Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,650)

Search Parameters:
Keywords = single-phase material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1510 KB  
Article
Radiomics of Hepatocellular Carcinoma: Identifying Predictors of Microvascular Invasion Using Multi-Phase CT Analysis
by Flavio Spoto, Nicolo’ Cardobi, Riccardo De Robertis, Luca Geraci, Luisa Tomaiuolo, Eda Bardhi, Beatrice Mascarin, Claudio Luchini, Andrea Ruzzenente and Mirko D’Onofrio
J. Pers. Med. 2025, 15(11), 527; https://doi.org/10.3390/jpm15110527 (registering DOI) - 2 Nov 2025
Abstract
Objective: To explore radiomic texture features from multi-phase contrast-enhanced CT as potential predictors of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Materials and Methods: This exploratory single-center study retrospectively analyzed 49 patients (54 HCC lesions) who underwent liver resection between 2018–2022. Radiomic analysis [...] Read more.
Objective: To explore radiomic texture features from multi-phase contrast-enhanced CT as potential predictors of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Materials and Methods: This exploratory single-center study retrospectively analyzed 49 patients (54 HCC lesions) who underwent liver resection between 2018–2022. Radiomic analysis extracted 642 features across arterial, venous, and delayed phases using original and 5 mm-expanded tumor margins. Results: The 20–50 mm lesion subgroup (n = 37) provided the most reliable results, with arterial phase texture homogeneity features achieving AUC 0.772. Features from lesions <20 mm (n = 14, 4 MVI+) showed clear evidence of overfitting and were excluded from primary analyses. Delayed phase features showed preliminary associations (AUC 0.8) in a small LR-3/4 subset (n = 20). Limitations: This hypothesis-generating study has significant limitations including small sample size, single-center design, and lack of correction for multiple comparisons. Conclusions: Multi-phase CT radiomic analysis shows potential for MVI prediction in intermediate-sized HCC lesions, though external validation in larger cohorts is essential before clinical application. Full article
Show Figures

Graphical abstract

9 pages, 5251 KB  
Communication
Electrochemical Surface Modification of Laser Cladded Ni-Based Single Crystal Superalloy in NaNO3 Solution
by Jingbo Liu, Yongxin Liu, Xianqi Meng, Linfeng Tang, Xiaowei Lei and Nan Wang
Materials 2025, 18(21), 4967; https://doi.org/10.3390/ma18214967 - 30 Oct 2025
Viewed by 186
Abstract
Since mechanical processing can introduce stress in the sample, electrochemical dissolution has been utilized to attain shape accuracy in certain materials. However, this technique is rarely applied to laser-repaired Ni-based single-crystal superalloys. In this work, the transpassive dissolution behaviors of an additive manufacturing-repaired [...] Read more.
Since mechanical processing can introduce stress in the sample, electrochemical dissolution has been utilized to attain shape accuracy in certain materials. However, this technique is rarely applied to laser-repaired Ni-based single-crystal superalloys. In this work, the transpassive dissolution behaviors of an additive manufacturing-repaired Ni-based single crystal superalloy in a 10% NaNO3 solution were investigated by comparison with the substrate. A significant disparity in dissolution rates was found between the dendritic and interdendritic regions of the substrate, resulting in a rough surface. Conversely, the dissolution of the dendritic and interdendritic regions in the cladding structure occurred nearly simultaneously, leading to a high-quality, smooth surface. This behavior was attributed to the differences in phase dissolution preferences between the substrate and the cladding structure. It indicates that electrochemical dissolution is a promising method for achieving shape accuracy in laser-clad Ni-based single-crystal superalloys. Full article
Show Figures

