Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = similar ruled surfaces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3728 KB  
Article
A Multi-Source Fusion-Based Material Tracking Method for Discrete–Continuous Hybrid Scenarios
by Kaizhi Yang, Xiong Xiao, Yongjun Zhang, Guodong Liu, Xiaozhan Li and Fei Zhang
Processes 2025, 13(11), 3727; https://doi.org/10.3390/pr13113727 - 19 Nov 2025
Viewed by 295
Abstract
Special steel manufacturing involves both discrete processing events and continuous physical flows, forming a representative discrete–continuous hybrid production system. However, due to the visually homogeneous surfaces of steel products, the highly dynamic production environment, and frequent disturbances or anomalies, traditional single-source tracking approaches [...] Read more.
Special steel manufacturing involves both discrete processing events and continuous physical flows, forming a representative discrete–continuous hybrid production system. However, due to the visually homogeneous surfaces of steel products, the highly dynamic production environment, and frequent disturbances or anomalies, traditional single-source tracking approaches struggle to maintain accurate and consistent material identification. To address these challenges, this paper proposes a multi-source fusion-based material tracking method tailored for discrete–continuous hybrid scenarios. First, a state–event system (SES) is constructed based on process rules, enabling interpretable reasoning of material states through event streams and logical constraints. Second, on the visual perception side, a YOLOv8-SE detection network embedded with the squeeze-and-excitation (SE) channel attention mechanism is designed, while the DeepSORT tracking framework is improved to enhance weak feature extraction and dynamic matching for visually similar targets. Finally, to handle information conflicts and cooperation in multi-source fusion, an improved Dempster–Shafer (D-S) evidence fusion strategy is developed, integrating customized anomaly handling and fault-tolerance mechanisms to boost decision reliability in conflict-prone regions. Experiments conducted on real special steel production lines demonstrate that the proposed method significantly improves detection accuracy, ID consistency, and trajectory integrity under complex operating conditions, while enhancing robustness against modal conflicts and abnormal scenarios. This work provides an interpretable and engineering-feasible solution for end-to-end material tracking in hybrid manufacturing systems, offering theoretical and methodological insights for the practical deployment of multi-source collaborative perception in industrial environments. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

22 pages, 3642 KB  
Article
Characterization and Selection of Metakaolin for Reproducible Geopolymer Matrices: A Thermal Evolution Approach
by Marino Corrado, Francesca Crivelli, Silvio Cao and Laura Savoldi
J. Nucl. Eng. 2025, 6(3), 34; https://doi.org/10.3390/jne6030034 - 20 Aug 2025
Viewed by 1036
Abstract
The HYPEX® process is a novel method for conditioning spent ion exchange resins from nuclear power plants, aiming to reduce final waste volume and carbon emissions by stabilizing the resins in metakaolin-based geopolymers. This study addresses the challenge posed by the natural [...] Read more.
The HYPEX® process is a novel method for conditioning spent ion exchange resins from nuclear power plants, aiming to reduce final waste volume and carbon emissions by stabilizing the resins in metakaolin-based geopolymers. This study addresses the challenge posed by the natural variability of commercial metakaolin and defines a testing strategy to ensure consistent performance of the final matrix. The reactivity of two batches of metakaolin, characterized by comparable chemical composition and BET surface area, was evaluated by monitoring temperature evolution during geopolymerization at varying water-to-solid ratios. The resulting geopolymers were tested for compressive strength, water permeability, and strontium leachability to assess correlations between precursor properties and final matrix performance. Despite similar compositions, the two batches showed marked differences in compressive strength that could be linked to early thermal behavior. These findings demonstrate that conventional precursor characterization is insufficient to guarantee reproducibility and that thermal profiling is useful to predict mechanical performance. The results suggest the implementation of thermal response monitoring as a quality control tool to ensure the reliability of geopolymer wasteforms in nuclear applications. A simplified analytical model for the thermal evolution during geopolymerization was also developed, matching qualitatively the measured evolution, to suggest scale-up rules from laboratory specimens to full-scale drums, which should be achieved while preserving the thermal evolution. Full article
Show Figures

