Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = seasonal closure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 12557 KB  
Article
The Atmospheric Water Cycle over South America as Seen in the New Generation of Global Reanalyses
by Mário Francisco Leal de Quadro, Dirceu Luís Herdies, Ernesto Hugo Berbery, Caroline Bresciani, Fabrício Daniel dos Santos Silva, Helber Barros Gomes, Michel Nobre Muza, Cássio Aurélio Suski and Diego Portalanza
Hydrology 2025, 12(12), 316; https://doi.org/10.3390/hydrology12120316 - 29 Nov 2025
Viewed by 66
Abstract
We assess precipitation and key atmospheric water-cycle terms over South America (SA) in three modern reanalyses—MERRA-2, ERA5, and CFSR/CFSv2—during 1980–2021. Two observation-based datasets (CPC Unified Gauge and MSWEP-V2) serve as references to bracket observational uncertainty. Diagnostics include regional means for the Tropical and [...] Read more.
We assess precipitation and key atmospheric water-cycle terms over South America (SA) in three modern reanalyses—MERRA-2, ERA5, and CFSR/CFSv2—during 1980–2021. Two observation-based datasets (CPC Unified Gauge and MSWEP-V2) serve as references to bracket observational uncertainty. Diagnostics include regional means for the Tropical and Subtropical South Atlantic Convergence Zone (TSACZ, SSACZ) and southeastern South America (SESA), Taylor-diagram skill metrics, and a vertically integrated moisture-budget residual as a proxy for closure. All products reproduce the large-scale spatial and seasonal patterns, but disagreements persist over the Andes and parts of the central/northern Amazon. Relative to CPC/MSWEP-V2, MERRA-2 exhibits the smallest precipitation biases and the highest correlations, followed by ERA5; CFSR/CFSv2 shows a warm-season wet bias. Moisture-budget residuals are smallest in MERRA-2, moderate in ERA5, and largest in CFSR/CFSv2, with clear regional and seasonal dependence. These results document improvements in the new generation of reanalyses while highlighting persistent challenges in gauge-sparse and complex-orography regions. For hydroclimate applications that depend on internally consistent P, E, moisture-flux convergence, and runoff, MERRA-2 provides the most coherent depiction among the three, whereas ERA5 is a strong alternative when higher spatial/temporal resolution or dynamical fields are needed and CFSR/CFSv2 should be applied with caution for warm-season precipitation and closure-sensitive analyses. Full article
Show Figures

Figure 1

42 pages, 24279 KB  
Article
Environmental Impacts of Post-Closure Mine Flooding: An Integrated Remote Sensing and Geospatial Analysis of the Olkusz-Pomorzany Mine, Poland
by Artur Guzy
Water 2025, 17(23), 3337; https://doi.org/10.3390/w17233337 - 21 Nov 2025
Viewed by 351
Abstract
Mine closure by flooding initiates hydrogeological changes that affect land stability, soil moisture, and surface ecosystems, further shaped by regional climatic trends that increase pressure on water resources. This study examines the Olkusz–Pomorzany mine (Poland), flooded between 2021 and 2022, focusing on the [...] Read more.
Mine closure by flooding initiates hydrogeological changes that affect land stability, soil moisture, and surface ecosystems, further shaped by regional climatic trends that increase pressure on water resources. This study examines the Olkusz–Pomorzany mine (Poland), flooded between 2021 and 2022, focusing on the links between groundwater rebound, land movement, and environmental transformation after closure. This analysis combines EGMS-based land movement (2018–2023), groundwater levels (2022–2024), meteorological records (1981–2024), and Sentinel-2-derived Normalized Difference Vegetation Index, Normalized Difference Water Index, and Moisture Index time series (2016–2024). Land cover changes were assessed using Sentinel-2 data for 2019–2024. Results show climate-driven subsidence of less than 1 mm/year across the area and a shift to uplift within the mining zone, with maximum groundwater rebound of 103 m in the central depression cone and uplift of up to 3.6 mm/year. Climatic water balance remained negative, with Vertical Water Exchange averaging −11.6 mm/month in 2022–2024. Hydrospectral indices indicate seasonal variability and modest increases in vegetation activity and moisture after flooding. Land cover analysis shows an expansion of surface water and wetlands where historical drainage and rebound overlap. These findings confirm that groundwater recovery is already reshaping surface conditions and highlight the need for integrated monitoring in post-mining areas. Full article
Show Figures

