Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,178)

Search Parameters:
Keywords = severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2736 KB  
Review
COVID-19 and Lung Cancer Interactions: A Literature Review
by Szabolcs-Attila László, Edith-Simona Ianoși, Anca-Meda Văsieșiu, Mioara Szathmáry, Maria Beatrice Ianoși, Delia-Liana Rachiș, Gabriel Nistor and Gabriela Jimborean
Med. Sci. 2025, 13(4), 295; https://doi.org/10.3390/medsci13040295 - 30 Nov 2025
Abstract
This review aims to discuss the apparent reduction in pulmonary cancer incidence in the general population during and shortly after the COVID-19 pandemic from a biological and pathophysiological mechanistic point of view. While the epidemiological evidence points to a disruption in the early- [...] Read more.
This review aims to discuss the apparent reduction in pulmonary cancer incidence in the general population during and shortly after the COVID-19 pandemic from a biological and pathophysiological mechanistic point of view. While the epidemiological evidence points to a disruption in the early- and mid-stage diagnostic process, which causes a shift to late-stage lung cancer discovery with no impact on its actual prevalence, an alternative hypothesis based on the intersection of viral and cancer biology could have a real effect on lung carcinogenesis as an independent phenomenon. By weaving together population-level trends, mechanistic insights, and translational oncology, we discuss whether the pandemic-associated decline in lung cancer diagnoses reflects primarily a temporary diagnostic artifact or whether it also reveals biologically relevant intersections between SARS-CoV-2 and pulmonary oncogenesis. The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has exerted profound and multifaceted effects on global healthcare systems, altering patterns of disease detection, management, and outcomes across nearly all medical disciplines. These disruptions generated what has been termed a “diagnostic deficit”, producing a backlog of undetected cancers that have only partially been recovered in subsequent years. This phenomenon, sometimes described as a “COVID-19 debt” in oncology, is thought to contribute to excess late-stage diagnoses and potentially worse medium-term survival outcomes. Beyond the disruption of medical systems, the pandemic also raised a more speculative but biologically intriguing question: could SARS-CoV-2 infection itself, through direct or indirect mechanisms, influence lung cancer biology? Our review aims to critically synthesize the evidence across seven domains to address this dual hypothesis. (1) We examine the observed effects of the pandemic on cancer incidence, highlighting global registry and health-system data; (2) we review SARS-CoV-2 infection biology, including viral entry, replication, protein functions, and treatment implications; (3) we summarize the pathogenesis of lung cancer; (4) we explore the role of immune checkpoints in tumor immune evasion, followed by (5) analyses of immune dysregulation in acute infection and (6) in long COVID; and (7) finally, we evaluate proposed oncogenic mechanisms of SARS-CoV-2, integrating molecular virology with cancer immunology. We conclude that the “diagnostic deficit” phenomenon was a reality during and immediately post-pandemic. However, a definitive answer to the questions related to the impact of the infection as an independent phenomenon would require advanced research information covering the biology of the viral infection and lung cancer oncogenesis: processes that are not currently implemented in routine clinical laboratory investigations. Full article
(This article belongs to the Special Issue Feature Papers in Section “Cancer and Cancer-Related Research”)
Show Figures

Figure 1

16 pages, 5604 KB  
Article
Oral Administration of MVA-Vectored Vaccines Induces Robust, Long-Lasting Neutralizing Antibody Responses and Provides Complete Protection Against SARS-CoV-2 in Mice, Minks, and Cats
by Linya Feng, Hong Huo, Yunlei Wang, Lei Shuai, Gongxun Zhong, Zhiyuan Wen, Liyan Peng, Jinying Ge, Jinliang Wang, Chong Wang, Weiye Chen, Xijun He, Xijun Wang and Zhigao Bu
Vaccines 2025, 13(12), 1207; https://doi.org/10.3390/vaccines13121207 - 29 Nov 2025
Viewed by 130
Abstract
Background/Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can naturally infect a broad spectrum of animal species, with cats, minks, and ferrets being highly susceptible. There is a potential risk that infected animals could transmit viruses to humans. Moreover, SARS-CoV-2 continues to evolve [...] Read more.
Background/Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can naturally infect a broad spectrum of animal species, with cats, minks, and ferrets being highly susceptible. There is a potential risk that infected animals could transmit viruses to humans. Moreover, SARS-CoV-2 continues to evolve via mutation and genetic recombination, resulting in the continuous emergence of new variants that have triggered a wave of reinfection. Therefore, safe and effective corona virus disease 2019 (COVID-19) vaccines for animals are still being sought. Methods: We generated three recombinant Modified vaccinia virus Ankara (MVAs) expressing the prefusion-stabilized S proteins, S6P, DS6P, and BA2S6P, targeting the full-length S protein genes of the ancestral, Delta, and Omicron BA.2 strains of SARS-CoV-2. Subsequently, the safety, immunogenicity, and protective efficacy of these MVA-based oral COVID-19 vaccine candidates were assessed in mice, minks, and cats. Results: These recombinant MVAs are safe in mice, minks, and cats. Oral or intramuscular vaccination with rMVA-S6P induced a robust SARS-CoV-2 neutralizing antibody (NA) response and conferred complete protection against the SARS-CoV-2 challenge in mice. Meanwhile, oral or intramuscular administration of these recombinant MVAs in combination induced a potent and durable NA response against homotypic SARS-CoV-2 pseudovirus in mice, minks, and cats, respectively. Conclusions: These findings suggest that the MVA-vectored vaccines are promising oral COVID-19 vaccine candidates for animals, and that the combined vaccination approach is an effective administration strategy for such vaccines. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

