Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = soluble guanylyl cyclase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 12838 KB  
Article
CO and NO Coordinate Developmental Neuron Migration
by Sabine Knipp, Arndt Rohwedder and Gerd Bicker
Int. J. Mol. Sci. 2025, 26(16), 7783; https://doi.org/10.3390/ijms26167783 - 12 Aug 2025
Viewed by 2923
Abstract
Similarly to the short-lived messenger nitric oxide (NO), the more stable carbon monoxide (CO) molecule can also activate soluble guanylyl cyclase (sGC) to increase cGMP levels. However, CO-induced cGMP production is much less efficient. Using an accessible invertebrate model, we dissect a potential [...] Read more.
Similarly to the short-lived messenger nitric oxide (NO), the more stable carbon monoxide (CO) molecule can also activate soluble guanylyl cyclase (sGC) to increase cGMP levels. However, CO-induced cGMP production is much less efficient. Using an accessible invertebrate model, we dissect a potential interaction between the canonical NO/sGC/cGMP and CO signalling pathways during development. The embryonic midgut of locusts is innervated by neurons that migrate in four discrete chains on its outer surface. Transcellular diffusing NO stimulates enteric neuron migration via cGMP signalling. The application of an NO donor results in virtually all enteric neurons being cGMP-immunoreactive while CO increases cGMP production only in approximately 33% of the migrating neurons. Cellular CO release appears to act as a slow down signal for motility. We quantify how CO specifically increases the interneuronal distance during chain migration. Moreover, time-lapse microscopy shows that CO reduces the directionality of the migrating neurons. These findings support the function of NO and CO as antagonistic signals for the coordination of collective cell migration during the development of the enteric nervous system. These experiments and the resulting insights into basic scientific questions prove once more that locust embryos are not only preparations for basic research, but also relevant models for screening of drugs targeting NO and CO signalling pathways as well as for isolating compounds affecting neuronal motility in general. Full article
(This article belongs to the Collection New Advances in Molecular Toxicology)
Show Figures

Figure 1

15 pages, 3066 KB  
Article
Vasodilatory Effect of n-Butanol Extract from Sanguisorba officinalis L. and Its Mechanism
by Hangyu Jin, Jiaze Li, Shuyuan Wang, Enyi Jin, Jun Zhe Min, Gao Li, Yun Jung Lee and Lihua Cao
Plants 2025, 14(7), 1095; https://doi.org/10.3390/plants14071095 - 1 Apr 2025
Viewed by 986
Abstract
The dried root of Sanguisorba officinalis L. (commonly known as Diyu) has been studied for its various pharmacological effects, including its antibacterial, antitumor, antioxidant, and anti-inflammatory activities. In the present study, primary cultured vascular endothelial cells (HUVECs) and isolated phenylephrine-precontracted rat thoracic aortic [...] Read more.
The dried root of Sanguisorba officinalis L. (commonly known as Diyu) has been studied for its various pharmacological effects, including its antibacterial, antitumor, antioxidant, and anti-inflammatory activities. In the present study, primary cultured vascular endothelial cells (HUVECs) and isolated phenylephrine-precontracted rat thoracic aortic rings were examined to investigate the possible mechanism of a butanol extract of Diyu (BSO) in its vascular relaxant effect. HUVECs treated with BSO produced a significantly higher amount of nitric oxide (NO) compared to the control. However, its production was inhibited by pretreatment with NG-nitro-L-arginine methylester (L-NAME) or wortmannin. BSO also increased the phosphorylation levels of endothelial nitric oxide synthase (eNOS) and Akt. In the aortic ring, BSO relaxed PE-precontracted rat thoracic aortic rings in a concentration-dependent manner. The absence of the vascular endothelium significantly attenuated BSO-induced vasorelaxation. The non-selective NOS inhibitor, L-NAME, and the selective inhibitor of soluble guanylyl cyclase (sGC), 1H-[1,2,4]-oxadiazolo-[4,3-α]-quinoxalin-1-one (ODQ), dramatically inhibited the BSO-induced relaxation effect of the endothelium-intact aortic ring. Ca2+-free buffer and intracellular Ca2+ homeostasis regulators (TG, Gd3+, and 2–APB) inhibited BSO-induced vasorelaxation. In Ca2+-free Krebs solution, BSO markedly reduced PE-induced contraction. Vasodilation induced by BSO was significantly inhibited by wortmannin, an inhibitor of Akt. Pretreatment with the non-selective inhibitor of Ca2+-activated K+ channels (KCa), tetraethylammonium (TEA), significantly attenuated the BSO-induced vasorelaxant effect. Furthermore, BSO decreased the systolic blood pressure and heart rate in a concentration-dependent manner in rats. In conclusion, BSO induces vasorelaxation via endothelium-dependent signaling, primarily through the activation of the PI3K-Akt-eNOS-NO signaling pathway in endothelial cells, and the activation of the NO-sGC-cGMP-K⁺ channels pathway in vascular smooth muscle cells. Additionally, store-operated Ca2+ entry (SOCE)-eNOS pathways and the inhibition of Ca2⁺ mobilization from intracellular stores contribute to BSO-induced vasorelaxation. Full article
(This article belongs to the Special Issue Ethnobotanical and Pharmacological Study of Medicinal Plants)
Show Figures

