Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = small organic Se-containing compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 5080 KB  
Review
Selenium-Containing Agents Acting on Cancer—A New Hope?
by Sabrina Garbo, Silvia Di Giacomo, Dorota Łażewska, Ewelina Honkisz-Orzechowska, Antonella Di Sotto, Rossella Fioravanti, Clemens Zwergel and Cecilia Battistelli
Pharmaceutics 2023, 15(1), 104; https://doi.org/10.3390/pharmaceutics15010104 - 28 Dec 2022
Cited by 32 | Viewed by 6189
Abstract
Selenium-containing agents are more and more considered as an innovative potential treatment option for cancer. Light is shed not only on the considerable advancements made in understanding the complex biology and chemistry related to selenium-containing small molecules but also on Se-nanoparticles. Numerous Se-containing [...] Read more.
Selenium-containing agents are more and more considered as an innovative potential treatment option for cancer. Light is shed not only on the considerable advancements made in understanding the complex biology and chemistry related to selenium-containing small molecules but also on Se-nanoparticles. Numerous Se-containing agents have been widely investigated in recent years in cancer therapy in relation to tumour development and dissemination, drug delivery, multidrug resistance (MDR) and immune system-related (anti)cancer effects. Despite numerous efforts, Se-agents apart from selenocysteine and selenomethionine have not yet reached clinical trials for cancer therapy. The purpose of this review is to provide a concise critical overview of the current state of the art in the development of highly potent target-specific Se-containing agents. Full article
Show Figures

Figure 1

12 pages, 2511 KB  
Review
Selenomethionine: A Pink Trojan Redox Horse with Implications in Aging and Various Age-Related Diseases
by Muhammad Jawad Nasim, Mhd Mouayad Zuraik, Ahmad Yaman Abdin, Yannick Ney and Claus Jacob
Antioxidants 2021, 10(6), 882; https://doi.org/10.3390/antiox10060882 - 31 May 2021
Cited by 37 | Viewed by 6330
Abstract
Selenium is an essential trace element. Although this chalcogen forms a wide variety of compounds, there are surprisingly few small-molecule organic selenium compounds (OSeCs) in biology. Besides its more prominent relative selenocysteine (SeCys), the amino acid selenomethionine (SeMet) is one example. SeMet is [...] Read more.
Selenium is an essential trace element. Although this chalcogen forms a wide variety of compounds, there are surprisingly few small-molecule organic selenium compounds (OSeCs) in biology. Besides its more prominent relative selenocysteine (SeCys), the amino acid selenomethionine (SeMet) is one example. SeMet is synthesized in plants and some fungi and, via nutrition, finds its way into mammalian cells. In contrast to its sulfur analog methionine (Met), SeMet is extraordinarily redox active under physiological conditions and via its catalytic selenide (RSeR’)/selenoxide (RSe(O)R’) couple provides protection against reactive oxygen species (ROS) and other possibly harmful oxidants. In contrast to SeCys, which is incorporated via an eloquent ribosomal mechanism, SeMet can enter such biomolecules by simply replacing proteinogenic Met. Interestingly, eukaryotes, such as yeast and mammals, also metabolize SeMet to a small family of reactive selenium species (RSeS). Together, SeMet, proteins containing SeMet and metabolites of SeMet form a powerful triad of redox-active metabolites with a plethora of biological implications. In any case, SeMet and its family of natural RSeS provide plenty of opportunities for studies in the fields of nutrition, aging, health and redox biology. Full article
(This article belongs to the Special Issue Thiol-Based Redox Regulation of Cellular and Organismal Function)
Show Figures

