Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = shock wave phenomena

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 76128 KB  
Article
Nonlinear Wave Structures, Multistability, and Chaotic Behavior of Quantum Dust-Acoustic Shocks in Dusty Plasma with Size Distribution Effects
by Huanbin Xue and Lei Zhang
Mathematics 2025, 13(19), 3101; https://doi.org/10.3390/math13193101 - 27 Sep 2025
Viewed by 250
Abstract
This paper presents a detailed study of the (3+1)-dimensional Zakharov–Kuznetsov–Burgers equation to investigate shock-wave phenomena in dusty plasmas with quantum effects. The model provides significant physical insight into nonlinear dispersive and dissipative structures arising in charged-dust–ion environments, corresponding [...] Read more.
This paper presents a detailed study of the (3+1)-dimensional Zakharov–Kuznetsov–Burgers equation to investigate shock-wave phenomena in dusty plasmas with quantum effects. The model provides significant physical insight into nonlinear dispersive and dissipative structures arising in charged-dust–ion environments, corresponding to both laboratory and astrophysical plasmas. We then perform a qualitative, numerically assisted dynamical analysis using bifurcation diagrams, multistability checks, return maps, Poincaré sections, and phase portraits. For both the unperturbed and a perturbed system, we identify chaotic, quasi-periodic, and periodic regimes from these numerical diagnostics; accordingly, our dynamical conclusions are qualitative. We also examine frequency-response and time-delay sensitivity, providing a qualitative classification of nonlinear behavior across a broad parameter range. After establishing the global dynamical picture, traveling-wave solutions are obtained using the Paul–Painlevé approach. These solutions represent shock and solitary structures in the plasma system, thereby bridging the analytical and dynamical perspectives. The significance of this study lies in combining a detailed dynamical framework with exact traveling-wave solutions, allowing a deeper understanding of nonlinear shock dynamics in quantum dusty plasmas. These results not only advance theoretical plasma modeling but also hold potential applications in plasma-based devices, wave propagation in optical fibers, and astrophysical plasma environments. Full article
Show Figures

Figure 1

32 pages, 3504 KB  
Article
Reduced Order Data-Driven Twin Models for Nonlinear PDEs by Randomized Koopman Orthogonal Decomposition and Explainable Deep Learning
by Diana Alina Bistrian
Mathematics 2025, 13(17), 2870; https://doi.org/10.3390/math13172870 - 5 Sep 2025
Viewed by 724
Abstract
This study introduces a data-driven twin modeling framework based on modern Koopman operator theory, offering a significant advancement over classical modal decomposition by accurately capturing nonlinear dynamics with reduced complexity and no manual parameter adjustment. The method integrates a novel algorithm with Pareto [...] Read more.
This study introduces a data-driven twin modeling framework based on modern Koopman operator theory, offering a significant advancement over classical modal decomposition by accurately capturing nonlinear dynamics with reduced complexity and no manual parameter adjustment. The method integrates a novel algorithm with Pareto front analysis to construct a compact, high-fidelity reduced-order model that balances accuracy and efficiency. An explainable NLARX deep learning framework enables real-time, adaptive calibration and prediction, while a key innovation—computing orthogonal Koopman modes via randomized orthogonal projections—ensures optimal data representation. This approach for data-driven twin modeling is fully self-consistent, avoiding heuristic choices and enhancing interpretability through integrated explainable learning techniques. The proposed method is demonstrated on shock wave phenomena using three experiments of increasing complexity accompanied by a qualitative analysis of the resulting data-driven twin models. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

