the valorization of [...] Read more.
Lignocellulosic waste biomass, a versatile natural resource derived from plants, has gained significant attention for its potential in the sustainable production of biobased chemicals. Furfural (FAL), xylo-oligosaccharides (XOSs), and reducing sugars are important platform chemicals, which can be obtained through the valorization of lignocellulosic solid biomass in a green and sustainable way. Waste yellow bamboo (YB) is one kind of abundant, inexpensive, and renewable lignocellulosic biomass resource. In order to improve the high-value utilization rate of raw YB, biochar-based solid acid catalyst (AT-Sn-YB) was utilized to assist the hydrothermal pretreatment for the valorization of YB in water. Under the optimal reaction conditions (200 °C, 60 min, and AT-Sn-YB dosage of 5.4 wt%), the FAL yield reached 60.8%, and 2.5 g/L of XOSs was obtained in the pretreatment system. It was observed that the surface structure of YB became rough and loose, exposing a significant number of pores. The accessibility increased from 101.8 mg/g to 352.6 mg/g after combined treatment. The surface area and hydrophobicity of lignin were 70.7 m2/g and 2.5 L/g, respectively, which were significantly lower than those of untreated YB (195.4 m2/g and 4.1 L/g, respectively). The YB solid residues obtained after treatment were subjected to enzymatic saccharification, achieving an enzymatic hydrolysis efficiency of 47.9%. Therefore, the hydrothermal pretreatment assisted by the AT-Sn-YB catalyst shows potential application value in FAL production and bamboo utilization, providing important references for other biomass materials. Full article
(This article belongs to the Special Issue Waste-to-Resources Through Catalysis in Green and Sustainable Way)
Show Figures

Figure 1

24 pages, 8665 KB  
Article
iBamboo: Proposing a New Digital Workflow to Enhance the Design Possibilities of Irregular Bamboo Materials—From Scanning to Discrete to Topological
by Tiantian Lo, Kenan Sun, Yuting Chen, Gerhard Bruyns and Daniel Elkin
Electronics 2025, 14(6), 1116; https://doi.org/10.3390/electronics14061116 - 12 Mar 2025
Viewed by 1694
Abstract
Raw bamboo, a biomass building material with ecological degradability and rapid growth, is crucial for promoting a circular economy and sustainable environments. However, its non-standard nature limits standardized design and mass production. To overcome this, our study introduces a modular bamboo design workflow [...] Read more.
Raw bamboo, a biomass building material with ecological degradability and rapid growth, is crucial for promoting a circular economy and sustainable environments. However, its non-standard nature limits standardized design and mass production. To overcome this, our study introduces a modular bamboo design workflow utilizing digital design technology to address geometric variability. The workflow incorporates 3D scanning to convert raw bamboo forms into precise geometric data, analyze their geometric parameters and connection methods for modular design, and apply discrete–topological shape-finding and aggregation for iterative optimization in batch production. We explore how XR assists in visualizing bamboo furniture designs, the benefits of 3D scanning, discrete design principles, and strategies for material integration. Our methodology includes material analysis, form finding, optimization, and a parametric workflow to enhance adaptability and innovation. The process covers 3D scanning raw bamboo, designing discrete units and connection rules, and aggregating units via topological optimization. This study highlights how modern digital technologies and innovative methodologies can enhance bamboo furniture design. These approaches promote more effective and diverse solutions while addressing the inherent limitations of the material. Full article
Show Figures

Figure 1

30 pages, 17875 KB  
Article
Development and Characterization of Novel Hybrid Particleboard Made from Several Non-Wood Lignocellulosic Materials
by Fazilla Oktaviani Tarigan, Luthfi Hakim, Agus Purwoko, Tito Sucipto, Halimatuddahliana Nasution, Widya Fatriasari, Muhammad Adly Rahandi Lubis, Jajang Sutiawan, Mohammad Irfan Bakhsi, Nam-Hun Kim, Petar Antov, Seng Hua Lee, Rangabhashiyam Selvasembian, Mohd Hazwan Hussin, Manggar Arum Aristri and Apri Heri Iswanto
Polymers 2025, 17(4), 512; https://doi.org/10.3390/polym17040512 - 16 Feb 2025
Cited by 3 | Viewed by 1796
Abstract
The green transition trend in the wood-based panel industry aims to reduce environmental impact and waste production, and it is a viable approach to meet the increasing global demand for wood and wood-based materials as roundwood availability decreases, necessitating the development of composite [...] Read more.
The green transition trend in the wood-based panel industry aims to reduce environmental impact and waste production, and it is a viable approach to meet the increasing global demand for wood and wood-based materials as roundwood availability decreases, necessitating the development of composite products as alternatives to non-wood lignocellulosic raw materials. As a result, the purpose of this study is to examine and assess the physical, mechanical, and acoustic properties of particleboard manufactured from non-wood lignocellulosic biomass. The core layer was composed of non-wood lignocelluloses (banana stem, rice straw, coconut fiber, sugarcane bagasse, and fibrous vascular bundles (FVB) from snakefruit fronds), whereas the surface was made of belangke bamboo (Gigantochloa pruriens) and wood. The chemical characteristics, fiber dimensions and derivatives, and contact angles of non-wood lignocellulosic materials were investigated. The contact angle, which ranged from 44.57 to 62.37 degrees, was measured to determine the wettability of these materials toward adhesives. Hybrid particleboard (HPb) or sandwich particleboard (SPb) samples of 25 cm × 25 cm with a target density of 0.75 g/cm3 and a thickness of 1 cm were manufactured using 7% isocyanate adhesive (based on raw material oven dry weight). The physical parameters of the particleboard, including density, water content, water absorption (WA), and thickness swelling (TS), ranged from 0.47 to 0.79 g/cm3, 6.57 to 13.78%, 16.46 to 103.51%, and 3.38 to 39.91%, respectively. Furthermore, the mechanical properties of the particleboard, including the modulus of elasticity (MOE), bending strength (MOR), and internal bond strength (IB), varied from 0.39 to 7.34 GPa, 6.52 to 87.79 MPa, and 0.03 to 0.69 MPa, respectively. On the basis of these findings, the use of non-wood lignocellulosic raw materials represents a viable alternative for the production of high-performance particleboard. Full article
(This article belongs to the Special Issue New Challenges in Wood and Wood-Based Materials III)
Show Figures

Figure 1

Back to TopTop