Graphical abstract

10 pages, 2478 KB  
Article
Analysis of Carbon Tetrachloride-Extractable Species from Daxing Bituminous Coal
by Caixia Jv, Fenggang Li, Peng Yan, Mengmeng Fan, Linlin Jia, Hong Zhang, Xianyong Wei and Zhimin Zong
Appl. Sci. 2020, 10(2), 494; https://doi.org/10.3390/app10020494 - 9 Jan 2020
Cited by 6 | Viewed by 2862
Abstract
Soxhlet extraction (SE), ultrasonic-assisted extraction (UAE), and microwave-assisted extraction (MAE) were carried out on Daxing coal with carbon tetrachloride. The extracted components were analyzed by GC-MS while the residues of the coal after extractions were analyzed by FT-IR spectroscopy. The obtained IR spectra [...] Read more.
Soxhlet extraction (SE), ultrasonic-assisted extraction (UAE), and microwave-assisted extraction (MAE) were carried out on Daxing coal with carbon tetrachloride. The extracted components were analyzed by GC-MS while the residues of the coal after extractions were analyzed by FT-IR spectroscopy. The obtained IR spectra indicated that the functional groups were barely changed in strength for the coal before and after extractions concluding that the macromolecular structures of coal were not destroyed in the extraction processes. XRD diagrams showed the peak around θ = 47 was totally disappeared by all the three extractions, indicating that the graphite-like structural substances in the coal were totally destroyed in the extraction processes. GC/MS analysis showed that: (1) The SE method extracted the least number of substances from the coal; on the other hand, the extracted compounds are largely chlorinated which can be explained by the free radical mechanism. (2) MAE extracted 75 organic compounds of which 53 are oxygen-containing substances. A small portion of non-alkanes (1.19%) was found, which is in contrast to the other two extraction methods. Moreover, a few biomarker compounds were also identified including hexaoxane, 2-methylcholest-3-ene, 6,9,12-tripropylheptadecane, and 17α-21β-28,30-bisnorhopane. (3) The three extraction methods gave totally different extraction patterns for the same coal, highlighting that the extraction method can dominate the outcome of the extracted products. The mechanisms behind these extraction processes are discussed. This study provides a base for the future choice of the extraction methods in terms of outcomes of the extraction products. Full article
Show Figures

Figure 1

17 pages, 1124 KB  
Article
An Assessment of Computational Methods for Calculating Accurate Structures and Energies of Bio-Relevant Polysulfur/Selenium-Containing Compounds
by Sahar Nikoo, Paul J. Meister, John J. Hayward and James W. Gauld
Molecules 2018, 23(12), 3323; https://doi.org/10.3390/molecules23123323 - 14 Dec 2018
Cited by 13 | Viewed by 4959
Abstract
The heavier chalcogens sulfur and selenium are important in organic and inorganic chemistry, and the role of such chalcogens in biological systems has recently gained more attention. Sulfur and, to a lesser extent selenium, are involved in diverse reactions from redox signaling to [...] Read more.
The heavier chalcogens sulfur and selenium are important in organic and inorganic chemistry, and the role of such chalcogens in biological systems has recently gained more attention. Sulfur and, to a lesser extent selenium, are involved in diverse reactions from redox signaling to antioxidant activity and are considered essential nutrients. We investigated the ability of the DFT functionals (B3LYP, B3PW91, ωB97XD, M06-2X, and M08-HX) relative to electron correlation methods MP2 and QCISD to produce reliable and accurate structures as well as thermochemical data for sulfur/selenium-containing systems. Bond lengths, proton affinities (PA), gas phase basicities (GPB), chalcogen–chalcogen bond dissociation enthalpies (BDE), and the hydrogen affinities (HA) of thiyl/selenyl radicals were evaluated for a range of small polysulfur/selenium compounds and cysteine per/polysulfide. The S–S bond length was found to be the most sensitive to basis set choice, while the geometry of selenium-containing compounds was less sensitive to basis set. In mixed chalcogens species of sulfur and selenium, the location of the sulfur atom affects the S–Se bond length as it can hold more negative charge. PA, GPB, BDE, and HA of selenium systems were all lower, indicating more acidity and more stability of radicals. Extending the sulfur chain in cysteine results in a decrease of BDE and HA, but these plateau at a certain point (199 kJ mol−1 and 295 kJ mol−1), and PA and GPB are also decreased relative to the thiol, indicating that the polysulfur species exist as thiolates in a biological system. In general, it was found that ωB97XD/6-311G(2d,p) gave the most reasonable structures and thermochemistry relative to benchmark calculations. However, nuances in performance are observed and discussed. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

Back to TopTop