Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (284)

Search Parameters:
Keywords = snake venom toxin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2248 KB  
Article
Expression of L-Amino Acid Oxidase (Ml-LAAO) from the Venom of the Micrurus lemniscatus Snake in a Mammalian Cell System
by Ari Junio de Oliveira Costa, Alessandra Matavel, Patricia Cota Campos, Jaqueline Leal dos Santos, Ana Caroline Zampiroli Ataide, Sophie Yvette Leclercq, Valéria Gonçalves de Alvarenga, Sergio Caldas, William Castro-Borges and Márcia Helena Borges
Toxins 2025, 17(10), 491; https://doi.org/10.3390/toxins17100491 - 2 Oct 2025
Viewed by 620
Abstract
Animal venoms are rich in bioactive molecules with promising biotechnological potential. They comprise both protein and non-protein toxins. Among the protein toxins are enzymes, such as phospholipases A2, proteases and L-amino acid oxidases (LAAOs). LAAOs exhibit antimicrobial, antiparasitic, antiviral, and anticancer [...] Read more.
Animal venoms are rich in bioactive molecules with promising biotechnological potential. They comprise both protein and non-protein toxins. Among the protein toxins are enzymes, such as phospholipases A2, proteases and L-amino acid oxidases (LAAOs). LAAOs exhibit antimicrobial, antiparasitic, antiviral, and anticancer effects, making them potential candidates for biotechnological applications. These activities are linked to their ability to catalyze oxidative reactions that convert L-amino acids into α-keto acids, releasing ammonia and hydrogen peroxide, which contribute to the immune response, pathogen elimination, and oxidative stress. However, in snakes of the Micrurus genus, LAAOs generally represent a small portion of the venom (up to ~7%), which limits their isolation and study. To overcome this, the present study aimed to produce Ml-LAAO, the enzyme from Micrurus lemniscatus, through heterologous expression in mammalian cells. The gene sequence was inferred from its primary structure and synthesized into the pSecTag2B vector for expression in HEK293T cells. After purification using a His Trap-HP column, the presence of recombinant Ml-LAAO (Ml-LAAOrec) was confirmed by Western blot and mass spectrometry, validating its identity. These results support successful recombinant expression of Ml-LAAO and highlight its potential for scalable production and future biotechnological applications. Full article
(This article belongs to the Special Issue Biochemistry, Pathology and Applications of Venoms)
Show Figures

Figure 1

21 pages, 4001 KB  
Article
Exploring the Venom Diversity of Australian Taipans: Comparative Characterization of Oxyuranus microlepidotus and Oxyuranus scutellatus
by Guilherme Gonelli Paz, Patrick Jack Spencer, Daniel Carvalho Pimenta and Emidio Beraldo-Neto
Toxins 2025, 17(10), 488; https://doi.org/10.3390/toxins17100488 - 1 Oct 2025
Viewed by 1076
Abstract
The genus Oxyuranus, which includes some of the most venomous snakes in the world, presents a complex venom composition with potent neurotoxic and procoagulant effects. This study provides a comparative proteomic analysis of the venom of Oxyuranus microlepidotus (Inland Taipan) and Oxyuranus [...] Read more.
The genus Oxyuranus, which includes some of the most venomous snakes in the world, presents a complex venom composition with potent neurotoxic and procoagulant effects. This study provides a comparative proteomic analysis of the venom of Oxyuranus microlepidotus (Inland Taipan) and Oxyuranus scutellatus (Coastal Taipan), aiming to elucidate the molecular basis underlying their distinct toxicological profiles. Using high-resolution chromatographic fractionation and LC-MS/MS, we identified a core set of nine protein families shared between both species, including phospholipases A2 (PLA2), three-finger toxins (3FTx), natriuretic peptides (NTP), nerve growth factors (NGF), and prothrombin activators (PTA). O. microlepidotus venom exhibited greater diversity of 3FTxs and unique protein families, such as Waprin and 5′-nucleotidases, suggesting lineage-specific functional adaptations. Quantitative analysis revealed a greater relative abundance of PLA2s in O. scutellatus (66%) compared to O. microlepidotus (47%), whereas 3FTXs were more prominent in O. microlepidotus (33% vs. 9%). These interspecific differences likely underlie the distinct clinical manifestations of envenomation and reflect evolutionary divergence in the venom composition. Our findings provide molecular insights into taipan venom complexity and highlight novel toxin candidates with potential biomedical applications in neurobiology, hemostasis, and anti-infective therapy. Full article
(This article belongs to the Special Issue Animal Venoms: Unraveling the Molecular Complexity (2nd Edition))
Show Figures