Figure 1

19 pages, 7617 KB  
Article
Retrofitting for Energy Efficiency Improvement Using Kinetic Façades in Residential Buildings: A Case Study from Saudi Arabia
by Taufiq I. Ismail, Godman O. Agbo, Omar S. Asfour, Ahmed Abd El Fattah and Ziad Ashour
Eng 2025, 6(11), 292; https://doi.org/10.3390/eng6110292 - 31 Oct 2025
Viewed by 658
Abstract
Kinetic façades represent a climate-responsive design solution that improves building adaptability by responding to seasonal needs such as daylighting and shading. They offer an attractive retrofit strategy that improves both the esthetics and environmental performance of buildings. This study investigated the integration of [...] Read more.
Kinetic façades represent a climate-responsive design solution that improves building adaptability by responding to seasonal needs such as daylighting and shading. They offer an attractive retrofit strategy that improves both the esthetics and environmental performance of buildings. This study investigated the integration of an origami-inspired kinetic façade into a student dormitory building located in Dhahran, Saudi Arabia. Using numerical simulations, 35 façade configurations were analyzed under varying conditions of façade orientations, closure ratios (from 5% to 95%), and cavity depths (from 20 cm to 100 cm). The findings highlight the critical impact of kinetic façade design characteristics on daylight availability and solar exposure and the required trade-off between these two variables. In this context, this study observed that at higher façade closure ratios, increasing cavity depth could effectively mitigate daylight reduction by promoting reflected daylight penetration inside the cavity. As for heat gains and cooling load reduction, mid-range façade closure, 50 cm in this study, achieved balanced performance across the three examined orientations. However, the southern façade showed slightly higher efficiency compared to the eastern and western façades, which achieved lower cooling reductions and showed a similar UDI compromise. Thus, a dynamic façade operation is recommended, where higher closure ratios could be applied during peak solar hours on the east in the morning and the west in the afternoon to maximize cooling savings, while moderate closure ratios can be maintained on the south to preserve daylight. Future work should incorporate real-time climatic data and smart control technologies to further optimize kinetic façade performance. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

31 pages, 1216 KB  
Article
Tracking Epidermal Cortisol and Oxytocin in Managed Bottlenose Dolphins as Potential Non-Invasive Physiological Welfare Indicators
by Clara Agustí, Oriol Talló-Parra, Enrique Tejero-Caballo, Daniel Garcia-Parraga, Marina López-Arjona, Teresa Álvaro-Álvarez, José Joaquín-Cerón and Xavier Manteca
Animals 2025, 15(17), 2628; https://doi.org/10.3390/ani15172628 - 8 Sep 2025
Viewed by 1340
Abstract
Growing concern over cetacean welfare has highlighted the need for rigorous, science-based assessment methods. Within this context, epidermal cortisol (ECC) and oxytocin (EOC) concentrations have emerged as potentially valuable physiological indicators. In this study, we first validated the analytical measurement of ECC and [...] Read more.
Growing concern over cetacean welfare has highlighted the need for rigorous, science-based assessment methods. Within this context, epidermal cortisol (ECC) and oxytocin (EOC) concentrations have emerged as potentially valuable physiological indicators. In this study, we first validated the analytical measurement of ECC and EOC in bottlenose dolphins (Tursiops truncatus) using AlphaLISA assays. Subsequently, weekly ECC and EOC levels were measured over an extended period in five managed dolphins and analyzed alongside aggregated environmental and welfare-related variables, using various time lags to account for delays between physiological activity and hormone deposition in the epidermis. ECC was negatively associated with mild weight loss and diazepam administration, exhibiting seasonal variability. In contrast, EOC was negatively associated with negative welfare indicators and COVID-19 park closures but positively associated with diazepam administration and peak visitor seasons, also showing seasonal variability. However, the interpretation of EOC remains complex due to a limited understanding of the cetacean oxytocin system and its dual role in positive and negative affective states. Overall, ECC and EOC show promise as non-invasive biomarkers for monitoring long-term welfare changes in cetaceans, although further research is necessary to validate these biomarkers across broader populations and contexts and to clarify their temporal dynamics in the epidermis. Full article
(This article belongs to the Special Issue Best Practices for Zoo Animal Welfare Management)
Show Figures