Figure 1

18 pages, 3124 KB  
Article
Frequency-Mode Study of Piezoelectric Devices for Non-Invasive Optical Activation
by Armando Josué Piña-Díaz, Leonardo Castillo-Tobar, Donatila Milachay-Montero, Emigdio Chavez-Angel, Roberto Villarroel and José Antonio García-Merino
Nanomaterials 2025, 15(21), 1650; https://doi.org/10.3390/nano15211650 - 29 Oct 2025
Viewed by 259
Abstract
Piezoelectric materials are fundamental elements in modern science and technology due to their unique ability to convert mechanical and electrical energy bidirectionally. They are widely employed in sensors, actuators, and energy-harvesting systems. In this work, we investigate the behavior of commercial lead zirconate [...] Read more.
Piezoelectric materials are fundamental elements in modern science and technology due to their unique ability to convert mechanical and electrical energy bidirectionally. They are widely employed in sensors, actuators, and energy-harvesting systems. In this work, we investigate the behavior of commercial lead zirconate titanate (PZT) sensors under frequency-mode excitation using a combined approach of impedance spectroscopy and optical interferometry. The impedance spectra reveal distinct resonance–antiresonance features that strongly depend on geometry, while interferometric measurements capture dynamic strain fields through fringe displacement analysis. The strongest deformation occurs near the first kilohertz resonance, directly correlated with the impedance phase, enabling the extraction of an effective piezoelectric constant (~40 pC/N). Moving beyond the linear regime, laser-induced excitation demonstrates optically driven activation of piezoelectric modes, with a frequency-dependent response and nonlinear scaling with optical power, characteristic of coupled pyroelectric–piezoelectric effects. These findings introduce a frequency-mode approach that combines impedance spectroscopy and optical interferometry to simultaneously probe electrical and mechanical responses in a single setup, enabling non-contact, frequency-selective sensing without surface modification or complex optical alignment. Although focused on macroscale ceramic PZTs, the non-contact measurement and activation strategies presented here offer scalable tools for informing the design and analysis of piezoelectric behavior in micro- and nanoscale systems. Such frequency-resolved, optical-access approaches are particularly valuable in the development of next-generation nanosensors, MEMS/NEMS devices, and optoelectronic interfaces where direct electrical probing is challenging or invasive. Full article
Show Figures

Graphical abstract

9 pages, 5251 KB  
Communication
High Energy Storage Performance in Bi0.46Sr0.06Na0.5TiO3/CaTiO3 Relaxor Ferroelectric Ceramics
by Yangyang Zhang, Haizhou Guo, Shuyao Zhai, Liqin Yue, Juqin Zhang, Suxia He, Ruiling Fu, Chiyu Yin and Ling Zhang
Materials 2025, 18(21), 4932; https://doi.org/10.3390/ma18214932 - 28 Oct 2025
Viewed by 162
Abstract
(Bi0.5Na0.5)TiO3-based lead-free ferroelectric ceramics are among the most extensively researched energy storage materials today. In this paper, (1 − x)Bi0.46Sr0.06Na0.5TiO3−xCaTiO3 ceramics were synthesized through a solid-phase sintering method [...] Read more.
(Bi0.5Na0.5)TiO3-based lead-free ferroelectric ceramics are among the most extensively researched energy storage materials today. In this paper, (1 − x)Bi0.46Sr0.06Na0.5TiO3−xCaTiO3 ceramics were synthesized through a solid-phase sintering method by synergistically adjusting CaTiO3 components after introducing Sr2+ at the A-site. The XRD patterns revealed that all samples formed a single perovskite solid solution, with the 111 and 200 peaks shifting to higher levels as the CaTiO3 increased, indicating a gradual decrease in cell volume. The SEM images exhibited dense crystals without any apparent porosity, which were formed by the different components of the ceramics. Through energy storage, dielectric, and charge–discharge performance tests, it was found that with a 10%mol CaTiO3 addition, the samples obtained a maximum breakdown field strength of 260 kV/cm and corresponding saturation polarization strength of 32.80 μC/cm2 and thereby exhibited a reversible energy storage density valued 3.52 J/cm3. In addition, the dielectric constant varied by less than 10% within the temperature range of 63.7 °C to 132.7 °C and presented good frequency (10–250 Hz) stability at 180 kV/cm. Moreover, the ceramics demonstrated a maximum current density reaching 349.58 A/cm2 and a maximum power density of 18.90 MW/cm3 for their charge–discharge performance, all of which makes them suitable for pulse system applications. Full article
Show Figures