Figure 1

19 pages, 4549 KB  
Article
The Influence of Cell Isolation and Culturing on Natriuretic Peptide Receptors in Aortic Vascular Smooth Muscle Cells
by Christine Rager, Tobias Klöpper, Sabine Tasch, Michael Raymond Whittaker, Betty Exintaris, Andrea Mietens and Ralf Middendorff
Cells 2025, 14(1), 51; https://doi.org/10.3390/cells14010051 - 4 Jan 2025
Viewed by 1655
Abstract
Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs [...] Read more.
Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing. Previously, we showed that even popular reference genes changed dramatically after SMC isolation from aorta. Regarding NP receptors, a substantial amount of data relies on cell culture. We hypothesize that the NP/cGMP system in intact aortic tunica media differs from isolated and cultured aortic SMCs. Therefore, we studied isolation and culturing effects on the expression of NP receptors GC-A, GC-B, and NP clearance receptor (NPRC) compared to sGC. We investigated intact tunica media and primary SMCs from the longitudinal halves of the same rat aorta. GC activity was monitored by cyclic guanosine monophosphate (cGMP). In addition, we hypothesize that there are sex-dependent differences in the NP/cGMP cascade in both intact tissue and cultured cells. We, therefore, analyzed a male and female cohort. Expression was quantified by RT-qPCR comparing aortic media and SMCs with our recently validated reference gene (RG) small nuclear ribonucleoprotein 2 (U2). Only GC-A was stably expressed. In intact media, GC-A exceeded GC-B and NPRC. However, GC-B, NPRC, and sGC were dramatically upregulated in cultured SMCs of the same aortae different from the stable GC-A. The expression was mirrored by NP-induced GC activity. In cultured cells, changes in GC activity were delayed compared to receptor expression. Minor differences between both sexes could also be revealed. Thus, isolation and culture fundamentally alter the cGMP system in vascular SMCs with potential impact on drug testing and scRNAseq. Especially, the dramatic increase in the clearance receptor NPRC in culture might distort all physiological ANP, BNP, and CNP effects. Full article
(This article belongs to the Special Issue Role of Vascular Smooth Muscle Cells in Cardiovascular Disease)
Show Figures