12 pages, 1723 KB  
Brief Report
Stimulation of Peripheral Blood Mononuclear Cells with Lactococcus lactis Strain Plasma Elicits Antiviral Effects Against H1N1 and SARS-CoV-2
by Zhao Xuan Low, Owen Woo, Osamu Kanauchi, Pouya Hassandarvish, Vunjia Tiong and Sazaly AbuBakar
Int. J. Mol. Sci. 2025, 26(23), 11573; https://doi.org/10.3390/ijms262311573 - 28 Nov 2025
Viewed by 21
Abstract
Viruses, like influenza and Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remain major causes of upper respiratory tract infections worldwide, with symptoms ranging from asymptomatic to lethal outcomes. While antivirals and vaccines have helped ameliorate disease morbidity and mortality, these infections still pose [...] Read more.
Viruses, like influenza and Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remain major causes of upper respiratory tract infections worldwide, with symptoms ranging from asymptomatic to lethal outcomes. While antivirals and vaccines have helped ameliorate disease morbidity and mortality, these infections still pose significant challenges. Probiotics, including Lactococcus lactis strain plasma (LC-Plasma), have recently shown antiviral effects by activating plasmacytoid dendritic cells (pDCs), though their detailed mechanism remains unclear. In this study, we stimulated peripheral blood mononuclear cells (PBMCs) collected from healthy participants with LC-Plasma and conducted immunological analyses to investigate the immunomodulatory mechanisms of LC-Plasma. The supernatant derived from LC-Plasma-stimulated PBMCs (LCP Sup) exhibited dose-dependent inhibition of replication in Influenza A virus subtype H1N1 (H1N1) and SARS-CoV-2. LCP Sup significantly reduced the SARS-CoV-2 viral load in Huh-7 cells. However, in the H1N1 antiviral assay using A549 cells, LCP Sup was required at a higher concentration against H1N1 in A549 cells compared with SARS-CoV-2 in Huh-7 cells. Treatment with LCP Sup significantly upregulated interferon-stimulated genes (ISG) expression, particularly MxA, in A549 cells. While MxA showed the most notable increase, other ISGs also exhibited elevated expression levels compared with the negative control. Other cytokines, chemokines, and growth factors were also induced by LC-Plasma and CpG-DNA stimulation, and the effects of LC-Plasma were much higher than those of CpG-DNA. These results provide in vitro evidence of the antiviral mechanisms of LC-Plasma via upregulation of interferon-α (IFN-α) and related ISGs for host defense against respiratory viruses. Full article
Show Figures

Figure 1

24 pages, 369 KB  
Review
Atrial Fibrillation in COVID-19: Mechanisms, Clinical Impact, and Monitoring Strategies
by Ewelina Młynarska, Katarzyna Hossa, Natalia Krupińska, Hanna Pietruszewska, Aleksandra Przybylak, Kinga Włudyka, Jacek Rysz and Beata Franczyk
Biomedicines 2025, 13(12), 2889; https://doi.org/10.3390/biomedicines13122889 - 26 Nov 2025
Viewed by 159
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has revealed a close and multifaceted relationship between viral infection, systemic inflammation, and cardiovascular health. Among the cardiac complications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), atrial fibrillation (AF)—especially new-onset atrial fibrillation (NOAF)—has emerged as a [...] Read more.
The coronavirus disease 2019 (COVID-19) pandemic has revealed a close and multifaceted relationship between viral infection, systemic inflammation, and cardiovascular health. Among the cardiac complications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), atrial fibrillation (AF)—especially new-onset atrial fibrillation (NOAF)—has emerged as a major determinant of disease severity and prognosis. Clinical studies and meta-analyses show that 5–10% of hospitalized COVID-19 patients develop AF, with markedly higher rates in critically ill individuals. Both pre-existing and NOAF are independently associated with increased risks of intensive care admission, mechanical ventilation, thromboembolic events, and mortality. The underlying mechanisms involve a combination of cytokine-mediated inflammation, endothelial dysfunction, microvascular injury, and dysregulation of the renin–angiotensin–aldosterone system (RAAS). Viral downregulation of angiotensin-converting enzyme 2 (ACE2) receptors contributes to myocardial fibrosis, while hypoxia, oxidative stress, and autonomic imbalance further promote electrical remodeling and arrhythmogenesis. Post-infectious studies indicate that atrial structural changes and autonomic dysfunction may persist for months, predisposing survivors to recurrent arrhythmias. Technological advances in telecardiology and digital medicine have provided new tools for early detection and long-term monitoring. Wearable electroencephalography (ECG) devices, implantable loop recorders (ILRs), and artificial intelligence (AI)-based diagnostic algorithms enable continuous rhythm surveillance and individualized management, improving outcomes in post-COVID patients. This review summarizes current evidence on the epidemiology, pathophysiology, clinical implications, and monitoring strategies of AF in COVID-19. It underscores the importance of integrating telemedicine and AI-assisted diagnostics into cardiovascular care to mitigate the long-term arrhythmic and systemic consequences of SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Advanced Research in Atrial Fibrillation)
Show Figures