Figure 1

43 pages, 3650 KB  
Review
Snake Toxins Affecting Blood Vessel Walls: Mode of Action and Biological Significance
by Alexey V. Osipov and Yuri N. Utkin
Int. J. Mol. Sci. 2025, 26(19), 9439; https://doi.org/10.3390/ijms26199439 - 26 Sep 2025
Cited by 1 | Viewed by 781
Abstract
One of the main targets for snake venoms in animal and human organisms is the circulatory system. Mechanisms of circulatory system injury within the victim’s body include, among others, the direct effect of snake toxins on structures in blood vessel walls. The interaction [...] Read more.
One of the main targets for snake venoms in animal and human organisms is the circulatory system. Mechanisms of circulatory system injury within the victim’s body include, among others, the direct effect of snake toxins on structures in blood vessel walls. The interaction of a toxin with cells and the extracellular matrix of the vessel wall may manifest as cytotoxicity, leading to cell death by necrosis or apoptosis, and damage to vascular wall structures. Such interactions may increase capillary permeability, promoting hemorrhage or edema, and may also induce alterations in vascular tone, resulting in changes in blood pressure. Snake toxins may also affect the growth, function, and regenerative ability of the endothelium, thus modulating angiogenesis; some toxins exert protective or anti-atherosclerotic effects. Toxins interacting with the vasculature may be classified as enzymes (phospholipases A2, metalloproteinases, L-amino acid oxidases, and hyaluronidases), proteins without enzymatic activity (vascular endothelial growth factors, disintegrins, C-type lectins and snaclecs, three-finger toxins, etc.), peptides (bradykinin-potentiating peptides, natriuretic peptides, sarafotoxins), and low-molecular-weight substances. This review summarizes the data on the vascular effects, particularly on the blood vessel wall, exhibited by various classes and groups of snake toxins. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Animal Toxins, Venoms and Antivenoms 2.0)
Show Figures

Figure 1

26 pages, 1692 KB  
Review
Peptides from Animal Venoms: A Promising Frontier in Diabetes Therapy via Multi-Target Mechanisms
by José Otávio Carvalho Sena de Almeida, Simón Gabriel Comerma-Steffensen, José Roberto de Souza de Almeida Leite, Ulf Simonsen and Daniel Dias Rufino Arcanjo
Pharmaceuticals 2025, 18(10), 1438; https://doi.org/10.3390/ph18101438 - 25 Sep 2025
Viewed by 947
Abstract
Background/Objectives: Bioactive peptides derived from animal venoms, toxins, and secretions demonstrate considerable pharmacological potential for use in the management of diabetes mellitus—a highly prevalent metabolic disorder of substantial global health significance. This integrative review systematically evaluated the current evidence regarding the pharmacological mechanisms [...] Read more.
Background/Objectives: Bioactive peptides derived from animal venoms, toxins, and secretions demonstrate considerable pharmacological potential for use in the management of diabetes mellitus—a highly prevalent metabolic disorder of substantial global health significance. This integrative review systematically evaluated the current evidence regarding the pharmacological mechanisms underlying the antidiabetic properties of these bioactive peptides. Methods: This study was guided by the research question “What are the mechanisms of action of peptides derived from animal venoms in modulating parameters associated with diabetes?” developed using the PECo framework. A comprehensive literature search was executed across Scopus, PubMed, and Web of Science, focusing on studies from the last five years. Out of 190 identified articles, 17 satisfied the inclusion criteria. Results: Twenty-eight distinct peptides were characterized, exhibiting structural diversity with 7–115 amino acid residues and molecular weights of 900–13,000 Da. These compounds were sourced from venomous taxa including sea anemones, marine snails, spiders, centipedes, scorpions, and snakes. Their antidiabetic mechanisms encompassed glucagon-like peptide-1 (GLP-1) receptor agonism, insulin receptor activation, potassium channel inhibition, glucose transporter type 4 (GLUT4) upregulation, and α-amylase inhibition. Sequence analyses revealed substantial homology among peptides with analogous mechanisms—notably Con-Ins and ILP-Ap04, plus SpTx1 and SsTx-4—suggesting that structural determinants underlie their functional characteristics. Toxicological evaluations of nine peptides demonstrated low-toxicity profiles despite originating from toxic venom, crucial for therapeutic development. Conclusions: These peptides exhibited exceptional pharmacological potency with effective doses in nanogram-to-nanomole per kilogram ranges. Collectively, our findings underscore the therapeutic potential of venom-derived peptides as innovative candidates for use in diabetes management. Full article
Show Figures