Figure 1

22 pages, 919 KB  
Review
Signaling Paradigms of H2S-Induced Vasodilation: A Comprehensive Review
by Constantin Munteanu, Cristina Popescu, Andreea-Iulia Vlădulescu-Trandafir and Gelu Onose
Antioxidants 2024, 13(10), 1158; https://doi.org/10.3390/antiox13101158 - 25 Sep 2024
Cited by 28 | Viewed by 4687
Abstract
Hydrogen sulfide (H2S), a gas traditionally considered toxic, is now recognized as a vital endogenous signaling molecule with a complex physiology. This comprehensive study encompasses a systematic literature review that explores the intricate mechanisms underlying H2S-induced vasodilation. The vasodilatory [...] Read more.
Hydrogen sulfide (H2S), a gas traditionally considered toxic, is now recognized as a vital endogenous signaling molecule with a complex physiology. This comprehensive study encompasses a systematic literature review that explores the intricate mechanisms underlying H2S-induced vasodilation. The vasodilatory effects of H2S are primarily mediated by activating ATP-sensitive potassium (K_ATP) channels, leading to membrane hyperpolarization and subsequent relaxation of vascular smooth muscle cells (VSMCs). Additionally, H2S inhibits L-type calcium channels, reducing calcium influx and diminishing VSMC contraction. Beyond ion channel modulation, H2S profoundly impacts cyclic nucleotide signaling pathways. It stimulates soluble guanylyl cyclase (sGC), increasing the production of cyclic guanosine monophosphate (cGMP). Elevated cGMP levels activate protein kinase G (PKG), which phosphorylates downstream targets like vasodilator-stimulated phosphoprotein (VASP) and promotes smooth muscle relaxation. The synergy between H2S and nitric oxide (NO) signaling further amplifies vasodilation. H2S enhances NO bioavailability by inhibiting its degradation and stimulating endothelial nitric oxide synthase (eNOS) activity, increasing cGMP levels and potent vasodilatory responses. Protein sulfhydration, a post-translational modification, plays a crucial role in cell signaling. H2S S-sulfurates oxidized cysteine residues, while polysulfides (H2Sn) are responsible for S-sulfurating reduced cysteine residues. Sulfhydration of key proteins like K_ATP channels and sGC enhances their activity, contributing to the overall vasodilatory effect. Furthermore, H2S interaction with endothelium-derived hyperpolarizing factor (EDHF) pathways adds another layer to its vasodilatory mechanism. By enhancing EDHF activity, H2S facilitates the hyperpolarization and relaxation of VSMCs through gap junctions between endothelial cells and VSMCs. Recent findings suggest that H2S can also modulate transient receptor potential (TRP) channels, particularly TRPV4 channels, in endothelial cells. Activating these channels by H2S promotes calcium entry, stimulating the production of vasodilatory agents like NO and prostacyclin, thereby regulating vascular tone. The comprehensive understanding of H2S-induced vasodilation mechanisms highlights its therapeutic potential. The multifaceted approach of H2S in modulating vascular tone presents a promising strategy for developing novel treatments for hypertension, ischemic conditions, and other vascular disorders. The interaction of H2S with ion channels, cyclic nucleotide signaling, NO pathways, ROS (Reactive Oxygen Species) scavenging, protein sulfhydration, and EDHF underscores its complexity and therapeutic relevance. In conclusion, the intricate signaling paradigms of H2S-induced vasodilation offer valuable insights into its physiological role and therapeutic potential, promising innovative approaches for managing various vascular diseases through the modulation of vascular tone. Full article
(This article belongs to the Special Issue Hydrogen Sulfide Signaling in Biological Systems)
Show Figures

Figure 1

25 pages, 3622 KB  
Review
Challenging the Norm: The Unrecognized Impact of Soluble Guanylyl Cyclase Subunits in Cancer
by María Teresa L. Pino, María Victoria Rocca, Lucas H. Acosta and Jimena P. Cabilla
Int. J. Mol. Sci. 2024, 25(18), 10053; https://doi.org/10.3390/ijms251810053 - 19 Sep 2024
Cited by 1 | Viewed by 2378
Abstract
Since the discovery of nitric oxide (NO), a long journey has led us to the present, during which much knowledge has been gained about its pathway members and their roles in physiological and various pathophysiological conditions. Soluble guanylyl cyclase (sGC), the main NO [...] Read more.
Since the discovery of nitric oxide (NO), a long journey has led us to the present, during which much knowledge has been gained about its pathway members and their roles in physiological and various pathophysiological conditions. Soluble guanylyl cyclase (sGC), the main NO receptor composed of the sGCα1 and sGCβ1 subunits, has been one of the central figures in this narrative. However, the sGCα1 and sGCβ1 subunits remained obscured by the focus on sGC’s enzymatic activity for many years. In this review, we restore the significance of the sGCα1 and sGCβ1 subunits by compiling and analyzing available but previously overlooked information regarding their roles beyond enzymatic activity. We delve into the basics of sGC expression regulation, from its transcriptional regulation to its interaction with proteins, placing particular emphasis on evidence thus far demonstrating the actions of each sGC subunit in different tumor models. Exploring the roles of sGC subunits in cancer offers a valuable opportunity to enhance our understanding of tumor biology and discover new therapeutic avenues. Full article
(This article belongs to the Special Issue cGMP Signaling: From Bench to Bedside)
Show Figures