Figure 1

21 pages, 3737 KB  
Article
Novel Spinel Li–Cr Nano-Ferrites: Structure, Morphology, and Electrical/Dielectric Properties
by Mukhametkali Mataev, Altynai Madiyarova, Moldir Abdraimova, Marzhan Nurbekova, Karima Seibekova, Zhanar Tursyn, Assel Kezdykbayeva, Krishnamoorthy Ramachandran and Bahadir Keskin
Int. J. Mol. Sci. 2025, 26(21), 10409; https://doi.org/10.3390/ijms262110409 - 26 Oct 2025
Viewed by 573
Abstract
This article reports on the synthesis and physicochemical characterization of a novel complex ferrite material, LiCr3.4Fe1.6O8, prepared via the sol-gel method. X-ray diffraction (XRD) analysis confirmed that the synthesized compound is a single-phase [...] Read more.
This article reports on the synthesis and physicochemical characterization of a novel complex ferrite material, LiCr3.4Fe1.6O8, prepared via the sol-gel method. X-ray diffraction (XRD) analysis confirmed that the synthesized compound is a single-phase material with a spinel-type structure and cubic symmetry. Raman spectroscopy was employed to investigate the vibrational modes, and the observed peaks corresponding to Fe–O and Cr–O bonds further validated the spinel-like structure of the compound. The microstructure and elemental composition were examined using scanning electron microscopy (SEM). Multiple regions of the LiCr3.4Fe1.6O8 crystals were analyzed, revealing a homogeneous phase and providing detailed insight into the morphology and chemical composition of the surface. The synthesized ferrite particles exhibited relatively large dimensions, with sizes measured at approximately 5, 30, 100, and 200 μm. The dielectric behavior was studied to assess the material’s response to an external electric field, demonstrating its capacity for electric charge polarization. Both capacitance and electrical conductivity were found to increase with rising temperature. Electrophysical measurements were conducted using the LCR-800 system over a temperature range of 293–483 K and at frequencies of 1.5 kHz and 10 kHz. An increase in frequency to 10 kHz resulted in a decrease in the dielectric constant (ε) across the entire temperature range. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

18 pages, 1905 KB  
Article
Flexible Copper Mesh Electrodes with One-Step Ball-Milled TiO2 for High-Performance Dye-Sensitized Solar Cells
by Adnan Alashkar, Taleb Ibrahim and Abdul Hai Alami
Sustainability 2025, 17(21), 9478; https://doi.org/10.3390/su17219478 - 24 Oct 2025
Viewed by 310
Abstract
Advancements in flexible, low-cost, and recyclable alternatives to transparent conductive oxides (TCOs) are critical challenges in the sustainability of third-generation solar cells. This work introduces a copper mesh-based transparent electrode for dye-sensitized solar cells, replacing conventional fluorine doped-tin oxide (FTO)-coated glass to simultaneously [...] Read more.
Advancements in flexible, low-cost, and recyclable alternatives to transparent conductive oxides (TCOs) are critical challenges in the sustainability of third-generation solar cells. This work introduces a copper mesh-based transparent electrode for dye-sensitized solar cells, replacing conventional fluorine doped-tin oxide (FTO)-coated glass to simultaneously reduce spectral reflection losses, enhance mechanical flexibility, and enable material recyclability. Titanium dioxide (TiO2) photoanodes were synthesized and directly deposited onto the mesh via a single-step, low-energy ball milling process, which eliminates TiO2 paste preparation and high-temperature annealing while reducing fabrication time from over three hours to 30 min. Structural and surface analyses confirmed the deposition of high-purity anatase-phase TiO2 with strong adhesion to the mesh branches, enabling improved dye loading and electron injection pathways. Optical studies revealed higher visible light absorption for the copper mesh compared to FTO in the visible range, further enhanced upon TiO2 and Ru-based dye deposition. Electrochemical measurements showed that TiO2/Cu mesh electrodes exhibited significantly higher photocurrent densities and faster photo response rates than bare Cu mesh, with dye-sensitized Cu mesh achieving the lowest charge transfer resistance in impedance analysis. Techno–economic and sustainability assessments revealed a decrease of 7.8% in cost and 82% in CO2 emissions associated with the fabrication of electrodes as compared to conventional TCO electrodes. The synergy between high conductivity, transparency, mechanical durability, and a scalable, recyclable fabrication route positions this architecture as a strong candidate for next-generation dye-sensitized solar modules that are both flexible and sustainable. Full article
Show Figures