Graphical abstract

26 pages, 2570 KB  
Article
Five Years of COVID-19 in Tocantins, Brazil: Epidemiology, Vaccination Impact, and SARS-CoV-2 Genomic Dynamics (2020–2025)
by Olivia de Souza da Conceição, Ueric José Borges de Souza, Franciano Dias Pereira Cardoso, Evgeni Evgeniev Gabev, Bergmann Morais Ribeiro, Gil Rodrigues dos Santos, Renisson Neponuceno de Araújo Filho, Marcos Gontijo da Silva, Fernando Rosado Spilki and Fabrício Souza Campos
Viruses 2025, 17(11), 1521; https://doi.org/10.3390/v17111521 - 20 Nov 2025
Viewed by 688
Abstract
The coronavirus disease 2019 (COVID-19) pandemic in Tocantins, Brazil, exhibited distinct phases between 2020 and 2025, with high mortality concentrated in 2020–2021 and subsequent stabilization at residual levels. Using epidemiological data, statistical modeling, and genomic surveillance, we show that the crisis peaked in [...] Read more.
The coronavirus disease 2019 (COVID-19) pandemic in Tocantins, Brazil, exhibited distinct phases between 2020 and 2025, with high mortality concentrated in 2020–2021 and subsequent stabilization at residual levels. Using epidemiological data, statistical modeling, and genomic surveillance, we show that the crisis peaked in 2021, coinciding with the circulation of Gamma and Delta, when health system capacity was severely strained. From 2022 onwards, the spread of Omicron led to record incidence but proportionally low mortality, reflecting accumulated immunity, vaccination, and improved clinical management. Vaccination represented the turning point, reducing hospitalizations and deaths by over 90% and driving a clear decoupling between incidence and severity. Interrupted time-series and generalized additive model (GAM) analyses confirmed sustained reductions in transmission and severity associated with mass immunization. Genomic sequencing of 3941 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes identified 166 lineages and successive variant replacements, culminating in the predominance of LP.8.1.4 in 2025. To our knowledge, this is one of the few integrated, long-term analyses (2020–2025) combining epidemiological and genomic data, capturing the full succession of variants up to LP.8.1.4 and highlighting Tocantins as a strategic “variant corridor” linking Brazil’s North and Central-West regions. These findings underscore the dual role of vaccination and genomic surveillance in shaping the epidemic trajectory and the importance of sustaining both strategies to mitigate future health crises. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