Figure 1

5 pages, 4873 KB  
Interesting Images
Imaging Findings of a Rare Intrahepatic Splenosis, Mimicking Hepatic Tumor
by Suk Yee Lau and Wilson T. Lao
Diagnostics 2025, 15(14), 1789; https://doi.org/10.3390/diagnostics15141789 - 16 Jul 2025
Viewed by 552
Abstract
A young adult patient presented to the gastrointestinal outpatient department with a suspected hepatic tumor. The patient was in a traffic accident ten years ago and underwent splenectomy and distal pancreatectomy at another medical institution. The physical examination was unremarkable. The liver function [...] Read more.
A young adult patient presented to the gastrointestinal outpatient department with a suspected hepatic tumor. The patient was in a traffic accident ten years ago and underwent splenectomy and distal pancreatectomy at another medical institution. The physical examination was unremarkable. The liver function tests and tumor markers were within normal limits, with the alpha-fetoprotein level at 1.38 ng/mL. Both hepatitis B surface antigen and anti-HCV were negative. Based on the clinical history, intrahepatic splenosis was suspected first. Dynamic computed tomography revealed a 2.3 cm lesion exhibiting suspicious early wash-in and early wash-out enhancement patterns. As previous studies have reported, this finding makes hepatocellular carcinoma and metastatic lesions the major differential diagnoses. For further evaluation, dynamic magnetic resonance imaging was performed, and similar enhancing features were observed, along with restricted diffusion. As hepatocellular carcinoma still could not be confidently ruled out, the patient underwent an ultrasound-guided biopsy. The diagnosis of intrahepatic splenosis was confirmed by the pathologic examination. Intrahepatic splenosis is a rare condition defined as an acquired autoimplantation of splenic tissue within the hepatic parenchyma. Diagnosis can be challenging due to its ability to mimic liver tumors in imaging studies. Therefore, in patients with a history of splenic trauma and/or splenectomy, a high index of suspicion and awareness is crucial for accurate diagnosis and for prevention of unnecessary surgeries or interventions. Full article
(This article belongs to the Collection Interesting Images)
Show Figures

Figure 1

23 pages, 10361 KB  
Article
Analysis of the Material and Coating of the Nameplate of Vila D. Bosco in Macau
by Liang Zheng, Jianyi Zheng, Xiyue He and Yile Chen
Materials 2025, 18(10), 2190; https://doi.org/10.3390/ma18102190 - 9 May 2025
Viewed by 1055
Abstract
This study focuses on the nameplate of Vila D. Bosco, a modern building in Macau from the time of Portuguese rule, and looks at the types of metal materials and surface coatings used, as well as how they corrode due to the tropical [...] Read more.
This study focuses on the nameplate of Vila D. Bosco, a modern building in Macau from the time of Portuguese rule, and looks at the types of metal materials and surface coatings used, as well as how they corrode due to the tropical marine climate affecting the building’s metal parts. The study uses different techniques, such as X-ray fluorescence spectroscopy (XRF), scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and cross-sectional microscopic analysis, to carefully look at the metal, corrosion products, and coating of the nameplate. The results show that (1) the nameplate matrix is a resulfurized steel with a high sulfur content (Fe up to 97.3% and S up to 1.98%), and the sulfur element is evenly distributed inside, which is one of the internal factors that induce corrosion. (2) Rust is composed of polycrystalline iron oxides such as goethite (α-FeOOH), hematite (α-Fe2O3), and magnetite (Fe3O4) and has typical characteristics of atmospheric oxidation. (3) The white and yellow-green coatings on the nameplate are oil-modified alkyd resin paints, and the color pigments are TiO2, PbCrO4, etc. The surface layer of the letters is protected by a polyvinyl alcohol layer. The paint application process leads to differences in the thickness of the paint in different regions, which directly affects the anti-rust performance. The study reveals the deterioration mechanism of resulfurized steel components in a subtropical polluted environment and puts forward repair suggestions that consider both material compatibility and reversibility, providing a reference for the protection practice of modern and contemporary architectural metal heritage in Macau and even in similar geographical environments. Full article
(This article belongs to the Special Issue Materials in Cultural Heritage: Analysis, Testing, and Preservation)
Show Figures