Figure 1

16 pages, 2211 KB  
Article
Optimizing Season-Specific MET for Thermal Comfort Under Open and Closed Urban Forest Canopies
by Doyun Song, Sieon Kim, Minseo Park, Choyun Kim, Chorong Song, Bum-Jin Park, Dawou Joung and Geonwoo Kim
Forests 2025, 16(9), 1424; https://doi.org/10.3390/f16091424 - 5 Sep 2025
Viewed by 611
Abstract
Urban heat island conditions increase heat exposure and constrain safe outdoor activities. Urban forests can mitigate thermal loads; however, stand morphology can produce divergent microclimates. We aimed to quantify how stand type (open vs. closed), season (spring, summer, fall), and activity intensity (MET [...] Read more.
Urban heat island conditions increase heat exposure and constrain safe outdoor activities. Urban forests can mitigate thermal loads; however, stand morphology can produce divergent microclimates. We aimed to quantify how stand type (open vs. closed), season (spring, summer, fall), and activity intensity (MET 1.0–6.0) jointly modulate thermal comfort and to identify season-specific optimal MET levels in an urban forest in Daejeon, Republic of Korea. We combined site-specific 3D canopy modeling with hourly Predicted Mean Vote (PMV) simulations driven by AMOS tower data (2023–2024). Comfort was defined as |PMV| ≤ 0.5. Analyses included seasonal means, Cliff’s delta, and generalized estimating equation logistic models to estimate the SITE × SEASON × MET interactions and predict comfort probabilities. Across most seasons and MET levels, C1 was more comfortable than C2. However, at MET 1.0 in summer, the pattern was reversed, which may reflect the canopy shading and associated decreases in mean radiant temperature (MRT) of C2. Comfort peaked at MET 2.0–3.0 and declined sharply at ≥4.5 MET. The three-way SITE × SEASON × MET interaction was significant (p < 0.001). The season-specific optimal MET values under our boundary conditions were 3.0 (spring), 2.0–2.5 (summer), and 3.0 (fall). These simulation-based PMV-centered findings represent model-informed tendencies. Nevertheless, they support actionable guidance: prioritize high-closure stands for low-intensity summer use, leverage open stands for low-to-moderate activities in spring and fall, and avoid high-intensity programs during warm periods. These results inform the programming and design of urban-forest healing and recreation by matching stand type and activity intensity to season to maximize comfortable hours. Full article
(This article belongs to the Special Issue Forest and Human Well-Being)
Show Figures

Figure 1

23 pages, 2476 KB  
Article
Exploring Life History Traits and Catch Composition of Red Mullet (Mullus barbatus, L. 1758) in the Commercial Trawl Fisheries of the Eastern Aegean Sea
by Ilker Aydin, Alexandros Theocharis and Dimitris Klaoudatos
Water 2025, 17(17), 2540; https://doi.org/10.3390/w17172540 - 27 Aug 2025
Viewed by 1180
Abstract
The red mullet (Mullus barbatus, Linnaeus 1758) is a commercially vital demersal species in the Eastern Aegean Sea, yet it is subjected to high fishing pressure. This study assesses the population dynamics, growth, and exploitation status of M. barbatus based on [...] Read more.
The red mullet (Mullus barbatus, Linnaeus 1758) is a commercially vital demersal species in the Eastern Aegean Sea, yet it is subjected to high fishing pressure. This study assesses the population dynamics, growth, and exploitation status of M. barbatus based on 64 commercial trawl surveys conducted between 2022 and 2024 in the Lesvos–Ayvalik region. Length-frequency data identified eight age classes, with dominant cohorts at ages 3 (26.4%) and 5 (25%). The von Bertalanffy growth model estimated an asymptotic length (L∞) of 27.9 cm and growth coefficient (k = 0.21 year−1), indicating a slow growth rate. The estimated fishing mortality (F = 0.74) exceeded natural mortality (M = 0.44), producing an exploitation rate (E = 0.63) that indicates overfishing. The length at 50% capture (LC50 = 10.92 cm) was substantially below the optimal biomass length (Le = 16.6 cm), highlighting gear selectivity issues. Net benefit analysis revealed optimal fishing at 50–85 m depth and during December. These findings underscore the urgent need for improved management, including gear modifications, seasonal closures, and reduced effort, to restore sustainability and protect juvenile fish in the Eastern Aegean trawl fishery. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