Figure 1

47 pages, 13281 KB  
Review
Orphan Three-Finger Toxins from Snake Venoms: Unexplored Library of Novel Biological Ligands with Potential New Structures and Functions
by Cho Yeow Koh and R. Manjunatha Kini
Int. J. Mol. Sci. 2025, 26(18), 8792; https://doi.org/10.3390/ijms26188792 - 9 Sep 2025
Viewed by 1449
Abstract
Three-finger toxins (3FTxs) from snake venom are the most abundant toxin family of mini non-enzymatic proteins, comprising 40–70% of the venom proteome. Despite their common three-finger structural scaffold, 3FTxs exhibit diverse pharmacological functions. Other than neurotoxins, they also include analgesic acid-sensing ion channel [...] Read more.
Three-finger toxins (3FTxs) from snake venom are the most abundant toxin family of mini non-enzymatic proteins, comprising 40–70% of the venom proteome. Despite their common three-finger structural scaffold, 3FTxs exhibit diverse pharmacological functions. Other than neurotoxins, they also include analgesic acid-sensing ion channel blockers, sodium and potassium channel modulators, integrin- and G-protein-coupled-receptor-targeting ligands, and gamma-aminobutyric acid type A receptor modulators that collectively span pain, cardiovascular, oncologic, and neurologic indications. However, in this fast-growing 3FTx family, there are several hundred 3FTxs whose functions have not yet been determined. Here, we systematically analyzed over 550 amino acid sequences of 3FTxs. Based on their structural features, we have classified them into more than 150 distinct subgroups. This updated information on this novel 3FTx toolkit will provide an unexplored library of investigational ligands and pharmacophores with potential therapeutic and diagnostic leads, as well as research tools. Thus, this review will provide new impetus in toxin research and pave the way for the design of potent, selective ligands for new sets of target receptors, ion channels, and enzymes. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

19 pages, 1559 KB  
Article
Functional and Proteomic Characterization of Acanthophis antarcticus Venom: Evidence of Fibrinogenolytic and Serine Peptidase Inhibitory Activities
by Monica V. Falla, Enzo P. Sousa, Karen de Morais-Zani, Rodrigo Valladão, Natalia G. Santos, Nathalia C. Galizio, Mariana S. Rodrigues, Heloisa F. Almeida, Adriana R. Lopes, Mauricio N. Moises, Ivo Lebrun, Patrick J. Spencer, Daniel C. Pimenta and Guilherme R. Coelho
Toxins 2025, 17(8), 405; https://doi.org/10.3390/toxins17080405 - 13 Aug 2025
Viewed by 986
Abstract
Acanthophis antarcticus, commonly known as the death adder, is a venomous Australian snake and a member of the Elapidae family. Due to its robust body and triangular head, it was historically misclassified as a viper. Its venom is known for neurotoxic, hemorrhagic, [...] Read more.
Acanthophis antarcticus, commonly known as the death adder, is a venomous Australian snake and a member of the Elapidae family. Due to its robust body and triangular head, it was historically misclassified as a viper. Its venom is known for neurotoxic, hemorrhagic, and hemolytic effects but displays low anticoagulant activity. Although key toxins such as three-finger toxins (3FTxs) and phospholipase A2 (PLA2) have been previously described, no study has integrated proteomic and functional analyses to date. In this study, we conducted a comprehensive characterization of A. antarcticus venom. Reverse-phase high-performance liquid chromatography (RP-HPLC) followed by LC-MS/MS enabled the identification of nine toxin families, with 3FTxs and PLA2 as the most abundant. Less abundant but functionally relevant toxins included Kunitz-type inhibitors, CRISP, SVMP, LAAO, NGF, natriuretic peptides, and nucleotidases, the latter being reported here for the first time based on proteomic evidence. Hydrophilic interaction chromatography (HILIC) coupled with MALDI-TOF was used to analyze polar, non-retained venom components, revealing the presence of low-molecular-weight peptides (2–4 kDa). Functional assays confirmed the enzymatic activity of HYAL, PLA2, and LAAO and, for the first time, demonstrated inhibitory activity on serine peptidases and fibrinogenolytic activity in the venom of this species. These findings expand our understanding of the biochemical and functional diversity of this venom. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Graphical abstract