Figure 1

21 pages, 4088 KB  
Article
Explore the Contamination of Antibiotic Resistance Genes (ARGs) and Antibiotic-Resistant Bacteria (ARB) of the Processing Lines at Typical Broiler Slaughterhouse in China
by Lu Ren, Ying Li, Ziyu Ye, Xixi Wang, Xuegang Luo, Fuping Lu and Huabing Zhao
Foods 2025, 14(6), 1047; https://doi.org/10.3390/foods14061047 - 19 Mar 2025
Cited by 3 | Viewed by 1283
Abstract
Farms are a major source of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB), and previous research mainly focuses on polluted soils and breeding environments. However, slaughtering is an important link in the transmission of ARGs and ARB from farmland to dining table. [...] Read more.
Farms are a major source of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB), and previous research mainly focuses on polluted soils and breeding environments. However, slaughtering is an important link in the transmission of ARGs and ARB from farmland to dining table. In this study, we aim to reveal the pollution of ARGs and ARB in the slaughter process of broilers. First, by qualitative and quantitative analysis of ARGs in samples collected from the broiler slaughtering and processing production chain, the contamination level of ARGs was reflected; secondly, potential hosts for ARGs and microbial community were analyzed to reflect the possible transmission rules; thirdly, through the antibiotic susceptibility spectrum analysis of four typical food-borne pathogens, the distribution of ARB was revealed. The results showed that 24 types of ARGs were detected positive on the broiler slaughter production line, and tetracycline-resistance genes (20.45%) were the most frequently detected. The types of ARGs vary with sampling process, and all sampling links contain high levels of sul2 and intI1. The most abundant ARGs were detected in chicken surface in the scalding stage and entrails surface in the evisceration stage. There was a significant correlation between intI1 and tetM, suggesting that tetM might be able to enter the human food chain through class-1 integrons. The host range of the oqxB gene is the most extensive, including Sphingobacterium, Bacteroidia unclassified, Rothia, Microbacterium, Algoriella, etc. In the relevant links of the slaughter production line, the microbial community structure is similar. Removing viscera may cause diffusion of ARGs carried by intestinal microorganisms and contaminate chicken and following processing production. The four food-borne pathogens we tested are widely present in all aspects of the slaughter process, and most of them have multi-drug resistance and even have a high degree of resistance to some veterinary drugs banned by the Ministry of Agriculture. Our study preliminarily revealed the pollution of ARGs and ARB in the slaughter process of broilers, and these results are helpful to carry out food safety risk assessment and formulate corresponding control measures. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

24 pages, 1533 KB  
Article
Unsupervised SAR Image Change Detection Based on Curvelet Fusion and Local Patch Similarity Information Clustering
by Yuhao Huang, Zhihui Xin, Guisheng Liao, Penghui Huang, Guangyu Hou and Rui Zou
Remote Sens. 2025, 17(5), 840; https://doi.org/10.3390/rs17050840 - 27 Feb 2025
Cited by 1 | Viewed by 1300
Abstract
Change detection for synthetic aperture radar (SAR) images effectively identifies and analyzes changes in the ground surface, demonstrating significant value in applications such as urban planning, natural disaster assessment, and environmental protection. Since speckle noise is an inherent characteristic of SAR images, noise [...] Read more.
Change detection for synthetic aperture radar (SAR) images effectively identifies and analyzes changes in the ground surface, demonstrating significant value in applications such as urban planning, natural disaster assessment, and environmental protection. Since speckle noise is an inherent characteristic of SAR images, noise suppression has always been a challenging problem. At the same time, the existing unsupervised deep learning-based methods relying on the pseudo labels may lead to a low-performance network. These methods are high data-dependent. To this end, we propose a novel unsupervised change detection method based on curvelet fusion and local patch similarity information clustering (CF-LPSICM). Firstly, a curvelet fusion module is designed to utilize the complementary information of different difference images. Different fusion rules are designed for the low-frequency subband, mid-frequency directional subband, and high-frequency subband of curvelet coefficients. Then the proposed local patch similarity information clustering algorithm is used to classify the image pixels to output the final change map. The pixels with similar structures and the weight of spatial information are incorporated into the traditional clustering algorithm in a fuzzy way, which greatly suppresses the speckle noise and enhances the structural information of the changing area. Experimental results and analysis on five datasets verify the effectiveness and robustness of the proposed method. Full article
(This article belongs to the Special Issue Spaceborne High-Resolution SAR Imaging (Second Edition))
Show Figures