Figure 1

26 pages, 14555 KB  
Article
The Effect of Chronic Treatment with the Inhibitor of Phosphodiesterase 5 (PDE5), Sildenafil, in Combination with L-DOPA on Asymmetric Behavior and Monoamine Catabolism in the Striatum and Substantia Nigra of Unilaterally 6-OHDA-Lesioned Rats
by Elżbieta Lorenc-Koci, Kinga Kamińska, Tomasz Lenda and Jolanta Konieczny
Molecules 2024, 29(18), 4318; https://doi.org/10.3390/molecules29184318 - 11 Sep 2024
Cited by 1 | Viewed by 1980
Abstract
The use of phosphodiesterase inhibitors in the treatment of Parkinson’s disease is currently widely discussed. The study aimed to investigate the impact of acute and chronic treatment with the phosphodiesterase 5 inhibitor, sildenafil, at low and moderate doses of 2 mg/kg and 6 [...] Read more.
The use of phosphodiesterase inhibitors in the treatment of Parkinson’s disease is currently widely discussed. The study aimed to investigate the impact of acute and chronic treatment with the phosphodiesterase 5 inhibitor, sildenafil, at low and moderate doses of 2 mg/kg and 6 mg/kg, and L-DOPA (12.5 mg/kg), alone or in combination, on asymmetric behavior and dopamine (DA) and serotonin metabolism in the striatum and substantia nigra of unilaterally 6-OHDA-lesioned rats. Acute administration of sildenafil at both tested doses jointly with L-DOPA significantly increased the number of contralateral rotations during a 2 h measurement compared to L-DOPA alone. The effect of a lower dose of sildenafil combined with L-DOPA was much greater in the second hour of measurement. However, the acute combined administration of a higher dose of sildenafil with L-DOPA resulted in an immediate and much stronger increase in the number of contralateral rotations compared to L-DOPA alone, already visible in the first hour of measurement. Interestingly, the chronic combined administration of 2 mg/kg of sildenafil and L-DOPA significantly reduced the number of contralateral rotations, especially during the first hour of measurement, compared to the long-term treatment with L-DOPA alone. Such an effect was not observed after the long-term combined treatment of a higher dose of sildenafil and L-DOPA compared to L-DOPA alone. The concentration of DA in the ipsilateral striatum and substantia nigra after the last combined chronic dose of sildenafil (2 or 6 mg/kg) and L-DOPA (12.5 mg/kg) was significantly higher than after L-DOPA alone. In spite of much stronger increases in the DA concentration in the ipsilateral striatum and substantia nigra, the number of contralateral rotations was reduced in the group of rats treated with the combination of 2 mg/kg sildenafil and L-DOPA compared to the group receiving L-DOPA alone. Moreover, the combined treatment with a low dose of sildenafil and L-DOPA had an opposite effect on DA catabolism, as assessed by DOPAC/DA and HVA/DA indexes, and these indexes were reduced in the ipsilateral striatum but increased in the contralateral striatum and substantia nigra compared to the treatment with L-DOPA alone. The results of the present study show that the addition of a low dose of a PDE5 inhibitor to the standard L-DOPA therapy differently modulates rotational behavior, the tissue DA concentration and its catabolism in the striatum and substantia nigra. Full article
Show Figures

Figure 1

10 pages, 1706 KB  
Article
Guanylyl Cyclase Activator Improves Endothelial Function by Decreasing Superoxide Anion Concentration
by Ariane M. Martinelli, Luis Henrique O. de Moraes, Thiago F. de Moraes and Gerson J. Rodrigues
J. Vasc. Dis. 2024, 3(1), 102-111; https://doi.org/10.3390/jvd3010009 - 4 Mar 2024
Cited by 1 | Viewed by 1715
Abstract
Introduction: Soluble guanylyl cyclase (sGC) activation in vascular smooth muscle has the potential to induce vasodilation. Chronic sGC activation enhanced vascular function in the congestive heart failure animal model. Therefore, sGC activation can lead to vasodilation and improvement in endothelial function. Objective: To [...] Read more.
Introduction: Soluble guanylyl cyclase (sGC) activation in vascular smooth muscle has the potential to induce vasodilation. Chronic sGC activation enhanced vascular function in the congestive heart failure animal model. Therefore, sGC activation can lead to vasodilation and improvement in endothelial function. Objective: To investigate whether the selective sGC activator can revert the endothelial dysfunction and investigate the mechanism of action. Methods: Wistar rats were split into two groups: normotensive (2K) and hypertensive rats (2K-1C). Intact aortic rings were placed in a myograph and incubated with 0.1 µM ataciguat for 30 min. Cumulative concentration-effect curves were generated for acetylcholine (Ach) to assess endothelial function. The pD2 and maximum relaxant effect (Emax) were measured to Ach. In endothelial cell culture, superoxide anion (O2•−) was detected by using fluorescent probes, including DHE and lucigenin. Results: Ataciguat improved the relaxation induced by acetylcholine in 2K-1C (pD2: 6.99 ± 0.08, n = 6) compared to the control (pD2: 6.43 ± 0.07, n = 6, p < 0.05). The aortic rings were also improved from 2K (pD2: 7.04 ± 0.13, n = 6) compared to the control (pD2: 6.59 ± 0.07, n = 6, p < 0.05). Moreover, Emax was improved by ataciguat treatment in the 2K-1C aorta (Emax: 81.0 ± 1.0; n = 6), and 2K aorta (Emax: 92.98 ± 1.83; n = 6), compared to the control (Emax 2K-1C: 52.14 ± 2.16, n = 6; and Emax 2K: 76.07 ± 4.35, n = 6, p < 0.05). In endothelial cell culture, treatment with ataciguat (0.1, 1, and 10 µM) resulted in a reduction of the superoxide anion formation induced by angiotensin II. Conclusions: Our findings indicated that ataciguat effectively enhanced endothelial function through the inactivation of superoxide anions. Full article
(This article belongs to the Section Peripheral Vascular Diseases)
Show Figures