Figure 1

17 pages, 2623 KB  
Article
Hydrothermal Carbonization of Water Care Material (WCM) and Analysis of Fuel and Soil Amendment Characteristic of Hydrochar
by Sebastian Foth, Vicky Shettigondahalli Ekanthalu, Florian Jansen and Michael Nelles
Processes 2025, 13(11), 3398; https://doi.org/10.3390/pr13113398 - 23 Oct 2025
Viewed by 155
Abstract
As freely available but not yet commercially acquired biomass resource, water care material (WCM) is generated seasonally in the periodic maintenance of surface water bodies and consists of mainly aquatic and/or rural-associated biomass of the water body profile, as well as wood, soil [...] Read more.
As freely available but not yet commercially acquired biomass resource, water care material (WCM) is generated seasonally in the periodic maintenance of surface water bodies and consists of mainly aquatic and/or rural-associated biomass of the water body profile, as well as wood, soil substrate, water or other possible impurities. In addition to other recovery options, such as composting or utilization in biogas production, hydrothermal carbonization (HTC) was selected as a thermochemical process because it is suitable for converting biomass with a high content of carbon into high-quality combustibles. The biomass sample used in this investigation was obtained during a single sampling event from a small stream in the North German lowlands. The material was pretreated by shredding it to a particle size of <0.12 mm. Through a 5 L stirred reactor, hydrothermal treatments were performed under low temperature conditions (200, 220 and 240 °C), residence times (120, 180, 240 min) and solid dry matter of the sample content: 6%. Solid phase was evaluated in terms of calorific value and proximate and ultimate analysis. The results suggested that the hydrothermal carbonization of WCM gave a high heating value of 23.84 MJ/kg for its char after being dried for 24 h at 105 degrees. At the same time, biochar can be used in agriculture to improve soil properties. To understand to what extent the product is suitable for soil amendment, the surface and the nutrient content of the resulting hydrochar were analyzed in detail. As the initial material is rich in fiber contents, process temperatures up to 240 °C have a huge impact on effective particle size. Furthermore, the analysis of selected nutrients, minerals and heavy metals shows the suitability of the produced hydrochar for soils in accordance with current legislation. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

20 pages, 9325 KB  
Article
Effect of Printing Direction of 3D-Printed Nylon Under Abrasive Wear Conditions
by Francisco Briones, Barbara Valverde, Ricardo Donaire, Álvaro González, Federico Antico and Carola Martínez
Polymers 2025, 17(21), 2812; https://doi.org/10.3390/polym17212812 - 22 Oct 2025
Viewed by 346
Abstract
This study evaluates the effect of printing orientation on the wear resistance of 3D-printed nylon fabricated via Fused Deposition Modeling (FDM). We conducted abrasive wear resistance tests, thermal analysis, and microstructural characterization using scanning electron microscopy before and after wear testing. The results [...] Read more.
This study evaluates the effect of printing orientation on the wear resistance of 3D-printed nylon fabricated via Fused Deposition Modeling (FDM). We conducted abrasive wear resistance tests, thermal analysis, and microstructural characterization using scanning electron microscopy before and after wear testing. The results show that alternating printing directions lead to significantly higher wear. Under a normal load of 130 N, this configuration caused the exposure of up to four layers. At the same time, single-orientation prints exhibit lower material loss and better filament cohesion. DSC analysis reveals that all printed samples, regardless of wear exposure, display dual melting temperatures (Ts1 and Ts2) due to distinct crystalline phase formations. Abrasion decreases the secondary melting temperature (Ts2) and increases enthalpy by up to 144% compared to unprinted nylon, highlighting the thermal history on structural properties. These findings emphasize the critical role of printing configurations in optimizing the tribological performance of 3D-printed nylon for industrial applications. Full article
Show Figures