18 pages, 1147 KB  
Article
Geographic Variation in Venom Proteome and Toxicity Profiles of Chinese Naja atra: Implications for Antivenom Optimization
by Jianqi Zhao, Xiao Shi, Guangyao Liu, Yang Yang and Chunhong Huang
Toxins 2025, 17(8), 404; https://doi.org/10.3390/toxins17080404 - 12 Aug 2025
Viewed by 1058
Abstract
Differences in venom within snake species can affect the efficacy of antivenom, but how this variation manifests across broad geographical scales remains poorly understood. Naja atra envenoming causes severe morbidity in China, yet whether intraspecific venom variation exists across mainland regions is unknown. [...] Read more.
Differences in venom within snake species can affect the efficacy of antivenom, but how this variation manifests across broad geographical scales remains poorly understood. Naja atra envenoming causes severe morbidity in China, yet whether intraspecific venom variation exists across mainland regions is unknown. We collected venom samples from seven biogeographical regions (spanning > 2000 km latitude). Venom lethality, systemic toxicity (organ damage biomarkers and coagulopathy), and histopathology of major organs were assessed. Neutralization by antivenom and label-free quantitative proteomics (LC-MS/MS) were also performed. The results revealed a non-uniform LD50, with venom from Yunnan exhibiting the highest lethality (2.1-fold higher than venom from Zhejiang, p < 0.001). Commercial antivenom showed lower neutralization efficacy against the venom from the Yunnan, Guangxi, and Guangdong regions. Regarding organ damage and coagulopathy, venom from Yunnan caused severe liver damage, while venom from the Zhejiang region induced significant coagulopathy. Finally, proteomic profiles identified 175 proteins: venom from Yunnan was dominated by phospholipases, contrasting with eastern regions (Anhui/Zhejiang: cytotoxins CTXs > 30%). Venom from Guangdong contained higher levels of the weak neurotoxin NNAM2 (5.2%). Collectively, significant geographical divergence exists in Chinese Cobra venom composition, systemic toxicity, and antivenom susceptibility, driven by differential expression of key toxins. Our study provides a molecular basis for precision management of snakebites, and we call for optimized antivenom production tailored to regional variations. Full article
(This article belongs to the Special Issue Animal Venoms: Unraveling the Molecular Complexity (2nd Edition))
Show Figures