Graphical abstract

9 pages, 925 KB  
Article
Platelet Cyclic GMP Levels Are Reduced in Patients with Primary Aldosteronism
by Carla Sala, Marta Rescaldani, Elisa Gherbesi, Gianni Bolla, Cesare Cuspidi, Massimiliano Ruscica and Stefano Carugo
J. Clin. Med. 2023, 12(22), 7081; https://doi.org/10.3390/jcm12227081 - 14 Nov 2023
Viewed by 1294
Abstract
Background and aim: Nitric oxide inhibits platelet aggregation by increasing the second messenger cyclic guanosine-3′,5′-monophosphate (cGMP) through the activation of soluble guanylyl cyclase in target cells. Within this context, the oxidative stress associated with the aldosterone excess impairs the nitric oxide availability. Thus, [...] Read more.
Background and aim: Nitric oxide inhibits platelet aggregation by increasing the second messenger cyclic guanosine-3′,5′-monophosphate (cGMP) through the activation of soluble guanylyl cyclase in target cells. Within this context, the oxidative stress associated with the aldosterone excess impairs the nitric oxide availability. Thus, the aim of the present study was to assess the impact of chronic aldosterone excess on the platelet nitric oxide/cGMP pathway in humans. Methods: The levels of cGMP were evaluated in platelets of male patients, 12 with primary aldosteronism (PA) and 32 with uncomplicated essential hypertension (EH), matched for age and blood pressure (BP) values. Results: PA and EH patients were 52.8 ± 3 years old and 51.6 ± 1.6 years old, respectively. Systolic and diastolic BP were 158 ± 5.0 mmHg and 105.9 ± 2.3 mmHg in PA and did not differ compared to EH patients (156.6 ± 2.4 mmHg and 104.7 ± 1.2 mmHg). Mean aldosterone levels were significantly higher in PA (25.5 ± 8.8 ng/dL) compared toEH (8.11 ± 0.73 ng/dL), whereas potassium was significantly lower in PA (3.52 ± 0.18 mEq/L) compared to EH (4.08 ± 0.04 mEq/L). Aldosterone and potassium were inversely related (r = −0.49, p = 0.0006) in the whole study population (n = 44). Platelet cGMP was significantly lower in PA (5.1 ± 0.36 pM/109 cells) than in EH (7.1 ± 0.53 pM/109 cells), and in the entire study cohort, it was directly related to plasma potassium (r = 0.43, p = 0.0321). Conclusions: These results show an impairment of nitric oxide/cGMP signaling in platelets of PA patients. This effect is likely related to the potassium-depleting effect of chronic aldosterone excess. Future studies are needed to understand whether the platelet nitric oxide/cGMP system is involved in the atherothrombotic events in these patients. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