22 pages, 10525 KB  
Article
Numerical Study of Transverse Jet in Supersonic Flowfield Using Reynolds Stress Model Based Detached Eddy Simulation
by Zhi-Kan Liu, Yi-Lun Liu, Gang Wang and Tian-Yu Lin
Fluids 2025, 10(9), 229; https://doi.org/10.3390/fluids10090229 - 29 Aug 2025
Viewed by 766
Abstract
This study investigated the aerodynamic structures generated by transverse jet injection in supersonic flows around high-speed vehicles. The unsteady evolution of these structures was analyzed using an improved delayed detached Eddy simulation (IDDES) approach based on the Reynolds stress model (RSM). The simulations [...] Read more.
This study investigated the aerodynamic structures generated by transverse jet injection in supersonic flows around high-speed vehicles. The unsteady evolution of these structures was analyzed using an improved delayed detached Eddy simulation (IDDES) approach based on the Reynolds stress model (RSM). The simulations successfully reproduced experimentally observed shock systems and vortical structures. The time-averaged flow characteristics were compared with the experimental results, and good agreement was observed. The flow characteristics were analyzed, with particular emphasis on the formation of counter-rotating vortex pairs in the downstream region, as well as complex near-field phenomena, such as flow separation and shock wave/boundary layer interactions. Time-resolved spectral analysis at multiple monitoring locations revealed the presence of a global oscillation within the flow dynamics. Within these regions, pressure fluctuations in the recirculation zone lead to periodic oscillations of the upstream bow shock. This dynamic interaction modulates the instability of the windward shear layer and generates large-scale vortex structures. As these shed vortices convect downstream, they interact with the barrel shock, triggering significant oscillatory motion. To further characterize this behavior, dynamic mode decomposition (DMD) was applied to the pressure fluctuations. The analysis confirmed the presence of a coherent global oscillation mode, which was found to simultaneously govern the periodic motions of both the upstream bow shock and the barrel shock. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

19 pages, 8614 KB  
Article
Shell-Stripping Mechanism of Red Sandstone Under Hypervelocity Impact with Aluminum Spheres
by Yizhe Liu, Quanyu Jiang, Zishang Liu, Minqiang Jiang, Yadong Li, Zhenghua Chang, Kun Zhang and Bingchen Wei
Aerospace 2025, 12(6), 534; https://doi.org/10.3390/aerospace12060534 - 12 Jun 2025
Viewed by 542
Abstract
To investigate the size effect on fragmentation phenomena during hypervelocity impact, scaled experiments were conducted using a 30 mm smooth-bore ballistic range (DBR30) driven by a detonation-driven two-stage launching system. Unique stripping of sandstone target was observed, revealing that free-surface unloading waves govern [...] Read more.
To investigate the size effect on fragmentation phenomena during hypervelocity impact, scaled experiments were conducted using a 30 mm smooth-bore ballistic range (DBR30) driven by a detonation-driven two-stage launching system. Unique stripping of sandstone target was observed, revealing that free-surface unloading waves govern peak pressure attenuation and fragmentation patterns. By establishing a shock wave attenuation model, the typical failure characteristics of different regions were distinguished, including jetting, crushing, and cracking. Parameter λ was defined to distinguish two forms of destruction, Class I (stripping-dominated) and Class II (cratering-dominated). Given the significant difference between the compressive and tensile strength of sandstone, the influence of the size effect on its failure characteristics was notable. This research also provides a valuable reference for understanding the evolution and formation mechanisms of binary asteroids. Full article
(This article belongs to the Special Issue Asteroid Impact Avoidance)
Show Figures

Figure 1

31 pages, 8036 KB  
Article
The Tuning of a CFD Model for External Ballistics, Followed by Analyses of the Principal Influences on the Drag Coefficient of the .223 Rem Caliber
by Jiří Maxa, Pavla Šabacká, Robert Bayer, Tomáš Binar, Petr Bača, Jana Švecová, Jaroslav Talár, Martin Vlkovský and Lenka Dobšáková
Technologies 2025, 13(5), 190; https://doi.org/10.3390/technologies13050190 - 8 May 2025
Viewed by 1610
Abstract
This paper presents the subject of external ballistics. The presented research employs a contemporary methodological approach, integrating theoretical analysis, CFD simulations, and experimental measurements. External ballistics is characterized by a wide spectrum of physical phenomena that influence projectile trajectory. This contribution focuses on [...] Read more.
This paper presents the subject of external ballistics. The presented research employs a contemporary methodological approach, integrating theoretical analysis, CFD simulations, and experimental measurements. External ballistics is characterized by a wide spectrum of physical phenomena that influence projectile trajectory. This contribution focuses on the analysis of drag force acting on a .223 rem caliber projectile in both subsonic and supersonic regimes. Based on experimental findings, a CFD model was refined and subsequently used to evaluate the drag force and drag coefficient, with a comparative analysis performed against G1 and G7 ballistic coefficient functions. Furthermore, the effect of the barrel length on the resultant outcome was assessed. The validated CFD model was employed to analyze the characteristics of shock waves generated at the projectile’s nose and their impact on the drag force, along with the influence of ambient temperature, particularly within the supersonic domain. Full article
Show Figures