Figure 1

24 pages, 3040 KB  
Article
Fully Biobased Biodegradable Elastomeric Polymer Blends Based on PHAs
by Pavol Alexy, Vojtech Horváth, Roderik Plavec, Zuzana Vanovčanová, Katarína Tomanová, Michal Ďurfina, Mária Fogašová, Leona Omaníková, Slávka Hlaváčiková, Zuzana Kramárová, Jana Navrátilová, Vojtěch Komínek, David Jaška and Jozef Feranc
Polymers 2025, 17(21), 2811; https://doi.org/10.3390/polym17212811 - 22 Oct 2025
Viewed by 443
Abstract
This study examines binary blends of three types of polyhydroxyalkanoates (PHAs)—poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB)—with a focus on their rheological, thermal, and mechanical behavior. The blends exhibit partial miscibility in both the melt and solid states. Glass transition analysis revealed that [...] Read more.
This study examines binary blends of three types of polyhydroxyalkanoates (PHAs)—poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB)—with a focus on their rheological, thermal, and mechanical behavior. The blends exhibit partial miscibility in both the melt and solid states. Glass transition analysis revealed that semicrystalline/amorphous PHA combinations are fully miscible (single Tg) at amorphous PHA contents below 30 wt%. Above this threshold, a two-phase morphology develops, consisting of crystalline spherulites embedded in an amorphous matrix. When the amorphous PHA content reached ≥30 wt%, the blends could be oriented by stretching, yielding materials that display thermoplastic elastomer (TPE)-like behavior without chemical modification of the base polymers. Thermal and mechanical characterization, supported by X-ray diffraction of samples before and after orientation, confirmed that the elastomeric properties originate from the multiphase architecture formed by crystalline and amorphous domains interconnected through a miscible amorphous fraction. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

12 pages, 1720 KB  
Article
Construction of NiSe2/WO3@SiMPs Heterojunction with Enhanced Photoelectrochemical Performance
by Li Zhang, Jie Li, Jialu Liu, Zhuo Zhong, Yangyang Chen, Peng Yang and Hui Wang
Metals 2025, 15(11), 1164; https://doi.org/10.3390/met15111164 - 22 Oct 2025
Viewed by 199
Abstract
Monocrystalline silicon, despite its widespread use as a photoelectrode material, is hindered by inherent drawbacks, such as high surface reflectivity, vulnerability to oxide passivation, and instability in aqueous electrolytes. To address these, a micropyramidal texture is fabricated on the silicon surface via wet [...] Read more.
Monocrystalline silicon, despite its widespread use as a photoelectrode material, is hindered by inherent drawbacks, such as high surface reflectivity, vulnerability to oxide passivation, and instability in aqueous electrolytes. To address these, a micropyramidal texture is fabricated on the silicon surface via wet chemical etching. A heterojunction photoanode was constructed by sequentially depositing NiSe2 and WO3 onto the textured silicon using chemical bath deposition, forming NiSe2/WO3@SiMPs. The photoanode demonstrates optimal photoelectrochemical performance at a NiSe2 to WO3 mass ratio of 9:1. Under simulated solar illumination (AM 1.5 G, 100 mW cm−2), it achieves a photocurrent of 5.62 mA cm−2 at 1.23 V (vs. RHE), and a maximum photocurrent of 13.6 mA cm−2 at 2.0 V (vs. RHE), markedly outperforming the individual components NiSe2@SiMPs (8.23 mA cm−2) and WO3@SiMPs (0.95 mA cm−2) at 2.0 V (vs. RHE). Electrochemical impedance spectroscopy (EIS) results show a markedly lower charge transfer resistance (Rct) for the NiSe2/WO3@SiMPs (8.16 Ω) compared to the single-phase counterparts NiSe2@SiMPs (121.48 Ω) and WO3@SiMPs (902.23 Ω), indicating more efficient charge separation. In addition, the photocurrent remains steady for about 10 h without significant degradation. This work presents a promising strategy for improving the photoelectrochemical water splitting efficiency of silicon-based photoelectrodes through rational heterostructure engineering. Full article
Show Figures