35 pages, 1544 KB  
Review
New Therapeutics for Heart Failure: Focusing on cGMP Signaling
by Supachoke Mangmool, Ratchanee Duangrat, Warisara Parichatikanond and Hitoshi Kurose
Int. J. Mol. Sci. 2023, 24(16), 12866; https://doi.org/10.3390/ijms241612866 - 16 Aug 2023
Cited by 17 | Viewed by 4409
Abstract
Current drugs for treating heart failure (HF), for example, angiotensin II receptor blockers and β-blockers, possess specific target molecules involved in the regulation of the cardiac circulatory system. However, most clinically approved drugs are effective in the treatment of HF with reduced ejection [...] Read more.
Current drugs for treating heart failure (HF), for example, angiotensin II receptor blockers and β-blockers, possess specific target molecules involved in the regulation of the cardiac circulatory system. However, most clinically approved drugs are effective in the treatment of HF with reduced ejection fraction (HFrEF). Novel drug classes, including angiotensin receptor blocker/neprilysin inhibitor (ARNI), sodium-glucose co-transporter-2 (SGLT2) inhibitor, hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, soluble guanylyl cyclase (sGC) stimulator/activator, and cardiac myosin activator, have recently been introduced for HF intervention based on their proposed novel mechanisms. SGLT2 inhibitors have been shown to be effective not only for HFrEF but also for HF with preserved ejection fraction (HFpEF). In the myocardium, excess cyclic adenosine monophosphate (cAMP) stimulation has detrimental effects on HFrEF, whereas cyclic guanosine monophosphate (cGMP) signaling inhibits cAMP-mediated responses. Thus, molecules participating in cGMP signaling are promising targets of novel drugs for HF. In this review, we summarize molecular pathways of cGMP signaling and clinical trials of emerging drug classes targeting cGMP signaling in the treatment of HF. Full article
Show Figures

Graphical abstract

17 pages, 1699 KB  
Review
Targeting Soluble Guanylyl Cyclase during Ischemia and Reperfusion
by Eric H. Mace, Melissa J. Kimlinger, Frederic T. Billings and Marcos G. Lopez
Cells 2023, 12(14), 1903; https://doi.org/10.3390/cells12141903 - 21 Jul 2023
Cited by 9 | Viewed by 4695
Abstract
Ischemia and reperfusion (IR) damage organs and contribute to many disease states. Few effective treatments exist that attenuate IR injury. The augmentation of nitric oxide (NO) signaling remains a promising therapeutic target for IR injury. NO binds to soluble guanylyl cyclase (sGC) to [...] Read more.
Ischemia and reperfusion (IR) damage organs and contribute to many disease states. Few effective treatments exist that attenuate IR injury. The augmentation of nitric oxide (NO) signaling remains a promising therapeutic target for IR injury. NO binds to soluble guanylyl cyclase (sGC) to regulate vasodilation, maintain endothelial barrier integrity, and modulate inflammation through the production of cyclic-GMP in vascular smooth muscle. Pharmacologic sGC stimulators and activators have recently been developed. In preclinical studies, sGC stimulators, which augment the reduced form of sGC, and activators, which activate the oxidized non-NO binding form of sGC, increase vasodilation and decrease cardiac, cerebral, renal, pulmonary, and hepatic injury following IR. These effects may be a result of the improved regulation of perfusion and decreased oxidative injury during IR. sGC stimulators are now used clinically to treat some chronic conditions such as heart failure and pulmonary hypertension. Clinical trials of sGC activators have been terminated secondary to adverse side effects including hypotension. Additional clinical studies to investigate the effects of sGC stimulation and activation during acute conditions, such as IR, are warranted. Full article
Show Figures