25 pages, 2750 KB  
Article
Glycosylation Variability of Serum α1-Acid Glycoprotein in the Context of Developing Inflammation and Oxidative Stress in Patients with Severe COVID-19
by Ewa Maria Kratz, Patrycja Kossakowska, Izabela Kokot and Violetta Dymicka-Piekarska
Int. J. Mol. Sci. 2025, 26(22), 10946; https://doi.org/10.3390/ijms262210946 - 12 Nov 2025
Viewed by 216
Abstract
In COVID-19 (coronavirus disease 2019), multi-organ complications depend on the immune system’s activity. α1-Acid glycoprotein (AGP) is a highly glycosylated positive acute-phase protein having multifaceted immunomodulatory and protective effects. We were interested in changes in serum AGP concentrations, expression of its glycans, and [...] Read more.
In COVID-19 (coronavirus disease 2019), multi-organ complications depend on the immune system’s activity. α1-Acid glycoprotein (AGP) is a highly glycosylated positive acute-phase protein having multifaceted immunomodulatory and protective effects. We were interested in changes in serum AGP concentrations, expression of its glycans, and oxidation-reduction potential (ORP) between severe COVID-19 patients, convalescents, and healthy controls, and whether any of the analyzed parameters could serve as an additional diagnostic biomarker of severe COVID-19 and/or help monitor recovery. We were also interested in associations between the examined parameters. AGP concentrations were measured using an immunoturbidimetric method. The profile and degree of AGP glycosylation were analyzed using lectin-ELISA with lectins: sialo-specific from Sambucus nigra (SNA) and Maackia amurensis (MAA), fucose-specific from Lotus tetragonolobus (LTA) and Aleuria aurantia (AAL). The static and capacitive ORP (sORP and cORP, respectively) were measured using MiOXSYS C+® device (Caerus Biotechnologies, Vilnius, Lithuania). Statistica13.3PL software was used for statistical analysis. AGP concentrations increased in COVID-19 patients, showing high clinical usefulness in distinguishing them from convalescents and controls. AGP α2,6-sialylation (reactivity with SNA) was reduced in COVID-19 vs. other study groups, while α2,3-sialylation (reactivity with MAA) was reduced in convalescents vs. controls. The expression of LTA-reactive fucose (Lewisx structures, Lex) was reduced in COVID-19 patients compared to controls and convalescents, but AGP reactivity with AAL did not differ between the study groups. The sORP was reduced, and the cORP was increased in COVID-19. The observed negative correlations between sORP and AGP levels may suggest the antioxidant effect of AGP during severe COVID-19. Higher levels of serum AGP in severe COVID-19, together with low expression of sialic acid α2,6-linked and Lex structures, accompanied by reduced sORP, constitute a characteristic pattern of biomarker expression during severe COVID-19. The increased expression of SNA-reactive sialic acid and Lex structures may reflect the recovery process after SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection. The observed negative correlations between AGP and sORP levels may suggest that serum AGP in COVID-19 also plays a role as an antioxidative molecule. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 1819 KB  
Article
Immunogenicity and Safety of Half and Full Doses of Heterologous and Homologous COVID-19 Vaccine Boosters After Priming with ChAdOx1 in Adult Participants in Indonesia: A Single-Blinded Randomized Controlled Trial
by Nina Dwi Putri, Aqila Sakina Zhafira, Pratama Wicaksana, Hindra Irawan Satari, Eddy Fadlyana, Vivi Safitri, Nurlailah Nurlailah, Edwinaditya Sekar Putri, Nidya Putri, Devi Surya Iriyani, Yunita Sri Ulina, Frizka Aprilia, Evi Pratama, Indri Nethalia, Rita Yustisiana, Erlin Qur’atul Aini, Rini Fajarani, Adityo Susilo, Mulya Rahma Karyanti, Ari Prayitno, Hadyana Sukandar, Emma Watts, Nadia Mazarakis, Pretty Multihartina, Vivi Setiawaty, Krisna Nur Andriana Pangesti, Agnes Rengga Indrati, Julitasari Sundoro, Dwi Oktavia Handayani, Cissy B. Kartasasmita, Sri Rezeki Hadinegoro and Kim Mulhollandadd Show full author list remove Hide full author list
Vaccines 2025, 13(11), 1149; https://doi.org/10.3390/vaccines13111149 - 11 Nov 2025
Viewed by 370
Abstract
Background: Numerous studies have proved the efficacy of vaccination in reducing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission and the coronavirus disease (COVID-19) burden. However, even though the COVID-19 vaccination coverage is high for primary doses, a booster dose is needed [...] Read more.
Background: Numerous studies have proved the efficacy of vaccination in reducing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission and the coronavirus disease (COVID-19) burden. However, even though the COVID-19 vaccination coverage is high for primary doses, a booster dose is needed to sustain protection. Continuing our previous research, this study evaluates the immunogenicity and safety of full and half doses of two COVID-19 booster vaccines, ChAdOx1-S (AstraZeneca) and BNT162b2 (Pfizer-BioNTech), in individuals primed with ChAdOx1-S. Methods: This study was an observer-blind randomized controlled trial to evaluate the immunogenicity and safety of half and full doses of two COVID-19 booster vaccine types, BNT162b2 and ChAdOx1-S, among fully vaccinated, ChAdOx1-S-primed individuals in Jakarta, Indonesia. A total of 329 participants were randomized to receive either full or half doses of the booster vaccines, namely the ChAdOx1-S and BNT162b2 COVID-19 vaccines. Immunogenicity was assessed through SARS-CoV-2 antibody titers and neutralizing antibodies (NAbs) at 28 days post-booster, while safety was monitored via adverse event reporting. Results: The results showed that both vaccines demonstrated increased geometric mean titers (GMTs) post-booster. In the ChAdOx1-S booster group, at the baseline visit (day 0) and third visit (day 28), no statistically significant differences in GMT between the half- and full-dose groups were observed (p = 0.970 and 0.539, respectively). In the BNT162b2 group, no statistically significant difference was noted at the baseline visit, while the full dose was higher than the half dose at 28 days (Day 28, p = 0.011). Surrogate virus neutralization tests (sVNTs) and NAbs assays also revealed no significant differences between the half and full dose groups for both the Wuhan strain and the Delta variant. The BNT162b2 group compared to the ChAdOx1-S group revealed a statistically significant increase in IgG levels compared to ChAdOx1-S, with p-values of <0.001 and <0.001 for the half dose and full dose, respectively. This was also reflected in the NAbs test results, where BNT162b2 showed significantly higher levels against both the Wuhan strain and Delta variant. Adverse events were predominantly mild: 79.6% (n = 86/108) in the ChAdOx1-S full-dose group, 75.4% (n = 43/57) in the ChAdOx1-S half-dose group, 84.2% (n = 101/120) in the BNT162b2 full-dose group, and 92.6% (n = 88/95) in the BNT162b2 half-dose group, with pain at the injection site being the most common local reaction and myalgia and headache the most frequent systemic reactions. One serious adverse event was reported, assessed as unrelated to the vaccine. Conclusions: This study confirms that half doses of ChAdOx1-S and BNT162b2 are as immunogenic and safe as full doses, and a heterologous booster is more immunogenic than a homologous booster. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