Figure 1

14 pages, 21261 KB  
Article
Investigating the Relationship between Building Orientation and Surface Properties of Stainless Steel Prepared via Selective Laser Melting
by Tao Fang, Huanghuang Jin, Feng Huang, Yuan Chu, Xiaofan Zheng and Song Yu
Coatings 2024, 14(9), 1206; https://doi.org/10.3390/coatings14091206 - 19 Sep 2024
Cited by 1 | Viewed by 1344
Abstract
In our investigation of the influence rules and mechanisms of the building orientation on the surface properties of 316L stainless steel created via selective laser melting, we used X-ray diffractometry, scanning electron microscopy, and electron backscatter diffraction to investigate the phases, microstructures, and [...] Read more.
In our investigation of the influence rules and mechanisms of the building orientation on the surface properties of 316L stainless steel created via selective laser melting, we used X-ray diffractometry, scanning electron microscopy, and electron backscatter diffraction to investigate the phases, microstructures, and textures of specimens. In addition, we employed a digital microhardness tester, friction, and wear-testing apparatus, along with an electrochemical workstation, to examine variations in the surface properties. The results indicated that the surface phase compositions of the specimens with different building orientations were similar; however, they displayed anisotropic behavior in grain size, orientation, and texture. Notably, the surface densification of the specimens at 0°, 30°, 45°, and 60° initially decreased before subsequently increasing. In contrast, the surface roughness showed a pattern of first increasing and then declining. Moreover, the microhardness, wear resistance, and corrosion resistance decreased with an increasing inclination angle. Full article
Show Figures

Figure 1

14 pages, 2373 KB  
Article
Reaction Rate Rules of Intramolecular H-Migration Reaction Class for RIORIIOO·Radicals in Ether Combustion
by Xiaohui Sun and Zerong Li
Molecules 2024, 29(18), 4387; https://doi.org/10.3390/molecules29184387 - 15 Sep 2024
Cited by 1 | Viewed by 1166
Abstract
The intramolecular H-migration reaction of RIORIIOO· radicals constitute a key class of reactions in the low-temperature combustion mechanism of ethers. Despite this, there is a dearth of direct computations regarding the potential energy surface and rate constants specific to [...] Read more.
The intramolecular H-migration reaction of RIORIIOO· radicals constitute a key class of reactions in the low-temperature combustion mechanism of ethers. Despite this, there is a dearth of direct computations regarding the potential energy surface and rate constants specific to ethers, especially when considering large molecular systems and intricate branched-chain structures. Furthermore, combustion kinetic models for large molecular ethers generally utilize rate constants derived from those of structurally similar alcohols or alkane fuels. Consequently, chemical kinetic studies involve the calculation of energy barriers and rate rules for the intramolecular H-migration reaction class of RIORIIOO· radicals, which are systematically conducted using the isodesmic reaction method (IRM). The geometries of the species participating in these reactions are optimized, and frequency calculations are executed using the M06–X method in tandem with the 6–31+G(d,p) basis set by the Gaussian 16 program. Moreover, the M06–2X/6–31+G(d,p) method acts as the low-level ab initio method, while the CBS–QB3 method is utilized as the high-level ab initio method for calculating single-point energies. Rate constants at the high-pressure-limit are computed based on the reaction class transition state theory (RC-TST) by ChemRate program, incorporating asymmetric Eckart tunneling corrections for intramolecular H-migration reactions across a temperature range of 500 to 2000 K. It was found that the isodesmic reaction method gives accurate energy barriers and rate constants, and the rate constants of the H-migration reaction for RIORIIOO· radicals diverge from those of comparable reactions in alkanes and alcohol fuels. There are significant disparities in energy barriers and rate constants across the entire reaction classes of the H-migration reaction for RIORIIOO· radicals, necessitating the subdivision of the H-migration reaction into subclasses. Rate rules are established by averaging the rate constants of representative reactions for each subclass, which is pivotal for the advancement of accurate low-temperature combustion reaction mechanisms for ethers. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