Figure 1

20 pages, 1773 KB  
Article
Make Acetylcholine Great Again! Australian Skinks Evolved Multiple Neurotoxin-Proof Nicotinic Acetylcholine Receptors in Defiance of Snake Venom
by Uthpala Chandrasekara, Marco Mancuso, Glenn Shea, Lee Jones, Jacek Kwiatkowski, Dane Trembath, Abhinandan Chowdhury, Terry Bertozzi, Michael G. Gardner, Conrad J. Hoskin, Christina N. Zdenek and Bryan G. Fry
Int. J. Mol. Sci. 2025, 26(15), 7510; https://doi.org/10.3390/ijms26157510 - 4 Aug 2025
Viewed by 5374
Abstract
Many vertebrates have evolved resistance to snake venom as a result of coevolutionary chemical arms races. In Australian skinks (family Scincidae), who often encounter venomous elapid snakes, the frequency, diversity, and molecular basis of venom resistance have been unexplored. This study investigated the [...] Read more.
Many vertebrates have evolved resistance to snake venom as a result of coevolutionary chemical arms races. In Australian skinks (family Scincidae), who often encounter venomous elapid snakes, the frequency, diversity, and molecular basis of venom resistance have been unexplored. This study investigated the evolution of neurotoxin resistance in Australian skinks, focusing on mutations in the muscle nicotinic acetylcholine receptor (nAChR) α1 subunit’s orthosteric site that prevent pathophysiological binding by α-neurotoxins. We sampled a broad taxonomic range of Australian skinks and sequenced the nAChR α1 subunit gene. Key resistance-conferring mutations at the toxin-binding site (N-glycosylation motifs, proline substitutions, arginine insertions, changes in the electrochemical state of the receptor, and novel cysteines) were identified and mapped onto the skink organismal phylogeny. Comparisons with other venom-resistant taxa (amphibians, mammals, and reptiles) were performed, and structural modelling and binding assays were used to evaluate the impact of these mutations. Multiple independent origins of α-neurotoxin resistance were found across diverse skink lineages. Thirteen lineages evolved at least one resistance motif and twelve additional motifs evolved within these lineages, for a total of twenty-five times of α-neurotoxic venoms resistance. These changes sterically or electrostatically inhibit neurotoxin binding. Convergent mutations at the orthosteric site include the introduction of N-linked glycosylation sites previously known from animals as diverse as cobras and mongooses. However, an arginine (R) substitution at position 187 was also shown to have evolved on multiple occasions in Australian skinks, a modification previously shown to be responsible for the Honey Badger’s iconic resistance to cobra venom. Functional testing confirmed this mode of resistance in skinks. Our findings reveal that venom resistance has evolved extensively and convergently in Australian skinks through repeated molecular adaptations of the nAChR in response to the enormous selection pressure exerted by elapid snakes subsequent to their arrival and continent-wide dispersal in Australia. These toxicological findings highlight a remarkable example of convergent evolution across vertebrates and provide insight into the adaptive significance of toxin resistance in snake–lizard ecological interactions. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

14 pages, 1470 KB  
Article
Coffea arabica Extracts and Metabolites with Potential Inhibitory Activity of the Major Enzymes in Bothrops asper Venom
by Erika Páez, Yeisson Galvis-Pérez, Jaime Andrés Pereañez, Lina María Preciado and Isabel Cristina Henao-Castañeda
Pharmaceuticals 2025, 18(8), 1151; https://doi.org/10.3390/ph18081151 - 1 Aug 2025
Viewed by 672
Abstract
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential [...] Read more.
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential as therapeutic agents to inhibit the local effects induced by B. asper venom. Methods: Three enzymatic assays were performed: inhibition of the procoagulant and amidolytic activities of snake venom serine proteinases (SVSPs); inhibition of the proteolytic activity of snake venom metalloproteinases (SVMPs); and inhibition of the catalytic activity of snake venom phospholipases A2 (PLA2s). Additionally, molecular docking studies were conducted to propose potential inhibitory mechanisms of the metabolites chlorogenic acid, caffeine, and caffeic acid. Results: Green and roasted coffee extracts partially inhibited the enzymatic activity of SVSPs and SVMPs. Notably, the green coffee extract, at a 1:20 ratio, effectively inhibited PLA2 activity. Among the individual metabolites tested, partial inhibition of SVSP and PLA2 activities was observed, whereas no significant inhibition of SVMP proteolytic activity was detected. Chlorogenic acid was the most effective metabolite, significantly prolonging plasma coagulation time and achieving up to 82% inhibition at a concentration of 62.5 μM. Molecular docking analysis revealed interactions between chlorogenic acid and key active site residues of SVSP and PLA2 enzymes from B. asper venom. Conclusions: The roasted coffee extract demonstrated the highest inhibitory effect on venom toxins, potentially due to the formation of bioactive compounds during the Maillard reaction. Molecular modeling suggests that the tested inhibitors may bind to and occupy the substrate-binding clefts of the target enzymes. These findings support further in vivo research to explore the use of plant-derived polyphenols as adjuvant therapies in the treatment of snakebite envenoming. Full article
Show Figures