21 pages, 7111 KB  
Article
Seasonal Variation in Energy Balance, Evapotranspiration and Net Ecosystem Production in a Desert Ecosystem of Dengkou, Inner Mongolia, China
by Muhammad Zain Ul Abidin, Huijie Xiao, Sanaullah Magsi, Fang Hongxin, Komal Muskan, Phuocthoi Hoang and Muhammad Azher Hassan
Water 2025, 17(15), 2307; https://doi.org/10.3390/w17152307 - 3 Aug 2025
Viewed by 986
Abstract
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes [...] Read more.
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes interact in one of the world’s most water-limited environments. This arid research area received an average of 109.35 mm per annum precipitation over the studied period, classifying the region as a typical arid ecosystem. Seasonal patterns were observed in daily air temperature, with extremes ranging from −20.6 °C to 29.6 °C. Temporal variations in sensible heat flux (H), latent heat flux (LE), and net radiation (Rn) peaked during summer season. The average ground heat flux (G) was mostly positive throughout the observation period, indicating heat transmission from atmosphere to soil, but showed negative values during the winter season. The energy balance ratio for the studied period was in the range of 0.61 to 0.80, indicating challenges in achieving energy closure and ecological shifts. ET exhibited two annual peaks influenced by vegetation growth and climate change, with annual ET exceeding annual precipitation, except in 2021. Net ecosystem production (NEP) from 2019 to 2020 revealed that the Dengkou desert were a net source of carbon, indicating the carbon loss from the ecosystem. In 2021, the Dengkou ecosystem shifted to become a net carbon sink, effectively sequestrating carbon. However, this was sharply reversed in 2022, resulting in a significant net release of carbon. The study findings highlight the complex interactions between energy balance components, ET, and NEP in desert ecosystems, providing insights into sustainable water management and carbon neutrality strategies in arid regions under climate change effect. Full article
(This article belongs to the Special Issue The Observation and Modeling of Surface Hydrological Factors)
Show Figures

Graphical abstract

15 pages, 4556 KB  
Article
Coordinated Regulation of Photosynthesis, Stomatal Traits, and Hormonal Dynamics in Camellia oleifera During Drought and Rehydration
by Linqing Cao, Chao Yan, Tieding He, Qiuping Zhong, Yaqi Yuan and Lixian Cao
Biology 2025, 14(8), 965; https://doi.org/10.3390/biology14080965 - 1 Aug 2025
Cited by 1 | Viewed by 750
Abstract
Camellia oleifera, a woody oilseed species endemic to China, often experiences growth constraints due to seasonal drought. This study investigates the coordinated regulation of photosynthetic traits, stomatal behavior, and hormone responses during drought–rehydration cycles in two cultivars with contrasting drought resistance: ‘CL53’ [...] Read more.
Camellia oleifera, a woody oilseed species endemic to China, often experiences growth constraints due to seasonal drought. This study investigates the coordinated regulation of photosynthetic traits, stomatal behavior, and hormone responses during drought–rehydration cycles in two cultivars with contrasting drought resistance: ‘CL53’ (tolerant) and ‘CL40’ (sensitive). Photosynthetic inhibition resulted from both stomatal and non-stomatal limitations, with cultivar-specific differences. After 28 days of drought, the net photosynthetic rate (Pn) declined by 26.6% in CL53 and 32.6% in CL40. A stable intercellular CO2 concentration (Ci) in CL53 indicated superior mesophyll integrity and antioxidant capacity. CL53 showed rapid Pn recovery and photosynthetic compensation post-rehydration, in contrast to CL40. Drought triggered extensive stomatal closure; >98% reopened upon rehydration, though the total stomatal pore area remained reduced. Abscisic acid (ABA) accumulation was greater in CL40, contributing to stomatal closure and Pn suppression. CL53 exhibited faster ABA degradation and gibberellin (GA3) recovery, promoting photosynthetic restoration. ABA negatively correlated with Pn, transpiration rate (Tr), stomatal conductance (Gs), and Ci, but positively with stomatal limitation (Ls). Water use efficiency (WUE) displayed a parabolic response to ABA, differing by cultivar. This integrative analysis highlights a coordinated photosynthesis–stomata–hormone network underlying drought adaptation and informs selection strategies for drought-resilient cultivars and precision irrigation. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