17 pages, 1973 KB  
Article
Analysis of the Relationship Between the Charge Increment of the SARS-CoV-2 Spike Protein and Evolution
by Yingxue Ma, Ying Zhang, Menghao Chen, Kun Wang and Jun Lv
Viruses 2025, 17(11), 1483; https://doi.org/10.3390/v17111483 - 8 Nov 2025
Viewed by 480
Abstract
The changes in charge distribution caused by mutations in the spike protein may play a crucial role in balancing infectivity and immune evasion during the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To explore how charge increments in spike protein variants [...] Read more.
The changes in charge distribution caused by mutations in the spike protein may play a crucial role in balancing infectivity and immune evasion during the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To explore how charge increments in spike protein variants influence viral evolution, a statistical analysis was conducted on 57 SARS-CoV-2 variants, examining relationships between charge distribution, lineage divergence, angiotensin-converting enzyme 2 (ACE2) affinity, immune evasion, and receptor-binding domain (RBD) expression. A phylogenetic tree was also reconstructed using only the charge properties of mutation sites. Results indicated that with increasing lineage divergence, overall positive charge initially rose sharply and then more gradually. Partitioning the spike protein into three domains—the RBD, the N-terminal flanking region (B-RBD), and the C-terminal flanking region (A-RBD)—revealed distinct patterns: positive charge increased in the RBD and A-RBD, whereas the B-RBD accumulated negative charge. Charge increments were negatively associated with ACE2 affinity and RBD expression but positively correlated with immune evasion. The k-mer-based tree derived from charge-reduced sequences showed a topology consistent with the whole-genome tree. These findings suggest that charge distribution in spike proteins is closely linked to viral evolution, with the opposing trends in the RBD and B-RBD potentially reflecting a balance between infectivity and immune escape. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

13 pages, 993 KB  
Review
COVID-19: What We Have Learnt and Where Are We Going?
by Alessia Catalano
Acta Microbiol. Hell. 2025, 70(4), 42; https://doi.org/10.3390/amh70040042 - 6 Nov 2025
Viewed by 696
Abstract
The COVID-19 pandemic resulted in high morbidity and mortality, as well as severe social and economic disruption globally. Since the pandemic began in 2019, the severe acute respiratory syndrome, coronavirus 2, has undergone numerous changes, resulting in the emergence of new variants and [...] Read more.
The COVID-19 pandemic resulted in high morbidity and mortality, as well as severe social and economic disruption globally. Since the pandemic began in 2019, the severe acute respiratory syndrome, coronavirus 2, has undergone numerous changes, resulting in the emergence of new variants and subvariants. The emergence of new variants of the virus poses a challenge to scientists. There is currently no SARS-CoV-2 variant meeting the criteria of variants of concern, whereas the only variant of interest is JN.1, and there are six variants under monitoring: LP8.1, NP1.8.1, XEC, KP.3, KP.3.1.1 and the latest, XFG (Stratus). Although the latter appears to be more transmissible than the others, genomic evidence indicates that it is less aggressive than some recent variants. Nevertheless, continuous genomic surveillance of COVID-19 is still important to detect any new variants that could threaten public health. Numerous therapeutic strategies, such as drugs, vaccines, and nutritional supplements, are being used to treat COVID-19. This narrative review is an overview of COVID-19 and its various facets, from the number of cases to the therapies used, the current variants, and the ongoing clinical trials, specifically focusing on the most recent studies. Full article
Show Figures