Figure 1

16 pages, 2928 KB  
Article
Immunomodulatory Potential of a Composite Amniotic Membrane Hydrogel for Wound Healing: Effects on Macrophage Cytokine Secretion
by Tao Wang, Zhiyuan Zhu, Wei Hua and Siliang Xue
Biomedicines 2025, 13(10), 2574; https://doi.org/10.3390/biomedicines13102574 - 21 Oct 2025
Viewed by 342
Abstract
Background: The human acellular amniotic membrane (HAAM) is widely used as a decellularized bioscaffold in tissue engineering to promote wound healing, but its clinical application is limited by poor mechanical properties, rapid degradation, and handling difficulties. This study aimed to develop a modified [...] Read more.
Background: The human acellular amniotic membrane (HAAM) is widely used as a decellularized bioscaffold in tissue engineering to promote wound healing, but its clinical application is limited by poor mechanical properties, rapid degradation, and handling difficulties. This study aimed to develop a modified amniotic membrane-based composite material loaded with vascular endothelial growth factor (VEGF) and the Notch signaling inhibitor N-[N-(3,5-difluorophenacetyl)-Lalanylhydrazide]-Sphenylglycine t-butyl ester (DAPT) to enhance wound healing by modulating macrophage polarization and cytokine secretion. Methods: VEGF-loaded gellan gum-hyaluronic acid (GG-HA) hydrogels (VEGF-GG-HA) and DAPT-loaded HAAM (DAPT-HAAM) were prepared and combined to form a novel composite material (VEGF-GG-HA & DAPT-HAAM). The morphology and microstructure of the materials were characterized using scanning electron microscopy. In vitro studies were conducted using the human monocytic cell line (Tohoku Hospital Pediatrics-1, THP-1) to evaluate the effects of the materials on cell viability, cytokine secretion, and protein expression. Assessments included CCK-8 assays, ELISA, quantitative real-time PCR, Western blot analysis, and immunohistochemical staining. Results: The composite material VEGF-GG-HA & DAPT-HAAM exhibited good biocompatibility and significantly promoted THP-1 cell proliferation compared to control and single-component groups. It enhanced the secretion of IL-10, TNF-α, TGF-β, MMP1, and MMP3, while suppressing excessive TGF-β overexpression. The material also modulated macrophage polarization, showing a trend toward anti-inflammatory M2 phenotypes while maintaining pro-inflammatory signals (e.g., TNF-α) for a balanced immune response. Conclusions: The modified amniotic membrane hydrogel composite promotes wound healing through a phased immune response: it modulates macrophage polarization (balancing M1 and M2 phenotypes), enhances cytokine and matrix metalloproteinase secretion, and controls TGF-β levels. These effects contribute to improved vascular remodeling, reduced fibrosis, and prevention of scar formation, demonstrating the potential for enhanced wound management. Full article
(This article belongs to the Special Issue New Advances in Wound Healing and Skin Regeneration)
Show Figures