14 pages, 728 KB  
Article
Groundwater Quality Analysis: Assessing the Impact of a Closed Landfill—A Case Study on Physico-Chemical and Microplastic Contaminants
by Grzegorz Przydatek, Józef Ciuła, Narcis Barsan, Diana Mirila and Emilian Mosnegutu
Appl. Sci. 2025, 15(15), 8223; https://doi.org/10.3390/app15158223 - 24 Jul 2025
Cited by 3 | Viewed by 1490
Abstract
In the context of increasing concern over long-term environmental impacts of closed landfill sites, this study investigates the composition of groundwater and leachate at a municipal waste landfill in southwestern Poland, two decades after its closure. The research, conducted in 2023, aimed to [...] Read more.
In the context of increasing concern over long-term environmental impacts of closed landfill sites, this study investigates the composition of groundwater and leachate at a municipal waste landfill in southwestern Poland, two decades after its closure. The research, conducted in 2023, aimed to assess groundwater quality using 11 physico-chemical and 13 microplastic indicators. Groundwater and leachate samples were collected seasonally to assess of groundwater quality around landfill, including presence of heavy metals (Cd, Cr6+, Cu, Pb), PAHs and TOC, and microplastics. The results revealed persistent environmental degradation, with elevated concentrations of total organic carbon (24.8 mg/L) and cadmium (0.0211 mg/L), particularly in the second half of the year. Additionally, PET microplastics were detected in correlation with increased precipitation and leachate generation. These findings indicate that pollutants continue to migrate from the waste deposit into the surrounding groundwater, with seasonal patterns amplifying their presence. The study confirms that even decades after closure, municipal landfills can remain significant sources of both chemical and microplastic contamination, underlining the need for long-term monitoring and remediation strategies to protect groundwater resources. Full article
Show Figures

Figure 1

21 pages, 3305 KB  
Article
Unlocking Potato Phenology: Harnessing Sentinel-1 and Sentinel-2 Synergy for Precise Crop Stage Detection
by Diego Gomez, Pablo Salvador, Jorge Gil and Juan Fernando Rodrigo
Remote Sens. 2025, 17(14), 2336; https://doi.org/10.3390/rs17142336 - 8 Jul 2025
Cited by 2 | Viewed by 1373
Abstract
Global challenges such as climate change and population growth require improvements in crop monitoring models. To address these issues, this study advances the identification of potato crop phenological stages using satellite remote sensing, a field where cereals have been the primary focus. We [...] Read more.
Global challenges such as climate change and population growth require improvements in crop monitoring models. To address these issues, this study advances the identification of potato crop phenological stages using satellite remote sensing, a field where cereals have been the primary focus. We introduce a methodology using Sentinel-1 (S1) and Sentinel-2 (S2) time series data to pinpoint critical phenological stages—emergence, canopy closure, flowering, senescence onset, and harvest timing—at the field scale. Our approach utilizes analysis of NDVI, fAPAR, and IRECI2 from S2, alongside VH and VV polarizations from S1, informed by domain knowledge of the spectral and morphological responses of potato crops. We propose the integration of NDVI and VH indices, NDVI_VH, to improve stage detection accuracy. Comparative analysis with ground-observed stages validated the method’s effectiveness, with NDVI proving to be one of the most informative indices, achieving RMSEs of 12 and 14 days for emergence and closure, and 17 days for the onset of senescence. The integrated NDVI_VH approach complemented NDVI, particularly in harvest and flowering stages, where VH enhanced accuracy, achieving an overall R2 value of 0.80. The study demonstrates the potential of combining SAR and optical data for post-season crop phenology analysis, providing insights that can inform the development of new methods and strategies to enhance on-season crop monitoring and yield forecasting. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Farming and Crop Phenology)
Show Figures