15 pages, 814 KB  
Article
Application of Large Language Models and Assessment of Their Ship-Handling Theory Knowledge and Skills for Connected Maritime Autonomous Surface Ships
by Dashuai Pei, Jianhua He, Kezhong Liu, Mozi Chen and Shengkai Zhang
Mathematics 2024, 12(15), 2381; https://doi.org/10.3390/math12152381 - 31 Jul 2024
Cited by 11 | Viewed by 3719
Abstract
Maritime transport plays a critical role in global logistics. Compared to road transport, the pace of research and development is much slower for maritime transport. It faces many major challenges, such as busy ports, long journeys, significant accidents, and greenhouse gas emissions. The [...] Read more.
Maritime transport plays a critical role in global logistics. Compared to road transport, the pace of research and development is much slower for maritime transport. It faces many major challenges, such as busy ports, long journeys, significant accidents, and greenhouse gas emissions. The problems have been exacerbated by recent regional conflicts and increasing international shipping demands. Maritime Autonomous Surface Ships (MASSs) are widely regarded as a promising solution to addressing maritime transport problems with improved safety and efficiency. With advanced sensing and path-planning technologies, MASSs can autonomously understand environments and navigate without human intervention. However, the complex traffic and water conditions and the corner cases are large barriers in the way of MASSs being practically deployed. In this paper, to address the above issues, we investigated the application of Large Language Models (LLMs), which have demonstrated strong generalization abilities. Given the substantial computational demands of LLMs, we propose a framework for LLM-assisted navigation in connected MASSs. In this framework, LLMs are deployed onshore or in remote clouds, to facilitate navigation and provide guidance services for MASSs. Additionally, certain large oceangoing vessels can deploy LLMs locally, to obtain real-time navigation recommendations. To the best of our knowledge, this is the first attempt to apply LLMs to assist with ship navigation. Specifically, MASSs transmit assistance requests to LLMs, which then process these requests and return assistance guidance. A crucial aspect, which has not been investigated in the literature, of this safety-critical LLM-assisted guidance system is the knowledge and safety performance of the LLMs, in regard to ship handling, navigation rules, and skills. To assess LLMs’ knowledge of navigation rules and their qualifications for navigation assistance systems, we designed and conducted navigation theory tests for LLMs, which consisted of more than 1500 multiple-choice questions. These questions were similar to the official theory exams that are used to award the Officer Of the Watch (OOW) certificate based on the Standards of Training, Certification, and Watchkeeping (STCW) for Seafarers. A wide range of LLMs were tested, which included commercial ones from OpenAI and Baidu and an open-source one called ChatGLM, from Tsinghua. Our experimental results indicated that among all the tested LLMs, only GPT-4o passed the tests, with an accuracy of 86%. This suggests that, while the current LLMs possess significant potential in regard to navigation and guidance systems for connected MASSs, further improvements are needed. Full article
(This article belongs to the Special Issue Advances in Mobile Network and Intelligent Communication)
Show Figures