Figure 1

27 pages, 14839 KB  
Article
Fin-Embedded PCM Tubes in BTMS: Heat Transfer Augmentation and Mass Minimization via Multi-Objective Surrogate Optimization
by Bo Zhu, Yi Zhang and Zhengfeng Yan
Batteries 2025, 11(10), 387; https://doi.org/10.3390/batteries11100387 - 21 Oct 2025
Viewed by 299
Abstract
The rapid proliferation of electric vehicles (EVs) demands lightweight yet efficient battery thermal management systems (BTMS). The fin-embedded phase-change material energy storage tube (PCM-EST) offers significant potential due to its high thermal energy density and passive operation, but conventional designs face a critical [...] Read more.
The rapid proliferation of electric vehicles (EVs) demands lightweight yet efficient battery thermal management systems (BTMS). The fin-embedded phase-change material energy storage tube (PCM-EST) offers significant potential due to its high thermal energy density and passive operation, but conventional designs face a critical trade-off: enhancing heat transfer typically increases mass, conflicting with EV lightweight requirements. To resolve this conflict, this study proposes a multi-objective surrogate optimization framework integrating computational fluid dynamics (CFD) and Kriging modeling. Fin geometric parameters—number, height, and tube length—were rigorously analyzed via ANSYS (2020 R1) Fluent simulations to quantify their coupled effects on PCM melting/solidification dynamics and structural mass. The results reveal that fin configurations dominate both thermal behavior and weight. An enhanced multi-objective particle swarm optimization (MOPSO) algorithm was then deployed to simultaneously maximize heat transfer and minimize mass, generating a Pareto-optimal solution. The optimized design achieves 8.7% enhancement in heat exchange capability and 0.732 kg mass reduction—outperforming conventional single-parameter designs by 37% in weight savings. This work establishes a systematic methodology for synergistic thermal-structural optimization, advancing high-performance BTMS for sustainable EVs. Full article
(This article belongs to the Special Issue Advanced Battery Safety Technologies: From Materials to Systems)
Show Figures

Figure 1

29 pages, 4164 KB  
Review
Multimodal Field-Driven Actuation in Bioinspired Robots: An Emerging Taxonomy and Roadmap Towards Hybrid Intelligence
by Jianping Wang, Xin Wang, Shuai Zhou and Gengbiao Chen
Biomimetics 2025, 10(10), 713; https://doi.org/10.3390/biomimetics10100713 - 21 Oct 2025
Viewed by 487
Abstract
Rigid–flexible coupled robots hold significant potential for operating in unstructured environments, but a systematic analysis of their actuation strategies across diverse physical fields is notably lacking in the literature. This review addresses this gap by introducing a novel taxonomy based on field-controlled evolutionary [...] Read more.
Rigid–flexible coupled robots hold significant potential for operating in unstructured environments, but a systematic analysis of their actuation strategies across diverse physical fields is notably lacking in the literature. This review addresses this gap by introducing a novel taxonomy based on field-controlled evolutionary pathways—mechanical → electromagnetic → chemical → biohybrid—and critically examining over 100 seminal studies through a six-dimensional framework encompassing design, dynamics, and performance. We demonstrate that hybrid field integration (e.g., pneumatic-chemical synergy) improves grasping robustness by 40% in cluttered environments compared to single-field systems. Notably, biohybrid actuators, which integrate living cells, exhibit over 90% motion similarity to biological models, while phase-transition materials allow for adaptive stiffness tuning (0.1–5 N·mm−1) in medical applications. Radar chart analysis further reveals fundamental trade-offs between energy efficiency, response speed, and scalability across the various fields. These insights provide a clear roadmap for the development of next-generation robots with embodied intelligence, emphasizing multi-field synergies and bio-inspired adaptability. Full article
(This article belongs to the Special Issue Bioinspired Locomotion Control: From Biomechanics to Robotics)
Show Figures