Figure 1

20 pages, 1419 KB  
Article
Evaluation of Greenhouse Gas-Flux-Determination Models and Calculation in Southeast Arkansas Cotton Production
by Cassandra Seuferling, Kristofor Brye, Diego Della Lunga, Jonathan Brye, Michael Daniels, Lisa Wood and Kelsey Greub
AgriEngineering 2025, 7(7), 213; https://doi.org/10.3390/agriengineering7070213 - 2 Jul 2025
Cited by 2 | Viewed by 861
Abstract
Greenhouse gas (GHG) emissions evaluations from agroecosystems are critical, particularly as technology improves. Consistent GHG measurement methods are essential to the evaluation of GHG emissions. The objective of the study was to evaluate potential differences in gas-flux-determination (GFD) options and carbon dioxide (CO [...] Read more.
Greenhouse gas (GHG) emissions evaluations from agroecosystems are critical, particularly as technology improves. Consistent GHG measurement methods are essential to the evaluation of GHG emissions. The objective of the study was to evaluate potential differences in gas-flux-determination (GFD) options and carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes and growing-season-long emissions estimates from furrow-irrigated cotton (Gossypium hirsutum) in southeast Arkansas. Four GFD methods were evaluated [i.e., linear (L) or exponential (E) regression models, with negative fluxes (WNF) included in the dataset or replacing negative fluxes (RNF)] over the 2024 growing season using a LI-COR field-portable chamber and gas analyzers. Exponential regression models were influenced by abnormal CO2 and N2O gas concentration data points, indicating the use of caution with E models. Season-long CH4 emissions differed (p < 0.05) between the WNF (−0.51 kg ha−1 season−1 for L and−0.54 kg ha−1 season−1 for E) and RNF (0.01 kg ha−1 season−1 for L and E) GFD methods, concluding that RNF options over-estimate CH4 emissions. Gas concentration measurements following chamber closure should remain under 300 s, with one concentration measurement obtained per second. The choice of GFD method needs careful consideration to result in accurate GHG fluxes and season-long emission estimates. Full article
Show Figures

Figure 1

19 pages, 8913 KB  
Article
The Effects of Nearshore Forest Thinning on Upland Habitat Use by Pond-Breeding Amphibians in a Montane Coniferous Forest
by Andrew McIntyre, Karen L. Pope, Adam K. Cummings, Shawn J. Wheelock and Jonah Piovia-Scott
Forests 2025, 16(7), 1059; https://doi.org/10.3390/f16071059 - 26 Jun 2025
Viewed by 683
Abstract
Forest thinning treatments are expanding in scope and scale to counter increasing wildfire risk. Such treatments are being applied in aquatic-adjacent forests that provide a critical habitat for sensitive amphibians, yet little is known about the impact of these treatments. We used a [...] Read more.
Forest thinning treatments are expanding in scope and scale to counter increasing wildfire risk. Such treatments are being applied in aquatic-adjacent forests that provide a critical habitat for sensitive amphibians, yet little is known about the impact of these treatments. We used a 5-year (2017–2021) before–after–control–impact experiment to investigate the effects of hand-thinning on pond-breeding amphibian activity around an ephemeral lake in the southern Cascade Range of California. We found that hand-thinning had no detectable negative effects on long-toed salamanders (Ambystoma macrodactylum) and western toads (Anaxyrus boreas) and significantly increased adult Sierran chorus frog (Pseudacris sierra) activity (χ2 = 4.70, df = 1, p = 0.030) in upland habitats. These results are consistent with pre-treatment habitat associations—chorus frog activity was higher when tree density was lower, and the treatment reduced tree density; adult long-toed salamanders and western toads were positively associated with canopy closure, which was not significantly reduced by the treatment. In addition, late-season surface activity of adult long-toed salamanders and chorus frogs was strongly associated with fall rain events when they tend to cluster very near the lake edge. Hand-thinning in aquatic-adjacent habitat may have minimal negative impacts, and even some positive impacts, on pond-breeding amphibians in coniferous forests, especially if treatments are not implemented during periods of high amphibian activity and do not substantially alter canopy closure. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

20 pages, 1682 KB  
Article
Elasmobranch Species Composition in Otter Trawl Fisheries (Eastern Aegean Sea)
by İlker Aydin, Alexandros Theocharis, Sercan Yapici and Dimitris Klaoudatos
Oceans 2025, 6(2), 34; https://doi.org/10.3390/oceans6020034 - 6 Jun 2025
Viewed by 1402
Abstract
The Eastern Aegean Sea hosts a diverse assemblage of elasmobranchs, many of which are vulnerable or endangered. This study presents a fishery-independent assessment of species composition, catch characteristics, and spatial patterns in bottom trawl fisheries between Lesvos Island and Ayvalik. A total of [...] Read more.
The Eastern Aegean Sea hosts a diverse assemblage of elasmobranchs, many of which are vulnerable or endangered. This study presents a fishery-independent assessment of species composition, catch characteristics, and spatial patterns in bottom trawl fisheries between Lesvos Island and Ayvalik. A total of 48 surveys were conducted between September 2022 and October 2024, identifying nine elasmobranch species, with Scyliorhinus canicula (small-spotted catshark) and Mustelus mustelus (common smooth-hound) dominating the catch. Biological parameters, sex ratios, and condition upon capture and release were recorded, while catch per unit effort (CPUE) and diversity indices were used to evaluate temporal patterns. The survival probability was negatively affected by the trawl duration and elevated temperatures, emphasizing the need for mitigation measures. Spatial models revealed high-density zones that likely function as foraging or nursery grounds. Seasonal shifts in community composition were also evident. Many non-commercial species were discarded irrespective of their size or condition. These findings underscore the ecological importance of this understudied region and support the need for spatially explicit, species-specific management strategies, including gear selectivity improvements, seasonal closures, and Electronic Monitoring. The study offers a critical baseline for enhancing the sustainability of elasmobranch populations in the Eastern Mediterranean. Full article
Show Figures