Figure 1

18 pages, 6658 KB  
Article
Study of the Impact of Surface Topography on Selected Mechanical Properties of Adhesive Joints
by Małgorzata Sługocka, Daniel Grochała, Konrad Kwiatkowski, Rafał Grzejda and Paweł Zmarzły
Coatings 2024, 14(8), 944; https://doi.org/10.3390/coatings14080944 - 27 Jul 2024
Cited by 10 | Viewed by 2767
Abstract
Manufacturers of adhesives for industrial use determine the strength of adhesive joints during shear tests. Most often, components made of the same material are joined. In contrast, the roughness of the surfaces to be joined results from the use of a specific surface [...] Read more.
Manufacturers of adhesives for industrial use determine the strength of adhesive joints during shear tests. Most often, components made of the same material are joined. In contrast, the roughness of the surfaces to be joined results from the use of a specific surface treatment technology. In adhesive manufacturers’ recommendations for metal-to-metal joints, surface technologies can be found without specifying numerical requirements for roughness. Modern techniques for shaping the geometric accuracy of components allow the formation of determined irregularities on the surface, which are characterised by their height and mutual distribution. Furthermore, regular irregularities can be obtained by using the appropriate tool and technological machining parameters. In this way, surfaces with similar load-bearing capacity, core volume, texture or expected hydrophobic properties can be produced by various methods. However, a basic prerequisite is the careful definition of the numerical requirements, both for the basic roughness indices and those of a complementary nature. As a rule, the strength of the adhesive joint is also lower than the strength of the adhesive itself. The strength of an adhesive joint depends on the ‘mechanical anchorage’ of the adhesive and the adhesion phenomenon on the surface. The research assumes that it is possible to induce an interaction between the geometric state of the surface and the properties of the adhesive, so as to guarantee the maximum strength of the adhesive joint. To verify this, a series of experimental tests were developed and carried out for two different adhesives characterised by different viscosities and offered bond strength. Based on the tests carried out, recommendations were made to the designers of adhesive joints, where, in addition to the height of the surface irregularities, the properties related to fluid retention and the shape of the irregularities in the valleys should be determined. Full article
(This article belongs to the Special Issue Recent Trends in Precision Measurement of Metals and Alloys)
Show Figures

Figure 1

36 pages, 13364 KB  
Article
Investigation on the Mechanical Characteristics of the Excavation of a Double-Line Highway Tunnel Underpass Existing Railway Tunnel under the Influence of Dynamic and Static Load
by Yifan Li, Changfu Huang, Hongjian Lu and Chao Mou
Appl. Sci. 2024, 14(8), 3242; https://doi.org/10.3390/app14083242 - 11 Apr 2024
Cited by 2 | Viewed by 1733
Abstract
Research on the excavation mechanical properties of underpass tunnels has already had certain results, but only a few of them consider the effects of dynamic and static loads on the excavation mechanical properties of underground tunnels at the same time; particularly, there is [...] Read more.
Research on the excavation mechanical properties of underpass tunnels has already had certain results, but only a few of them consider the effects of dynamic and static loads on the excavation mechanical properties of underground tunnels at the same time; particularly, there is a lack of research investigating double-line highway tunnels with angled underpasses of existing railway tunnels. In this paper, based on the tunnel project of the new double-line Shiqian Highway Tunnel passing under the Hurong Railway with an oblique angle, based on the method of over-advance geological prediction and investigations into the palm face surrounding the rock, the rock degradation caused by dynamic and static loads is quantified using the perturbation system. Additionally, the mechanical parameters of the rock under the influence of dynamic and static load coupling in the influence area of the cross-tunneling project are determined using the Hoek–Brown criterion, and the mechanical characteristics of the excavation of a tunnel under the double-lane highway tunnel passing under the existing railroad are constructed with the mechanical characteristics of the double-lane highway tunnel, taking into consideration the influence of the dynamic and static load coupling in a three-dimensional model. The results show that, in line with the new tunnel rock movement law for the top of the arch sinking, the bottom plate bulging, the side wall outward movement, the height and width of the arch, and the bottom plate arch show an increase with the tunnel excavation, while the side wall rock displacement effect is smaller; the left and right line tunnel disturbed area of the rule of change is similar; the existing tunnel bottom plate displacement is larger than the top plate and the left and right side wall, under the influence of the excavation time step. Typical profile point displacement is mainly determined by the distance from the excavation surface; von Mises stress extremes are observed in the top plate and side walls of the existing tunnel, which occur in the tunnel structure, and there are unloading and pressure-bearing zones in the bottom plate; the new tunnel has the same rock disturbance angle under the four calculation conditions and, based on the displacement control criterion, the excavation method is preferred and the upper and lower step blasting excavation method is recommended. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