Graphical abstract

51 pages, 17514 KB  
Review
Variations in “Functional Site” Residues and Classification of Three-Finger Neurotoxins in Snake Venoms
by R. Manjunatha Kini and Cho Yeow Koh
Toxins 2025, 17(8), 364; https://doi.org/10.3390/toxins17080364 - 24 Jul 2025
Cited by 1 | Viewed by 1240
Abstract
Three-finger toxins (3FTxs) are the largest group of nonenzymatic toxins found in snake venoms. Among them, neurotoxins that target nicotinic acetylcholine receptors are the most well-studied ligands. In addition to the classical neurotoxins, several other new classes have been characterized for their structure, [...] Read more.
Three-finger toxins (3FTxs) are the largest group of nonenzymatic toxins found in snake venoms. Among them, neurotoxins that target nicotinic acetylcholine receptors are the most well-studied ligands. In addition to the classical neurotoxins, several other new classes have been characterized for their structure, receptor subtype, and species selectivity. Here, we systematically analyzed over 700 amino acid sequences of three-finger neurotoxins that interact with nicotinic acetylcholine receptors. Based on the amino acid residue substitutions in the functional sites and structural features of various classes of neurotoxins, we have classified them into over 150 distinct subgroups. Currently, only a small number of typical examples representing these subgroups have been studied for their structure, function, and subtype selectivity. The functional site residues responsible for their interaction with specific receptor subtypes of several toxins are yet to be identified. The molecular details of each subgroup representative toxin with its target receptor will contribute towards the understanding of subtype- and/or interface-selectivity. Thus, this review will provide new impetus in the toxin research and pave the way for the design of potent, selective ligands for nicotinic acetylcholine receptors. Full article
(This article belongs to the Special Issue Venom Genes and Genomes of Venomous Animals: Evolution and Variation)
Show Figures

Figure 1

14 pages, 1611 KB  
Article
Explaining Echis: Proteotranscriptomic Profiling of Echis carinatus carinatus Venom
by Salil Javed, Prasad Gopalkrishna Gond, Arpan Samanta, Ajinkya Unawane, Muralidhar Nayak Mudavath, Anurag Jaglan and Kartik Sunagar
Toxins 2025, 17(7), 353; https://doi.org/10.3390/toxins17070353 - 16 Jul 2025
Cited by 1 | Viewed by 2258
Abstract
Snakebite remains the most neglected tropical disease globally, with India experiencing the highest rates of mortality and morbidity. While most envenomation cases in India are attributed to the ‘big four’ snakes, research has predominantly focused on Russell’s viper (Daboia russelii), [...] Read more.
Snakebite remains the most neglected tropical disease globally, with India experiencing the highest rates of mortality and morbidity. While most envenomation cases in India are attributed to the ‘big four’ snakes, research has predominantly focused on Russell’s viper (Daboia russelii), spectacled cobra (Naja naja), and common krait (Bungarus caeruleus), leading to a considerable gap in our understanding of saw-scaled viper (Echis carinatus carinatus) venoms. For instance, the venom gland transcriptome and inter- and intra-population venom variation in E. c. carinatus have largely remained uninvestigated. A single study to date has assessed the effectiveness of commercial antivenoms against this species under in vivo conditions. To address these crucial knowledge gaps, we conducted a detailed investigation of E. c. carinatus venom and reported the first venom gland transcriptome. A proteotranscriptomic evaluation revealed snake venom metalloproteinases, C-type lectins, L-amino acid oxidases, phospholipase A2s, and snake venom serine proteases as the major toxins. Moreover, we assessed the intra-population venom variation in this species using an array of biochemical analyses. Finally, we determined the venom toxicity and the neutralising efficacy of a commercial antivenom using a murine model of snake envenoming. Our results provide a thorough molecular and functional profile of E. c. carinatus venom. Full article
(This article belongs to the Special Issue Venom Genes and Genomes of Venomous Animals: Evolution and Variation)
Show Figures