Figure 1

15 pages, 5537 KB  
Article
An Analysis of the Factors Influencing Dual Separation Zones on a Plate
by Jiarui Zou, Xiaoqiang Fan and Bing Xiong
Appl. Sci. 2025, 15(8), 4569; https://doi.org/10.3390/app15084569 - 21 Apr 2025
Viewed by 385
Abstract
The shock wave/boundary layer interaction phenomenon in hypersonic inlets, affected by background waves, may induce the formation of multiple separation zones. Existing theories prove insufficient in explaining the underlying flow mechanisms behind complex phenomena arising from multi-separation zone interactions, which necessitates further investigation. [...] Read more.
The shock wave/boundary layer interaction phenomenon in hypersonic inlets, affected by background waves, may induce the formation of multiple separation zones. Existing theories prove insufficient in explaining the underlying flow mechanisms behind complex phenomena arising from multi-separation zone interactions, which necessitates further investigation. To clarify the governing factors in multi-separation zone interactions, this study developed a simplified dual-separation-zone model derived from inlet flow field characteristics. A series of numerical simulations were conducted under an incoming flow at Mach 3 to systematically analyze the effects of internal contraction ratio, the influencing locations of expansion waves, and incident shock wave intensity on the mergence and re-separation of dual separation zones. The results demonstrate that both the expansion wave impingement position and incident shock intensity significantly influence specific transition points in dual-separation-zone flow states, though they do not fundamentally alter the evolutionary patterns governing the merging/re-separating processes. Furthermore, increasing incident shock intensity leads to the expansion of separation zone scales and prolongation of the dual-separation-zone merging distance. Full article
(This article belongs to the Special Issue Advances in Fluid Mechanics Analysis)
Show Figures

Figure 1

25 pages, 477 KB  
Article
Topology of Locally and Non-Locally Generalized Derivatives
by Dimiter Prodanov
Fractal Fract. 2025, 9(1), 53; https://doi.org/10.3390/fractalfract9010053 - 20 Jan 2025
Viewed by 1196
Abstract
This article investigates the continuity of derivatives of real-valued functions from a topological perspective. This is achieved by the characterization of their sets of discontinuity. The same principle is applied to Gateaux derivatives and gradients in Euclidean spaces. This article also introduces a [...] Read more.
This article investigates the continuity of derivatives of real-valued functions from a topological perspective. This is achieved by the characterization of their sets of discontinuity. The same principle is applied to Gateaux derivatives and gradients in Euclidean spaces. This article also introduces a generalization of the derivatives from the perspective of the modulus of continuity and characterizes their sets of discontinuities. There is a need for such generalizations when dealing with physical phenomena, such as fractures, shock waves, turbulence, Brownian motion, etc. Full article
Show Figures

Figure 1

19 pages, 2595 KB  
Article
The Limits of Riemann Solutions for Chaplygin Gas Magnetohydrodynamics Euler Equations with Active Terms
by Kangning Yu, Wenxia Xu, Jibin Yang, Shuo Li and Guodong Li
Symmetry 2025, 17(1), 77; https://doi.org/10.3390/sym17010077 - 6 Jan 2025
Viewed by 951
Abstract
Chaplygin gas magnetohydrodynamics Euler equations with active terms are often used to study physical phenomena in the universe, which is of great significance for exploring unknown fields. This article mainly studies the limited behavior of Riemann solutions of Chaplygin gas magnetohydrodynamics Euler equations [...] Read more.
Chaplygin gas magnetohydrodynamics Euler equations with active terms are often used to study physical phenomena in the universe, which is of great significance for exploring unknown fields. This article mainly studies the limited behavior of Riemann solutions of Chaplygin gas magnetohydrodynamics Euler equations with active terms using methods such as the characteristic line method and the Lax–Friedrichs method. In cases where only the magnetic field disappears, it was found, using the characteristic line method, that the solution converges to Chaplygin gas magnetohydrodynamics Euler equations with active terms. Additionally, we have identified the cause of the generation of δ shock waves. When pressure and magnetic induction disappear simultaneously, the reasons for the generation of δ shock waves and vacuum solutions are found. In the Discussion section, the Lax–Friedrichs method was used for numerical experiments to simulate the occurrence of phenomena such as mass concentration and vacuum. The innovation of this article lies in the construction of the Riemann problem for Chaplygin gas MHD Euler equations with active terms, as well as the study of the scenario where the magnetic field and pressure gradually weaken and approach zero. Finally, numerical experiments are used to verify the theoretical results. Compared with previous work, this article not only focuses on theoretical derivation, but also applies numerical simulation, especially simulating the characteristic lines of physical planes. This achievement provides a powerful tool for studying more complex Riemann problems. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