Figure 1

14 pages, 3460 KB  
Article
Artificial Intelligence Reveals Nature: Functional Parallels Between a Designed and a Natural Peptide
by Jiashu Wang, Thomas David Daniel Kazmirchuk, Maryam Hajikarimlou, Mustafa Al-Gafari, Sarah Takallou, Houman Moteshareie, Frank Dehne, Bahram Samanfar, Mohan Babu, Taha Azad and Ashkan Golshani
Int. J. Mol. Sci. 2025, 26(21), 10607; https://doi.org/10.3390/ijms262110607 - 31 Oct 2025
Viewed by 517
Abstract
Natural peptides derived from plants have been an important source of medical substances for several decades. Due to their mechanism of action, chemical potential, and favourable side effect profile, these peptides represent a safer alternative to synthetic pharmaceutical treatments. In this study, we [...] Read more.
Natural peptides derived from plants have been an important source of medical substances for several decades. Due to their mechanism of action, chemical potential, and favourable side effect profile, these peptides represent a safer alternative to synthetic pharmaceutical treatments. In this study, we report the discovery of a natural peptide derived from the Brassica napus (Canola) proteome that exhibits high functional similarity to an artificial intelligence (AI)-generated peptide that is designed to bind to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike 1 (S1) protein receptor-binding domain (RBD) region. The results of a series of experiments including molecular docking simulations, as well as binding and inhibition assays suggest that the natural peptide exhibits functions similar to those of the AI-generated peptide in binding to the RBD region and disrupting its interaction with the human host receptor angiotensin-converting enzyme 2 (ACE2). This study demonstrates the potential of AI-designed peptides to facilitate the identification of natural peptides with similar functional properties. Full article
(This article belongs to the Collection Feature Papers Collection in Biochemistry)
Show Figures

Graphical abstract

32 pages, 2059 KB  
Systematic Review
Evidence of Face Masks and Masking Policies for the Prevention of SARS-CoV-2 Transmission and COVID-19 in Real-World Settings: A Systematic Literature Review
by Noe C. Crespo, Savannah Shifflett, Kayla Kosta, Joelle M. Fornasier, Patricia Dionicio, Eric T. Hyde, Job G. Godino, Christian B. Ramers, John P. Elder and Corinne McDaniels-Davidson
Int. J. Environ. Res. Public Health 2025, 22(10), 1590; https://doi.org/10.3390/ijerph22101590 - 20 Oct 2025
Viewed by 2687
Abstract
Objectives: Prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease COVID-19 is a public health priority. The efficacy of non-pharmaceutical interventions such as wearing face masks to prevent SARS-CoV-2 infection has been well established in controlled settings. However, evidence for [...] Read more.
Objectives: Prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease COVID-19 is a public health priority. The efficacy of non-pharmaceutical interventions such as wearing face masks to prevent SARS-CoV-2 infection has been well established in controlled settings. However, evidence for the effectiveness of face masks in preventing SARS-CoV-2 transmission within real-world settings is limited and mixed. The present systematic review evaluated the effectiveness of face mask policies and mask wearing to prevent SARS-CoV-2 transmission and COVID-19 in real-world settings. Methods: Following PRISMA guidelines, scientific databases, and gray literature, were searched through June 2023. Inclusion criteria were as follows: (1) studies/reports written in or translated to English; (2) prospectively assessed incidence of SARS-CoV-2 or COVID-19; (3) assessed the behavior and/or policy of mask-wearing; and (4) conducted in community/public settings (i.e., not laboratory). Studies were excluded if they did not parse out data specific to the effect of mask wearing (behavior and/or policy) and subsequent SARS-CoV-2 transmission or COVID-19 disease or if they relied solely on statistical models to estimate the effects of mask wearing on transmission. A total of 2616 studies were initially identified, and 470 met inclusion and exclusion criteria for full-text review. The vote counting method was used to evaluate effectiveness, and risk of bias was assessed using JBI critical appraisal tools. Results: A total of 79 unique studies met the final inclusion criteria, and their data were abstracted and evaluated. Study settings included community/neighborhood settings (n = 34, 43%), healthcare settings (n = 30, 38%), and school/universities (n = 15, 19%). A majority of studies (n = 61, 77%) provided evidence to support the effectiveness of wearing face masks and/or face mask policies to reduce the transmission of SARS-CoV-2 and/or prevention of COVID-19. Effectiveness of mask wearing did not vary substantially by study design (67–100%), type of mask (77–100%), or setting (80–91%), while 85% of masking policies specifically reported a benefit. Conclusions: This systematic literature review supports public health recommendations and policies that encourage the public to wear face masks to reduce the risk of SARS-CoV-2 infection and COVID-19 in multiple real-world settings. Effective communication strategies are needed to encourage and support the use of face masks by the general public, particularly during peak infection cycles. Full article
Show Figures