21 pages, 7956 KB  
Article
A Mesh-Based Approach for Computational Fluid Dynamics-Free Aerodynamic Optimisation of Complex Geometries Using Area Ruling
by Ben James Evans, Ben Smith, Sean Peter Walton, Neil Taylor, Martin Dodds and Vladeta Zmijanovic
Aerospace 2024, 11(4), 298; https://doi.org/10.3390/aerospace11040298 - 11 Apr 2024
Viewed by 2471
Abstract
In this paper, an optimisation procedure is introduced that uses a significantly cheaper, and CFD-free, objective function for aerodynamic optimisation than conventional CFD-driven approaches. Despite the reduced computational cost, we show that this approach can still drive the optimisation scheme towards a design [...] Read more.
In this paper, an optimisation procedure is introduced that uses a significantly cheaper, and CFD-free, objective function for aerodynamic optimisation than conventional CFD-driven approaches. Despite the reduced computational cost, we show that this approach can still drive the optimisation scheme towards a design with a similar reduction in drag coefficient for wave drag-dominated problems. The approach used is ‘CFD-free’, i.e., it does not require any computational aerodynamic analysis. It can be applied to geometries discretised using meshes more conventionally used for ‘standard’ CFD-based optimisation approaches. The approach outlined in this paper makes use of the transonic area rule and its supersonic extension, exploiting a mesh-based parameterisation and mesh morphing methodology. The paper addresses the following question: ‘To what extent can an optimiser perform (wave) drag minimisation if using ‘area ruling’ alone as the objective (fitness) function measurement?’. A summary of the wave drag approximation in transonic and supersonic regimes is outlined along with the methodology for exploiting this theory on a typical CFD surface mesh to construct an objective function evaluation for a given geometry. The implementation is presented including notes on the considerations required to ensure stability, and error minimisation, of the numerical scheme. The paper concludes with the results from a number of (simple and complex geometry) examples of a drag-minimisation optimisation study and the results are compared with an approach using full-fidelity CFD simulation. The overall conclusions from this study suggest that the approach presented is capable of driving a geometry towards a similar shape to when using full-fidelity CFD at a significantly lower computational cost. However, it cannot account for any constraints, driven by other aerodynamic factors, that might be present within the problem. Full article
(This article belongs to the Special Issue Advances in Aerodynamic Shape Optimisation)
Show Figures

Figure 1

14 pages, 1653 KB  
Article
Comparison of Automated Keratometer and Scheimpflug Tomography for Predicting Refractive Astigmatism in Pseudophakic Eyes
by Kyung-Sun Na, Giacomo Savini, Woong-Joo Whang and Kristian Næser
Diagnostics 2023, 13(24), 3687; https://doi.org/10.3390/diagnostics13243687 - 18 Dec 2023
Viewed by 1665
Abstract
Purpose: To analyse the correspondence between refractive astigmatism and corneal astigmatism in pseudophakic eyes with non-toric intraocular lenses. Setting: Yeouido St. Mary hospital, Seoul, Republic of Korea. Design: Evaluation of a diagnostic test instrument. Methods: This retrospective study included 95 eyes of 95 [...] Read more.
Purpose: To analyse the correspondence between refractive astigmatism and corneal astigmatism in pseudophakic eyes with non-toric intraocular lenses. Setting: Yeouido St. Mary hospital, Seoul, Republic of Korea. Design: Evaluation of a diagnostic test instrument. Methods: This retrospective study included 95 eyes of 95 patients. Corneal astigmatism was measured with an automated keratometer (RK-5, Canon) and Scheimpflug tomography (Pentacam HR, Oculus). Refractive astigmatism was compared to keratometric astigmatism (based on anterior corneal measurements only), equivalent K-reading, and total corneal astigmatism (both based on anterior and posterior corneal measurements). Vector analysis was carried out by Næser’s polar value method. The accuracy was defined as the average magnitude of the vectorial difference in astigmatism (DA). Each corneal measurement was optimized in retrospect by a multiple linear regression equation between refractive and corneal astigmatism. Results: Keratometric astigmatism overestimated with-the-rule (WTR) refractive astigmatism and underestimated against-the-rule (ATR) refractive astigmatism. Several measurements based on both corneal surfaces’ values did not show any statistically significant difference with respect to refractive astigmatism. The mean corneal astigmatism by total corneal refractive power (TCRP) at 4.0 mm (zone/pupil) produced the lowest mean arithmetic DA and the highest percentage of eyes with a DA ≤ 0.50 dioptre. After optimization, the accuracies of automated KA and TCRP 4.0 mm (zone/pupil) were similar. Conclusions: Total corneal astigmatism measured by Scheimpflug tomography at a 4.0 mm zone centered on the pupil accurately reflects the refractive astigmatism in pseudophakic eyes. However, the accuracy of total corneal astigmatism is not different from automated KA after optimization. Full article
Show Figures