77 pages, 5464 KB  
Review
Premerger Phenomena in Neutron Star Binary Coalescences
by Arthur G. Suvorov, Hao-Jui Kuan and Kostas D. Kokkotas
Universe 2024, 10(12), 441; https://doi.org/10.3390/universe10120441 - 29 Nov 2024
Cited by 10 | Viewed by 2008
Abstract
A variety of high-energy events can take place in the seconds leading up to a binary neutron star merger. Mechanisms involving tidal resonances, electrodynamic interactions, or shocks in mass-loaded wakes have been proposed as instigators of these precursors. With a view of gravitational-wave [...] Read more.
A variety of high-energy events can take place in the seconds leading up to a binary neutron star merger. Mechanisms involving tidal resonances, electrodynamic interactions, or shocks in mass-loaded wakes have been proposed as instigators of these precursors. With a view of gravitational-wave and multimessenger astrophysics, more broadly, premerger observations and theory are reviewed, emphasising how gamma-ray precursors and dynamical tides can constrain the neutron-star equation of state, thermodynamic microphysics, and evolutionary pathways. Connections to post-merger phenomena, notably gamma-ray bursts, are discussed together with how magnetic fields, spin and misalignment, crustal elasticity, and stratification gradients impact observables. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024 – Compact Objects)
Show Figures

Figure 1

38 pages, 11981 KB  
Review
The Generation Methods and Applications of Cavitating Jet by Using Bubble Collapse Energy
by Haida Zhang, Chenxing Fan, Luyao Wang, Wenjun Lu and Deng Li
Energies 2024, 17(23), 5902; https://doi.org/10.3390/en17235902 - 25 Nov 2024
Cited by 5 | Viewed by 3241
Abstract
Cavitation is a dynamic process characterized by the formation, growth, and collapse of vapor or gas vacuoles in liquids or at the liquid–solid interface, initiated by a local pressure drop. This phenomenon releases concentrated energy through microjet impacts and shock waves, leading to [...] Read more.
Cavitation is a dynamic process characterized by the formation, growth, and collapse of vapor or gas vacuoles in liquids or at the liquid–solid interface, initiated by a local pressure drop. This phenomenon releases concentrated energy through microjet impacts and shock waves, leading to a violent exchange of energy with the surrounding environment. While cavitation is often perceived as detrimental, certain aspects can be harnessed for practical applications. Relevant studies have shown that cavitating jets provide high operating efficiencies, reduce energy consumption per unit, and have the potential for waste treatment. This paper presents three types of cavitating jets: central body cavitation, oscillatory cavitation, and shear cavitation. Additionally, the formation process of a cavitating jet and the effects of various factors on jet performance are discussed. Following an in-depth examination of the cavitation phenomena, subsequent chapters explore the applications of cavitating jets in material surface enhancement, cleaning, and energy exploration. Furthermore, recommendations for future research on cavitating jets are provided. This paper provides a comprehensive literature review on cavitating jets. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