Figure 1

19 pages, 6405 KB  
Article
The Venom Proteome of the Ecologically Divergent Australian Elapid, Southern Death Adder Acanthophis antarcticus
by Theo Tasoulis, C. Ruth Wang, Shaun Ellis, Tara L. Pukala, Joanna Sumner, Kate Murphy, Nathan Dunstan and Geoffrey K. Isbister
Toxins 2025, 17(7), 352; https://doi.org/10.3390/toxins17070352 - 14 Jul 2025
Cited by 1 | Viewed by 2132
Abstract
The composition of Australian snake venoms is the least well-known of any continent. We characterised the venom proteome of the southern death adder Acanthophis antarcticus—one of the world’s most morphologically and ecologically divergent elapids. Using a combined bottom-up proteomic and venom gland [...] Read more.
The composition of Australian snake venoms is the least well-known of any continent. We characterised the venom proteome of the southern death adder Acanthophis antarcticus—one of the world’s most morphologically and ecologically divergent elapids. Using a combined bottom-up proteomic and venom gland transcriptomic approach employing reverse-phase chromatographic and gel electrophoretic fractionation strategies in the bottom-up proteomic workflow, we characterised 92.8% of the venom, comprising twelve different toxin identification hits belonging to seven toxin families. The most abundant protein family was three-finger toxins (3FTxs; 59.8% whole venom), consisting mostly of one long-chain neurotoxin, alpha-elapitoxin-Aa2b making up 59% of the venom and two proteoforms of another long-chain neurotoxin. Phospholipase A2s (PLA2s) were the second most abundant, with four different toxins making up 22.5% of the venom. One toxin was similar to two previous non-neurotoxic PLA2s, making up 16% of the venom. The remaining protein families present were CTL (3.6%), NGF (2.5%), CRiSP (1.8%), LAAO (1.4%), and AChE (0.8%). A. antarcticus is the first Australian elapid characterised that has a 3FTx dominant venom, a composition typical of elapids on other continents, particularly cobras Naja sp. The fact that A. antarcticus has a venom composition similar to cobra venom while having a viper-like ecology illustrates that similar venom expressions can evolve independently of ecology. The predominance of post-synaptic neurotoxins (3FTxs) and pre-synaptic neurotoxins (PLA2) is consistent with the neurotoxic clinical effects of envenomation in humans. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

21 pages, 1637 KB  
Article
Comparative Label-Based Proteomics of Venoms from Echis ocellatus, Naja nigricollis, and Bitis arietans
by Abdulbaki Alfa-Ibrahim Adio, Samuel Odo Uko, Jiddah Muhammad Lawal, Ibrahim Malami, Nafiu Lawal, Amina Jega Yusuf Jega, Bilyaminu Abubakar, Muhammad Bashir Bello, Kasimu Ghandi Ibrahim, Murtala Bello Abubakar, Abdussamad Muhammad Abdussamad, Mujtaba Sulaiman Abubakar and Mustapha Umar Imam
Proteomes 2025, 13(3), 31; https://doi.org/10.3390/proteomes13030031 - 2 Jul 2025
Viewed by 2042
Abstract
Background: Snake envenomation is a major public health issue in Nigeria, primarily due to bites from Echis ocellatus, Naja nigricollis, and Bitis arietans. Understanding their venom composition is essential for effective antivenom development. This study characterizes and compares the venom proteomes [...] Read more.
Background: Snake envenomation is a major public health issue in Nigeria, primarily due to bites from Echis ocellatus, Naja nigricollis, and Bitis arietans. Understanding their venom composition is essential for effective antivenom development. This study characterizes and compares the venom proteomes of these snakes using iTRAQ-based proteomics, focusing on key toxin families and their relative abundances. Methods: Venom samples were ethically collected from adult snakes, pooled by species, lyophilized, and stored for proteomic analysis. Proteins were extracted, digested with trypsin, and labeled with iTRAQ. Peptides were analyzed via mass spectrometry, and data were processed using Mascot and IQuant for protein identification and quantification. Results: E. ocellatus and B. arietans venoms had similar profiles, rich in C-type lectins, serine proteases, and phospholipase A2s. These comprised 17%, 11%, and 5% in E. ocellatus and 47%, 10%, and 7% in B. arietans, with metalloproteinases dominating both (53% and 47%). In N. nigricollis, three-finger toxins (9%) were most abundant, followed by metalloproteinases (3%). All species shared four core protein families, with N. nigricollis also containing four uncharacterized proteins. Conclusions: This study highlights venom compositional differences, advancing snake venom biology and informing targeted antivenom development. Full article
Show Figures