Figure 1

11 pages, 390 KB  
Article
A Surface Pencil with Bertrand Curves as Joint Curvature Lines in Euclidean Three-Space
by Sahar H. Nazra and Rashad A. Abdel-Baky
Symmetry 2023, 15(11), 1986; https://doi.org/10.3390/sym15111986 - 27 Oct 2023
Cited by 2 | Viewed by 1371
Abstract
The main outcome of this work is the construction of a surface pencil with a similarity to Bertrand curves in Euclidean 3-space E3. Then, by exploiting the Serret–Frenet frame, we deduce the sufficient and necessary conditions for a surface pencil with [...] Read more.
The main outcome of this work is the construction of a surface pencil with a similarity to Bertrand curves in Euclidean 3-space E3. Then, by exploiting the Serret–Frenet frame, we deduce the sufficient and necessary conditions for a surface pencil with Bertrand curves as joint curvature lines. Consequently, the expansion to the ruled surface pencil is also designed. As demonstrations of our essential findings, we illustrate some models to emphasize the process. Full article
Show Figures

Figure 1

17 pages, 4145 KB  
Article
Numerical Study of Fluid–Solid Interaction in Elastic Sluice Based on SPH Method
by Jianwei Zhang, Bingpeng Wang, Qi Jiang, Ge Hou, Zhirui Li and Hongze Liu
Water 2023, 15(21), 3738; https://doi.org/10.3390/w15213738 - 26 Oct 2023
Cited by 5 | Viewed by 2261
Abstract
In this paper, the fluid–solid interaction problem involving structural movement and deformation is considered, and an SPH (smoothed particle hydrodynamics) interaction method is proposed to establish a numerical fluid–solid model and to correct the particle velocities in the momentum conservation equations. It is [...] Read more.
In this paper, the fluid–solid interaction problem involving structural movement and deformation is considered, and an SPH (smoothed particle hydrodynamics) interaction method is proposed to establish a numerical fluid–solid model and to correct the particle velocities in the momentum conservation equations. It is found that, when the smoothing coefficient is equal to 0.93, the similarity of the free surface curves reaches up to 91.9%, and calculations are more accurate. Under the same working conditions, the classical model of elastic sluice discharge is established based on the SPH method and the finite element method, and the validity and accuracy of the model based on the SPH method are verified by analyzing the flow pattern of the sluice discharge, the opening of the elastic gate, and the change trend in the free liquid surface curve. On this basis, a number of characteristic points on the sluice gate are selected based on the SPH model to investigate the change rule of pressure at the fluid–solid interface, and the results are as follows: (1) based on the numerical model established by the SPH method, the flow pattern of the water, the opening of the elastic gate, and the change in the free liquid level curve are all in better agreement with the experimental results in the literature than those of the finite element method, and the computational results are also better; (2) the pressure of the solid on the fluid at each characteristic point is equal to the pressure of the fluid on the solid, which satisfies the principle of action–reaction and laterally verifies the nature of the dynamic boundary between the fluid and the solid, further verifying the validity of the program; and (3) in the process of sluice discharge, the elastic sluice presents a large force at both ends and a small force in the middle, meaning that the related research in this paper can act as a reference for flow–solid interaction problems related to sluice discharge. Full article
(This article belongs to the Special Issue Feature Papers of Hydraulics and Hydrodynamics)
Show Figures

Figure 1

Back to TopTop