Figure 1

15 pages, 2014 KB  
Article
Inhibitory Peptide of Soluble Guanylyl Cyclase/Trx1 Interface Blunts the Dual Redox Signaling Functions of the Complex
by Chuanlong Cui, Ping Shu, Tanaz Sadeghian, Waqas Younis, Hong Li and Annie Beuve
Antioxidants 2023, 12(4), 906; https://doi.org/10.3390/antiox12040906 - 10 Apr 2023
Cited by 2 | Viewed by 2179
Abstract
Soluble guanylyl cyclase (GC1) and oxido-reductase thioredoxin (Trx1) form a complex that mediates two NO signaling pathways as a function of the redox state of cells. Under physiological conditions, reduced Trx1 (rTrx1) supports the canonical NO-GC1-cGMP pathway by protecting GC1 activity from thiol [...] Read more.
Soluble guanylyl cyclase (GC1) and oxido-reductase thioredoxin (Trx1) form a complex that mediates two NO signaling pathways as a function of the redox state of cells. Under physiological conditions, reduced Trx1 (rTrx1) supports the canonical NO-GC1-cGMP pathway by protecting GC1 activity from thiol oxidation. Under oxidative stress, the NO-cGMP pathway is disrupted by the S-nitrosation of GC1 (addition of a NO group to a cysteine). In turn, SNO-GC1 initiates transnitrosation cascades, using oxidized thioredoxin (oTrx1) as a nitrosothiol relay. We designed an inhibitory peptide that blocked the interaction between GC1 and Trx1. This inhibition resulted in the loss of a) the rTrx1 enhancing effect of GC1 cGMP-forming activity in vitro and in cells and its ability to reduce the multimeric oxidized GC1 and b) GC1’s ability to fully reduce oTrx1, thus identifying GC1 novel reductase activity. Moreover, an inhibitory peptide blocked the transfer of S-nitrosothiols from SNO-GC1 to oTrx1. In Jurkat T cells, oTrx1 transnitrosates procaspase-3, thereby inhibiting caspase-3 activity. Using the inhibitory peptide, we demonstrated that S-nitrosation of caspase-3 is the result of a transnitrosation cascade initiated by SNO-GC1 and mediated by oTrx1. Consequently, the peptide significantly increased caspase-3 activity in Jurkat cells, providing a promising therapy for some cancers. Full article
(This article belongs to the Special Issue The Importance of Thioredoxin System for Redox Regulation and Health)
Show Figures

Figure 1

18 pages, 2148 KB  
Article
Soluble Guanylate Cyclase β1 Subunit Represses Human Glioblastoma Growth
by Haijie Xiao, Haifeng Zhu, Oliver Bögler, Fabiola Zakia Mónica, Alexander Y. Kots, Ferid Murad and Ka Bian
Cancers 2023, 15(5), 1567; https://doi.org/10.3390/cancers15051567 - 2 Mar 2023
Cited by 4 | Viewed by 2631
Abstract
Malignant glioma is the most common and deadly brain tumor. A marked reduction in the levels of sGC (soluble guanylyl cyclase) transcript in the human glioma specimens has been revealed in our previous studies. In the present study, restoring the expression of sGCβ1 [...] Read more.
Malignant glioma is the most common and deadly brain tumor. A marked reduction in the levels of sGC (soluble guanylyl cyclase) transcript in the human glioma specimens has been revealed in our previous studies. In the present study, restoring the expression of sGCβ1 alone repressed the aggressive course of glioma. The antitumor effect of sGCβ1 was not associated with enzymatic activity of sGC since overexpression of sGCβ1 alone did not influence the level of cyclic GMP. Additionally, sGCβ1-induced inhibition of the growth of glioma cells was not influenced by treatment with sGC stimulators or inhibitors. The present study is the first to reveal that sGCβ1 migrated into the nucleus and interacted with the promoter of the TP53 gene. Transcriptional responses induced by sGCβ1 caused the G0 cell cycle arrest of glioblastoma cells and inhibition of tumor aggressiveness. sGCβ1 overexpression impacted signaling in glioblastoma multiforme, including the promotion of nuclear accumulation of p53, a marked reduction in CDK6, and a significant decrease in integrin α6. These anticancer targets of sGCβ1 may represent clinically important regulatory pathways that contribute to the development of a therapeutic strategy for cancer treatment. Full article
(This article belongs to the Topic Novel Discoveries in Oncology)
Show Figures

Figure 1

17 pages, 925 KB  
Review
Cellular Factors That Shape the Activity or Function of Nitric Oxide-Stimulated Soluble Guanylyl Cyclase
by Iraida Sharina and Emil Martin
Cells 2023, 12(3), 471; https://doi.org/10.3390/cells12030471 - 1 Feb 2023
Cited by 10 | Viewed by 3790
Abstract
NO-stimulated guanylyl cyclase (SGC) is a hemoprotein that plays key roles in various physiological functions. SGC is a typical enzyme-linked receptor that combines the functions of a sensor for NO gas and cGMP generator. SGC possesses exclusive selectivity for NO and exhibits a [...] Read more.
NO-stimulated guanylyl cyclase (SGC) is a hemoprotein that plays key roles in various physiological functions. SGC is a typical enzyme-linked receptor that combines the functions of a sensor for NO gas and cGMP generator. SGC possesses exclusive selectivity for NO and exhibits a very fast binding of NO, which allows it to function as a sensitive NO receptor. This review describes the effect of various cellular factors, such as additional NO, cell thiols, cell-derived small molecules and proteins on the function of SGC as cellular NO receptor. Due to its vital physiological function SGC is an important drug target. An increasing number of synthetic compounds that affect SGC activity via different mechanisms are discovered and brought to clinical trials and clinics. Cellular factors modifying the activity of SGC constitute an opportunity for improving the effectiveness of existing SGC-directed drugs and/or the creation of new therapeutic strategies. Full article
(This article belongs to the Special Issue Exclusive Review Papers in "Cell Signaling")
Show Figures