20 pages, 17929 KB  
Article
Experimental Identification of a New Secondary Wave Pattern in Transonic Cascades with Porous Walls
by Valeriu Drăgan, Oana Dumitrescu, Mihnea Gall, Emilia Georgiana Prisăcariu and Bogdan Gherman
Aerospace 2024, 11(11), 946; https://doi.org/10.3390/aerospace11110946 - 16 Nov 2024
Cited by 1 | Viewed by 1031
Abstract
Turbomachinery shock wave patterns occur as a natural result of operating at off-design points and are accountable for some of the loss in performance. In some cases, shock wave–boundary layer (SW-BLIs) interactions may even lead to map restrictions. The current paper refers to [...] Read more.
Turbomachinery shock wave patterns occur as a natural result of operating at off-design points and are accountable for some of the loss in performance. In some cases, shock wave–boundary layer (SW-BLIs) interactions may even lead to map restrictions. The current paper refers to experimental findings on a transonic linear cascade specifically designed to mitigate shock waves using porous walls on the blades. Schlieren visualization reveals two phenomena: Firstly, the shock waves were dissipated in all bladed passages, as predicted by the CFD studies. Secondly, a lower-pressure wave pattern was observed upstream of the blades. It is this phenomenon that the paper reports and attempts to describe. Attempts to replicate this pattern using Reynolds-averaged Navier–Stokes (RANS) calculations indicate that the numerical method may be too dissipative to accurately capture it. The experimental campaign demonstrated a 4% increase in flow rate, accompanied by minimal variations in pressure and temperature, highlighting the potential of this approach for enhancing turbomachinery performance. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 7989 KB  
Article
Numerical Investigation of Network-Based Shock Wave Propagation of Designated Methane Explosion Source in Subsurface Mine Ventilation System Using 1D FDM Code
by Sisi Que, Jiaqin Zeng and Liang Wang
Sustainability 2024, 16(22), 9935; https://doi.org/10.3390/su16229935 - 14 Nov 2024
Cited by 1 | Viewed by 1065
Abstract
In coal mining operations, methane explosions constitute a severe safety risk, endangering miners’ lives and causing substantial economic losses, which, in turn, weaken the production efficiency and economic benefits of the mining industry and hinder the sustainable development of the industry. To address [...] Read more.
In coal mining operations, methane explosions constitute a severe safety risk, endangering miners’ lives and causing substantial economic losses, which, in turn, weaken the production efficiency and economic benefits of the mining industry and hinder the sustainable development of the industry. To address this challenge, this article explores the application of decoupling network-based methods in methane explosion simulation, aiming to optimize underground mine ventilation system design through scientific means and enhance safety protection for miners. We used the one-dimensional finite difference method (FDM) software Flowmaster to simulate the propagation process of shock waves from a gas explosion source in complex underground tunnel networks, covering a wide range of scenarios from laboratory-scale parallel network samples to full-scale experimental mine settings. During the simulation, we traced the pressure loss in the propagation of the shock wave in detail, taking into account the effects of pipeline friction, shock losses caused by bends and obstacles, T-joint branching connections, and cross-sectional changes. The results of these two case studies were presented, leading to the following insights: (1) geometric variations within airway networks exert a relatively minor influence on overpressure; (2) the positioning of the vent positively contributes to attenuation effects; (3) rarefaction waves propagate over greater distances than compression waves; and (4) oscillatory phenomena were detected in the conduits connecting to the surface. This research introduces a computationally efficient method for predicting methane explosions in complex underground ventilation networks, offering reasonable engineering accuracy. These research results provide valuable references for the safe design of underground mine ventilation systems, which can help to create a safer and more efficient mining environment and effectively protect the lives of miners. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

21 pages, 11094 KB  
Article
Non-Condensation Turbulence Models with Different Near-Wall Treatments and Solvers Comparative Research for Three-Dimensional Steam Ejectors
by Yiqiao Li, Hao Huang, Dingli Duan, Shengqiang Shen, Dan Zhou and Siyuan Liu
Energies 2024, 17(22), 5586; https://doi.org/10.3390/en17225586 - 8 Nov 2024
Cited by 2 | Viewed by 1352
Abstract
Steam ejectors are important energy-saving equipment for solar thermal energy storage; however, a numerical simulation research method has not been agreed upon. This study contributes to a comprehensive selection of turbulence models, near-wall treatments, geometrical modeling (2-D and 3-D), solvers, and models (condensation [...] Read more.
Steam ejectors are important energy-saving equipment for solar thermal energy storage; however, a numerical simulation research method has not been agreed upon. This study contributes to a comprehensive selection of turbulence models, near-wall treatments, geometrical modeling (2-D and 3-D), solvers, and models (condensation and ideal-gas) in the RANS equations approach for steam ejectors through validation with experiments globally and locally. The turbulence models studied are k-ε Standard, k-ε RNG, k-ε Realizable, k-ω Standard, k-ω SST, Transition SST, and linear Reynolds Stress. The near-wall treatments assessed are Standard Wall Functions, Non-equilibrium Wall Functions, and Enhanced Wall Treatment. The solvers compared are pressure-based and density-based solvers. The root causes of their distinctions in terms of simulation results, applicable conditions, convergence, and computational cost are explained and compared. The complex phenomena involving shock waves, choking, and vapor condensation captured by different models are discussed. The internal connections of their performance and flow phenomena are analyzed from the mechanism perspective. The originality of this study is that both condensation and 3-D asymmetric effects on the simulation results are considered. The results indicate that the k-ω SST non-equilibrium condensation model coupling the low-Re boundary conditions has the most accurate prediction results, best convergence, and fit for the widest range of working conditions. A 3-D asymmetric condensation model with a density-based solver is recommended for simulating steam ejectors accurately. Full article
Show Figures