Figure 1

15 pages, 1103 KB  
Article
A Novel Flow Cytometry Array for High Throughput Detection of SARS-CoV-2 Antibodies
by Benyue Zhang, Zhuo Zhang, Yichao Zhao, Jingqiao Lu, Jianmin Fang, Brianne Petritis, Kelly Whittaker, Rani Huang and Ruo-Pan Huang
Vaccines 2025, 13(10), 1063; https://doi.org/10.3390/vaccines13101063 - 17 Oct 2025
Viewed by 666
Abstract
Background/Objectives: Although the U.S. Food and Drug Administration (FDA) has approved one antiviral treatment and authorized others for emergency use, there is no fully effective antiviral therapy for coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 [...] Read more.
Background/Objectives: Although the U.S. Food and Drug Administration (FDA) has approved one antiviral treatment and authorized others for emergency use, there is no fully effective antiviral therapy for coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Assays detecting virus-specific immunoglobulins (Ig) or nucleic acids in large-scale epidemiological, vaccine, and drug development studies remain limited due to high costs, reagent accessibility, and cumbersome protocols. Methods: A multiplex bead-based assay was developed to simultaneously detect human IgM, IgG, and IgA antibodies against the SARS-CoV-2 spike receptor binding domain (RBD) in serum using flow cytometry. Assay performance was evaluated for sensitivity, specificity, reproducibility, and cross-reactivity and compared to another immunoassay platform. Results: The assay enabled simultaneous measurement of three antibody isotypes across 624 samples within 2 h. Intra-plate coefficients of variation (CVs) ranged from 3.16 to 6.71%, and inter-plate CVs ranged from 3.33 to 5.49%, demonstrating high reproducibility. The platform also quantified background noise from nonspecific binding, facilitating straightforward data interpretation. Conclusions: This novel, flexible multiplex bead-based assay utilizing a well-established platform provides a rapid and reproducible approach for detecting SARS-CoV-2-specific antibodies. Its high throughput capacity and low variability make it well suited for large-scale epidemiological, vaccine, and therapeutic studies. The platform’s adaptability further supports application to other infectious diseases, offering an ideal tool for broad immunological surveillance. Full article
Show Figures

Figure 1

19 pages, 1722 KB  
Review
Natural Compounds with Antiviral Activity Against Clinically Relevant RNA Viruses: Advances of the Last Decade
by David Mauricio Cañedo-Figueroa, Daniela Nahomi Calderón-Sandate, Jonathan Hernández-Castillo, Manuel Josafat Huerta-Garza, Ximena Hernández-Rodríguez, Manuel Adrián Velázquez-Cervantes, Giovanna Berenice Barrera-Aveleida, Juan Valentin Trujillo-Paez, Flor Itzel Lira-Hernández, Blanca Azucena Marquez-Reyna, Moisés León-Juárez, Ana Cristina García-Herrera, Juan Fidel Osuna-Ramos and Luis Adrián De Jesús-González
Biomolecules 2025, 15(10), 1467; https://doi.org/10.3390/biom15101467 - 16 Oct 2025
Viewed by 1229
Abstract
RNA viruses remain a significant public health concern due to their rapid evolution, genetic variability, and capacity to trigger recurrent epidemics and pandemics. Over the last decade, natural products have gained attention as a valuable source of antiviral candidates, offering structural diversity, accessibility, [...] Read more.
RNA viruses remain a significant public health concern due to their rapid evolution, genetic variability, and capacity to trigger recurrent epidemics and pandemics. Over the last decade, natural products have gained attention as a valuable source of antiviral candidates, offering structural diversity, accessibility, and favorable safety profiles. This review highlights key replication mechanisms of RNA viruses and their associated therapeutic targets, including RNA-dependent RNA polymerase, viral proteases, and structural proteins mediating entry and maturation. We summarize recent advances in the identification of bioactive compounds such as flavonoids, alkaloids, terpenes, lectins, and polysaccharides that exhibit inhibitory activity against clinically relevant pathogens, including the Influenza A virus (IAV), human immunodeficiency viruses (HIV), dengue virus (DENV), Zika virus (ZIKV), and Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Special emphasis is placed on the integration of in silico screening, in vitro validation, and nanotechnology-based delivery systems that address challenges of stability, bioavailability, and specificity. Furthermore, the growing role of artificial intelligence, drug repurposing strategies, and curated antiviral databases is discussed as a means to accelerate therapeutic discovery. Despite persistent limitations in clinical translation and standardization, natural products represent a promising and sustainable platform for the development of next-generation antivirals against RNA viruses. Full article
(This article belongs to the Special Issue Molecular Mechanism and Detection of SARS-CoV-2)
Show Figures