Figure 1

14 pages, 1566 KB  
Review
Soluble Guanylyl Cyclase Activators—Promising Therapeutic Option in the Pharmacotherapy of Heart Failure and Pulmonary Hypertension
by Grzegorz Grześk, Adrianna Witczyńska, Magdalena Węglarz, Łukasz Wołowiec, Jacek Nowaczyk, Elżbieta Grześk and Alicja Nowaczyk
Molecules 2023, 28(2), 861; https://doi.org/10.3390/molecules28020861 - 15 Jan 2023
Cited by 18 | Viewed by 7419
Abstract
Endogenous nitric oxide (NO)-dependent vascular relaxation plays a leading role in the homeostasis of the cardiovascular, pulmonary, and vascular systems and organs, such as the kidneys, brain, and liver. The mechanism of the intracellular action of NO in blood vessels involves the stimulation [...] Read more.
Endogenous nitric oxide (NO)-dependent vascular relaxation plays a leading role in the homeostasis of the cardiovascular, pulmonary, and vascular systems and organs, such as the kidneys, brain, and liver. The mechanism of the intracellular action of NO in blood vessels involves the stimulation of the activity of the soluble cytosolic form of guanylyl cyclase (soluble guanylyl cyclase, sGC), increasing the level of cyclic 3′-5′—guanosine monophosphate (cGMP) in smooth muscle and subsequent vasodilation. In recent years, a new group of drugs, soluble guanylyl cyclase stimulators, has found its way into clinical practice. Based on the CHEST-1 and PATENT-1 trials, riociguat was introduced into clinical practice for treating chronic thromboembolic pulmonary hypertension (CTEPH). In January 2021, the FDA approved the use of another drug, vericiguat, for the treatment of heart failure. Full article
(This article belongs to the Special Issue Recent Advances in Cardiovascular Drug Discovery and Development)
Show Figures

Figure 1

13 pages, 5098 KB  
Article
Dental Pulp Inflammation Initiates the Occurrence of Mast Cells Expressing the α1 and β1 Subunits of Soluble Guanylyl Cyclase
by Yüksel Korkmaz, Markus Plomann, Behrus Puladi, Aysegül Demirbas, Wilhelm Bloch and James Deschner
Int. J. Mol. Sci. 2023, 24(2), 901; https://doi.org/10.3390/ijms24020901 - 4 Jan 2023
Cited by 4 | Viewed by 3562
Abstract
The binding of nitric oxide (NO) to heme in the β1 subunit of soluble guanylyl cyclase (sGC) activates both the heterodimeric α1β1 and α2β1 isoforms of the enzyme, leading to the increased production of cGMP from [...] Read more.
The binding of nitric oxide (NO) to heme in the β1 subunit of soluble guanylyl cyclase (sGC) activates both the heterodimeric α1β1 and α2β1 isoforms of the enzyme, leading to the increased production of cGMP from GTP. In cultured human mast cells, exogenous NO is able to inhibit mast cell degranulation via NO-cGMP signaling. However, under inflammatory oxidative or nitrosative stress, sGC becomes insensitive to NO. The occurrence of mast cells in healthy and inflamed human tissues and the in vivo expression of the α1 and β1 subunits of sGC in human mast cells during inflammation remain largely unresolved and were investigated here. Using peroxidase and double immunohistochemical incubations, no mast cells were found in healthy dental pulp, whereas the inflammation of dental pulp initiated the occurrence of several mast cells expressing the α1 and β1 subunits of sGC. Since inflammation-induced oxidative and nitrosative stress oxidizes Fe2+ to Fe3+ in the β1 subunit of sGC, leading to the desensitization of sGC to NO, we hypothesize that the NO- and heme-independent pharmacological activation of sGC in mast cells may be considered as a regulatory strategy for mast cell functions in inflamed human dental pulp. Full article
Show Figures

Figure 1

Back to TopTop