Figure 1

19 pages, 8176 KB  
Article
Interference of Shallow Landslides in Overconsolidated Clays on the Functionality of an Important Internal Road Infrastructure
by Maurizio Ziccarelli
Geosciences 2025, 15(6), 209; https://doi.org/10.3390/geosciences15060209 - 3 Jun 2025
Viewed by 784
Abstract
The paper presents a case study on the impact of a shallow landslide in overconsolidated clays, which was triggered during the winter of 2004–2005 due to exceptionally high pore pressures, on the operativity and serviceability of a key road artery in Sicily. During [...] Read more.
The paper presents a case study on the impact of a shallow landslide in overconsolidated clays, which was triggered during the winter of 2004–2005 due to exceptionally high pore pressures, on the operativity and serviceability of a key road artery in Sicily. During the period from 2004 to 2021, the landslide experienced several reactivations, particularly during the winter months when increased rainfall led to rising pore water pressures. These recurrent events resulted in temporary road closures and continuous restoration efforts, causing significant inconvenience for local communities and substantial economic losses for commercial, tourism, and agricultural activities in the area. In 2018, a comprehensive study was launched to reconstruct the detailed geotechnical model of the landslide, analysing its mechanical and kinematic characteristics, pore pressure regime, the depth and geometry of the sliding surface, and the causes of the landslide. The study indicates that the primary causes of both the initial landslide and its subsequent reactivations were the poor mechanical properties of the involved soils and seasonal fluctuations in pore water pressures. To ensure long-term stabilisation, the most suitable interventions were identified as the permanent reduction of pore pressures through the installation of drainage trenches and the construction of a road embankment using gabions, which also serve as drainage structures. These measures are highly effective, relatively cost-efficient, easy to implement, and environmentally sustainable. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

21 pages, 2544 KB  
Article
A Sustainability Analysis of the Small Demersal Fish Used in the Surimi Industry in Indonesia Using the Length-Based Spawning Potential Ratio
by Kuncoro Catur Nugroho, Nimmi Zulbainarni, Zenal Asikin, Slamet Budijanto and Marimin Marimin
Sustainability 2025, 17(11), 4827; https://doi.org/10.3390/su17114827 - 23 May 2025
Viewed by 1948
Abstract
Indonesia’s surimi industry is increasingly relying on small demersal fish stocks, whose biological sustainability remains critically underexamined. This study evaluates four key species—Priacanthus tayenus, Pentaprion longimanus, Upeneus sulphureus, and Nemipterus tambuloides—using the length-based spawning potential ratio (LB-SPR) method [...] Read more.
Indonesia’s surimi industry is increasingly relying on small demersal fish stocks, whose biological sustainability remains critically underexamined. This study evaluates four key species—Priacanthus tayenus, Pentaprion longimanus, Upeneus sulphureus, and Nemipterus tambuloides—using the length-based spawning potential ratio (LB-SPR) method across 66,674 samples. The results reveal acute reproductive depletion, whereby the SPR values for three species fall below the 20% viability threshold, and over 70% of specimens are harvested before maturity. These patterns signal severe recruitment overfishing, with implications for ecosystem resilience and the structural stability of surimi supply chains. Given the factory-based sampling bias, the findings likely represent a worst-case scenario for the surimi-directed stock component within Indonesia’s FMA712. Strategic reforms—particularly minimum size limits, seasonal closures, and broader multisite assessments—are urgently required in order to realign fishing practices with ecological thresholds and safeguard coastal livelihoods that are dependent on this industrial value chain. Full article
Show Figures

Figure 1

Back to TopTop