Figure 1

21 pages, 1989 KB  
Article
New Assay Systems to Characterize the Broad-Spectrum Antiherpesviral and Non-Herpesviral Activity of Cyclin-Dependent Kinase (CDK) 8 Inhibitors
by Debora Obergfäll, Friedrich Hahn, Jintawee Kicuntod, Christina Wangen, Melanie Kögler, Sabrina Wagner, Benedikt Kaufer and Manfred Marschall
Pharmaceuticals 2025, 18(10), 1560; https://doi.org/10.3390/ph18101560 - 16 Oct 2025
Viewed by 614
Abstract
Background. To date, a number of human pathogenic viruses are still unaddressed by the current repertoire of approved antiviral drugs. In order to widen this spectrum of preventive measures against virus infections, we have focused on additional host targets that exert interesting virus-supportive [...] Read more.
Background. To date, a number of human pathogenic viruses are still unaddressed by the current repertoire of approved antiviral drugs. In order to widen this spectrum of preventive measures against virus infections, we have focused on additional host targets that exert interesting virus-supportive functions. Inhibitors of cyclin-dependent kinase 8 (CDK8) have been found to exhibit highly pronounced and relatively broad antiviral activity. Objectives. The current research question concerning the potential for broad-spectrum antiviral drug activity should be addressed in detail to understand the mechanistic basis of the antiviral target function of CDK8. Materials and Methods. We established and specifically customized six assay systems, three of these newly developed for the present study, to corroborate the range of CDK8 inhibitors’ antiviral activity against four α-, β-, and γ-herpesviruses as well as two non-herpesviruses. Results. Similar to our earlier analysis of CDK7 and CDK9 inhibitors, the clinically relevant CDK8 inhibitors currently in use demonstrated antiherpesviral activity in cell-culture-based infection models. Interestingly, the antiviral efficacy against various human and animal cytomegaloviruses was particularly strong at nanomolar concentrations, whereas other herpesviruses or non-herpesviruses showed an intermediate or low sensitivity to CDK8 inhibitors. Thus, this approach provided novel insights into the inhibitory potential of the CDK8 inhibitors, such as CCT-251921, MSC-2530818, and BI-1347, when analyzed against equine herpesvirus 1 (EHV-1, α-herpesvirus), human herpesvirus 6A (HHV-6A, β), Epstein–Barr virus (EBV, γ), murine herpesvirus 68 (MHV-68, γ), vaccinia virus (VV, non-herpes DNA virus), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, non-herpes RNA virus). Conclusions. Our results confirm that drug sensitivity to CDK8 inhibitors, on the one hand, is very strong for certain viruses and, on the other hand, varies widely within the spectrum of viruses and host cell types analyzed. This suggests that CDK8 may play several different roles in viral replication. The option of a refined CDK8-specific antiviral drug targeting is discussed. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

21 pages, 4481 KB  
Article
An Intranasal Challenge Model in African Green Monkeys (Chlorocebus aethiops) for Mild-to-Moderate COVID-19 Disease Caused by Subvariant XBB.1.5
by Nadia Storm, Ming Lo, Nicholas Crossland, Margaux Seyler-Schmidt, Hilary Staples, Daniela Silva-Ayala, Ambre M. Laprise, Lauren St. Denis, Kyle Grosz, Aoife O’Connell, Hans Gertje, Tillie Ripin, Claire Decker, M. Mazur, Colleen Thurman, Marlene Espinoza, Gavin Morrow, Christopher L. Parks, Christopher L. Cooper and Anthony Griffiths
Viruses 2025, 17(10), 1373; https://doi.org/10.3390/v17101373 - 14 Oct 2025
Viewed by 671
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily causes mild to moderate respiratory illness in humans, but infection can also lead to long-term complications, including chronic fatigue, respiratory and cardiac issues, or even death. In November 2021, the emergence of the highly transmissible [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily causes mild to moderate respiratory illness in humans, but infection can also lead to long-term complications, including chronic fatigue, respiratory and cardiac issues, or even death. In November 2021, the emergence of the highly transmissible Omicron variant marked a significant shift in the pandemic, with its subvariants rapidly spreading and continuing to evolve worldwide. The continuing introduction of Omicron subvariants underscores the need for the development of up-to-date vaccines, as well as for appropriate animal models in which they can be evaluated. Among these subvariants, XBB.1.5 stands out for its ability to evade the immune response from previous infection or vaccination. The objective of this study was to determine the disease course in African green monkeys (AGMs) following intranasal exposure to the XBB.1.5 subvariant. In four intranasally exposed AGMs, histopathological findings in the lungs consistent with SARS-CoV-2 infection included lymphohistiocytic and neutrophilic bronchiolitis with variable numbers of syncytial cells, to terminal bronchiole-centric, bronchointerstitial pneumonia with alveolar type II (AT2) pneumocyte hyperplasia, with evidence of acute alveolar injury, including alveolar septal necrosis and hyaline membrane formation. The two males showed more severe pneumonia compared to the two females. SARS-CoV-2 RNA was detected in the lungs or tracheobronchial lymph nodes in the males but not in the females, which correlated with higher cumulative lung pathology scores in the males. In the females, SARS-CoV-2 RNA was limited to the colon and nasal turbinates. Our results indicate that AGMs exhibit a disease course similar to most humans when exposed intranasally, making them a suitable model for studying mild to moderate SARS-CoV-2 infection. Therefore, further work is warranted to determine if this model could have utility for the evaluation of vaccine and therapeutic candidates against contemporary SARS-CoV-2 variants. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

Back to TopTop