Figure 1

17 pages, 9744 KB  
Article
Effect of Secondary Aging Conditions on Mechanical Properties and Microstructure of AA7150 Aluminum Alloy
by Fei Chen, Han Wang, Yanan Jiang, Yu Liu, Qiang Zhou and Quanqing Zeng
Materials 2025, 18(20), 4763; https://doi.org/10.3390/ma18204763 - 17 Oct 2025
Viewed by 346
Abstract
Al-Zn-Mg-Cu alloys are widely used as heat-treatable ultra-high-strength materials in aerospace structural applications. While conventional single-stage aging enables high strength, advanced performance demands call for precise microstructural control via multi-stage aging. In this study, we employ a combination of scanning transmission electron microscopy [...] Read more.
Al-Zn-Mg-Cu alloys are widely used as heat-treatable ultra-high-strength materials in aerospace structural applications. While conventional single-stage aging enables high strength, advanced performance demands call for precise microstructural control via multi-stage aging. In this study, we employ a combination of scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) to investigate the microstructural evolution and its correlation with mechanical properties of AA7150 aluminum alloy subjected to two-step aging treatments, following a 6 h pre-aging at 120 °C. Through atomic-scale STEM imaging along the [110]Al zone axis, we systematically characterize the precipitation behavior of GPII zones, η′ phases, and equilibrium η phases both within the grains and at grain boundaries under varying secondary aging (SA) conditions. Our results reveal that increasing the SA temperature from 140 °C to 180 °C leads to coarsening and reduced number density of intragranular precipitates, while promoting the continuous and coarse precipitation of η phases along grain boundaries, accompanied by a widening of the precipitation-free zone (PFZ). Notably, SA at 160 °C induces the formation of fine, uniformly dispersed nanoscale η′ precipitates in the alloy, as confirmed by XRD phase analysis. Aging at this temperature markedly enhances the mechanical properties, achieving an ultimate tensile strength (UTS) of 613 MPa and a yield strength (YS) of 598 MPa, while presenting an exceptionally broad peak-aging plateau. Owing to this feature, a moderate extension of the SA duration does not reduce strength and can further improve ductility, increasing the elongation (EL) to 14.26%. These results demonstrate a novel two-step heat-treatment strategy that simultaneously achieves ultra-high strength and excellent ductility, highlighting the critical role of advanced electron microscopy in elucidating phase-transformation pathways that inform microstructure-guided alloy design and processing. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 2983 KB  
Article
A Comparative Study of Five Target Volume Definitions for Radiotherapy in Glioblastoma Multiforme
by Kamuran Ibis, Kubra Ozkaya Toraman, Canan Koksal Akbas, Ozlem Guler Guniken, Korhan Kokce, Sezi Ceren Gunay, Rasim Meral and Musa Altun
Medicina 2025, 61(10), 1860; https://doi.org/10.3390/medicina61101860 - 16 Oct 2025
Viewed by 422
Abstract
Background and Objectives: This study aimed to compare target volumes and organ-at-risk (OAR) doses using five different volume definitions in radiotherapy (RT) planning of patients with glioblastoma multiforme (GBM). Materials and Methods: Rigid image fusion was performed using simulation computed tomography and postoperative [...] Read more.
Background and Objectives: This study aimed to compare target volumes and organ-at-risk (OAR) doses using five different volume definitions in radiotherapy (RT) planning of patients with glioblastoma multiforme (GBM). Materials and Methods: Rigid image fusion was performed using simulation computed tomography and postoperative magnetic resonance imaging scans of 20 patients with GBM. Volumetric modulated arc therapy (VMAT) plans were generated according to three two-phase protocols—American Brain Tumor Consortium (ABTC), North Central Cancer Treatment Group/Alliance (NCCTG/Alliance), and Radiation Therapy Oncology Group/NRG (RTOG/NRG)—and two single-phase protocols—European Organisation for Research and Treatment of Cancer (EORTC) and European Society for Radiotherapy and Oncology–European Association of Neuro-Oncology (ESTRO/EANO)—each delivering a total dose of 60 Gy. OARs and dose constraints were evaluated. Statistical analysis was performed using the paired sample t-test. Results: The ESTRO/EANO volume had the smallest median PTV overall (p < 0.001). The lowest brain-PTV Dmean in the initial phase was observed in the ABTC group, followed closely by ESTRO/EANO (p < 0.001). Among boost volumes, the ABTC volume was the smallest, and the median brain-PTV Dmean was lowest in the ESTRO/EANO volume. ESTRO/EANO provided the lowest doses for contralateral and ipsilateral cochlea Dmean, brainstem D1cc, and contralateral lens Dmax. Notably, both EORTC and ESTRO/EANO plans maintained OAR doses within acceptable constraints, with ESTRO/EANO achieving the most consistently minimised exposure. Conclusions: Reduced irradiated brain volume, acceptable OAR preservation and practical applicability, the use of ESTRO-EANO and EORTC target volumes in radiotherapy of glioblastoma multiforme may provide dosimetric advantages that require further validation in clinical outcome studies. Full article
(This article belongs to the Special Issue High-Grade Gliomas: Updates and Challenges)
Show Figures

Figure 1

Back to TopTop