Figure 1

19 pages, 14240 KB  
Article
Effects of the Uncertainty of Wall Distance on the Simulation of Turbulence/Transition Phenomena
by Weiwei Tan, Heran Zhang, Lan Wang, Shengyang Nie, Jin Jiao and Yingtao Zuo
Aerospace 2024, 11(11), 898; https://doi.org/10.3390/aerospace11110898 - 31 Oct 2024
Cited by 1 | Viewed by 967
Abstract
The uncertainty of the turbulence/transition model is a problem with relatively high attention in the CFD area. Wall distance is an important physical parameter in turbulence/transition modeling, and its accuracy has a large effect on numerical simulation results. As most CFD solvers use [...] Read more.
The uncertainty of the turbulence/transition model is a problem with relatively high attention in the CFD area. Wall distance is an important physical parameter in turbulence/transition modeling, and its accuracy has a large effect on numerical simulation results. As most CFD solvers use the solving strategy to calculate the nearest distance to the wall based on mesh topology, this makes wall distance one important source of the uncertainty of the simulation results. To investigate the role of wall distance in turbulence/transition simulations, we have conducted simulations for various aerodynamic shapes, such as the plate with zero pressure gradient (ZPG), RAE2822 supercritical airfoil and ONERA M6 transonic wing. Further, the prediction abilities on turbulence/transition and shock wave phenomena of several physical models, including SA, SST and Wilcox-k-ω turbulence models as well as the γ-Reθt-SST transition model, are analyzed with different degrees of mesh orthogonality. The results imply that the numerical solution of wall distance in the boundary layer has a relatively large error when the mesh orthogonality is bad, having a large effect on the accuracy of the turbulence/transition model. In detail, the Wilcox-k-ω turbulence model is unaffected by mesh orthogonality; under the condition of mesh non-orthogonality, the SA model leads to a substantially larger friction drag and change in the location of shock wave; the SST model also leads to a larger friction drag under the condition of mesh non-orthogonality, whose effect is much less than that for SA model; and the γ-Reθt-SST model leads to a substantial upstream shift of transition location. Full article
Show Figures

Figure 1

24 pages, 24585 KB  
Article
Design, Fabrication, and Commissioning of Transonic Linear Cascade for Micro-Shock Wave Analysis
by Mihnea Gall, Valeriu Drăgan, Oana Dumitrescu, Emilia Georgiana Prisăcariu, Mihaela Raluca Condruz, Alexandru Paraschiv, Valentin Petrescu and Mihai Vlăduț
J. Manuf. Mater. Process. 2024, 8(5), 201; https://doi.org/10.3390/jmmp8050201 - 17 Sep 2024
Cited by 1 | Viewed by 1724
Abstract
Understanding shock wave behavior in supersonic flow environments is critical for optimizing the aerodynamic performance of turbomachinery components. This study introduces a novel transonic linear cascade design, focusing on advanced blade manufacturing and experimental validation. Blades were 3D-printed using Inconel 625, enabling tight [...] Read more.
Understanding shock wave behavior in supersonic flow environments is critical for optimizing the aerodynamic performance of turbomachinery components. This study introduces a novel transonic linear cascade design, focusing on advanced blade manufacturing and experimental validation. Blades were 3D-printed using Inconel 625, enabling tight control over the geometry and surface quality, which were verified through extensive dimensional accuracy assessments and surface finish quality checks using coordinate measuring machines (CMMs). Numerical simulations were performed using Ansys CFX with an implicit pressure-based solver and high-order numerical schemes to accurately model the shock wave phenomena. To validate the simulations, experimental tests were conducted using Schlieren visualization, ensuring high fidelity in capturing the shock wave dynamics. A custom-designed test rig was commissioned to replicate the specific requirements of the cascade, enabling stable and repeatable testing conditions. Experiments were conducted at three different inlet pressures (0.7-bar, 0.8-bar, and 0.9-bar gauges) at a constant temperature of 21 °C. Results indicated that the shock wave intensity and position are highly sensitive to the inlet pressure, with higher pressures producing more intense and extensive shock waves. While the numerical simulations aligned broadly with the experimental observations, discrepancies at finer flow scales suggest the need for the further refinement of the computational models to capture detailed flow phenomena accurately. Full article
Show Figures

Figure 1

Back to TopTop