Graphical abstract

20 pages, 3412 KB  
Article
Snake Venom Metalloproteinases from Puff Adder and Saw-Scaled Viper Venoms Cause Cytotoxic Effects in Human Keratinocytes
by Keirah E. Bartlett, Adam Westhorpe, Mark C. Wilkinson and Nicholas R. Casewell
Toxins 2025, 17(7), 328; https://doi.org/10.3390/toxins17070328 - 28 Jun 2025
Viewed by 1868
Abstract
Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The puff adder (Bitis arietans) and saw-scaled viper (Echis romani) have cytotoxic venoms that cause permanent injury via dermonecrosis around the bite site. Identifying the [...] Read more.
Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The puff adder (Bitis arietans) and saw-scaled viper (Echis romani) have cytotoxic venoms that cause permanent injury via dermonecrosis around the bite site. Identifying the cytotoxic toxins within these venoms will allow for the development of targeted treatments to prevent snakebite morbidity. In this study, venoms from both species were fractionated using gel filtration chromatography, and a combination of cytotoxicity approaches, SDS-PAGE gel electrophoresis, and enzymatic assays were applied to identify the venom cytotoxins in the resulting fractions. Our results indicate that snake venom metalloproteinase (SVMP) toxins are responsible for causing cytotoxic effects across both venoms. The PI subclass of SVMPs is likely the main driver of cytotoxicity following envenoming by B. arietans, while the structurally distinct PIII subclass of SVMPs is mostly responsible for conveying this effect in E. romani venom. Identifying distinct SVMPs as cytotoxicity-causing toxins in these two African viper venoms will facilitate the future design and development of novel therapeutics targeting these medically important venoms, which in turn could help to mitigate the severe life- and limb-threatening consequences of tropical snakebites. Full article
Show Figures

Figure 1

18 pages, 4121 KB  
Article
Defence Against Desiccation and Predation in Lophyohylini Casque-Headed Tree Frogs
by César Alexandre, Pedro L. Mailho-Fontana, Bianca C. L. F. Távora, Marta M. Antoniazzi and Carlos Jared
Toxins 2025, 17(6), 303; https://doi.org/10.3390/toxins17060303 - 16 Jun 2025
Cited by 1 | Viewed by 3845
Abstract
Casque-headed tree frogs (Lophyohylini) can have a very large and distinctive head characterised by hyperossification of their cranial skin. This type of skull was primarily associated with phragmosis, a behaviour in which the frog enters holes backwards and seals them with its head [...] Read more.
Casque-headed tree frogs (Lophyohylini) can have a very large and distinctive head characterised by hyperossification of their cranial skin. This type of skull was primarily associated with phragmosis, a behaviour in which the frog enters holes backwards and seals them with its head to prevent water loss in challenging environments. Further investigations revealed that hyperossification also gives rise to bony spines interspersed with skin poison glands. These peculiar anatomical features of the head make it challenging for predators to prey on the frogs in phragmosis. When bitten on the head, the bite pressure causes the spines to cross the poison glands, allowing the injection of toxins into the predator’s mouth. We studied the head morphology of different Lophyohylini species along with some characteristics of their cutaneous poison, both in the field and in the laboratory. These frogs exemplify distinct chemical defence strategies, highlighting the differences between venom and poison. Notably, some species can cause self-poisoning in predators by injecting poison (in this case, venom) through their head spines, similar to the use of fangs by snakes. Full article
(This article belongs to the Collection Evolution of Venom Systems)
Show Figures

Figure 1

Back to TopTop