Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (140)

Search Parameters:
Keywords = sound radiation modeling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 13390 KB  
Article
Performance of Acoustic, Electro-Acoustic and Optical Sensors in Precise Waveform Analysis of a Plucked and Struck Guitar String
by Jan Jasiński, Marek Pluta, Roman Trojanowski, Julia Grygiel and Jerzy Wiciak
Sensors 2025, 25(21), 6514; https://doi.org/10.3390/s25216514 - 22 Oct 2025
Viewed by 368
Abstract
This study presents a comparative performance analysis of three sensor technologies—microphone, magnetic pickup, and laser Doppler vibrometer—for capturing string vibration under varied excitation conditions: striking, plectrum plucking, and wire plucking. Two different magnetic pickups are included in the comparison. Measurements were taken at [...] Read more.
This study presents a comparative performance analysis of three sensor technologies—microphone, magnetic pickup, and laser Doppler vibrometer—for capturing string vibration under varied excitation conditions: striking, plectrum plucking, and wire plucking. Two different magnetic pickups are included in the comparison. Measurements were taken at multiple excitation levels on a simplified electric guitar mounted on a stable platform with repeatable excitation mechanisms. The analysis focuses on each sensor’s capacity to resolve fine-scale waveform features during the initial attack while also taking into account its capability to measure general changes in instrument dynamics and timbre. We evaluate their ability to distinguish vibro-acoustic phenomena resulting from changes in excitation method and strength as well as measurement location. Our findings highlight the significant influence of sensor choice on observable string vibration. While the microphone captures the overall radiated sound, it lacks the required spatial selectivity and offers poor SNR performance 34 dB lower then other methods. Magnetic pickups enable precise string-specific measurements, offering a compelling balance of accuracy and cost-effectiveness. Results show that their low-pass frequency characteristic limits temporal fidelity and must be accounted for when analysing general sound timbre. Laser Doppler vibrometers provide superior micro-temporal fidelity, which can have critical implications for physical modeling, instrument design, and advanced audio signal processing, but have severe practical limitations. Critically, we demonstrate that the required optical target, even when weighing as little as 0.1% of the string’s mass, alters the string’s vibratory characteristics by influencing RMS energy and spectral content. Full article
(This article belongs to the Special Issue Deep Learning for Perception and Recognition: Method and Applications)
Show Figures

Figure 1

20 pages, 7652 KB  
Article
Hybrid Numerical Analysis Models and Experiment Research for Wheel–Rail Noise of Urban Rail Vehicle
by Shangshuai Jia, Xinli Zhao, Wenmin Zhang, Leiming Song, Chen Hu, Hao Lin and Xiaojun Hu
Modelling 2025, 6(4), 133; https://doi.org/10.3390/modelling6040133 - 22 Oct 2025
Viewed by 240
Abstract
For urban rail vehicles operating at speeds ranging from 60 to 250 km/h, the dominant source of radiated noise is the wheel–rail interaction. Finite element modal analysis was conducted on the wheelset, rails, and track slab. A multibody dynamics model under straight-line condition [...] Read more.
For urban rail vehicles operating at speeds ranging from 60 to 250 km/h, the dominant source of radiated noise is the wheel–rail interaction. Finite element modal analysis was conducted on the wheelset, rails, and track slab. A multibody dynamics model under straight-line condition was established. It was a rigid–flexible coupling dynamics model, including the rigid vehicle body, flexible wheelsets, flexible rails, and flexible track slabs. Dynamic simulation calculations were carried out in this model to obtain the wheel–rail forces. The finite element and boundary element models of wheels and rails were established using simulation software to obtain the results of wheel–rail noise. The sound pressure levels on the surfaces of wheels and rails were calculated under the operating conditions of 120 km/h, 140 km/h, 160 km/h, and 200 km/h in the straight-line condition. The variation law of the frequency distribution of wheel–rail noise with the change in speed was obtained. The variation fitting function of wheel–rail noise SPL with speeds was obtained. Within the speed of 200 km/h, as the speed increased, the total value of wheel–rail SPL basically shows a linear growth. The simulation analysis results were compared with the experiment results. It indicated that the simulation results were reasonable. The simulation models are of great significance for the noise prediction in train design and manufacturing. Full article
Show Figures

Graphical abstract

19 pages, 3964 KB  
Article
A Rapid Modeling Method for Sound Radiation of China’s Locomotive Traction Drive Systems in Railways
by Chao Li, Xiaobo Liu, Kangfan Yu, Zhiwen Yang, Jianrun Zhang and Pu Li
Appl. Sci. 2025, 15(19), 10597; https://doi.org/10.3390/app151910597 - 30 Sep 2025
Viewed by 243
Abstract
As a core component of high-speed trains, the traction drive system is also one of the main sources of both pass-by noise and interior noise. Current research primarily focuses on the modeling and design of its dynamic characteristics, while studies on its sound [...] Read more.
As a core component of high-speed trains, the traction drive system is also one of the main sources of both pass-by noise and interior noise. Current research primarily focuses on the modeling and design of its dynamic characteristics, while studies on its sound radiation remain relatively scarce. Existing investigations mainly rely on experimental and finite element methods. This paper proposes a rapid modeling method for the sound radiation of traction drive systems and analyzes the acoustic characteristics under different train speeds and gear helix angles. Taking an electric freight locomotive operating on China’s railways as the subject, the primary noise sources were identified through real-vehicle testing, thereby simplifying the non-dominant noise sources. By integrating a gear system dynamic model with theoretical models of gear meshing noise and motor noise, the proposed approach avoids the complexity and high computational cost associated with traditional finite element methods. The results show that at lower train speeds, the main noise source is the motor, while at higher speeds, it is the gearbox. As the train speed and helix angle increase, the radiated sound pressure of the traction drive system first increases and then decreases, though the sound field distribution and directivity remain largely unchanged. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

26 pages, 10152 KB  
Article
Linking Acoustic Indices to Vegetation and Microclimate in a Historical Urban Garden: Setting the Stage for a Restorative Soundscape
by Alessia Portaccio, Francesco Chianucci, Francesco Pirotti, Marco Piragnolo, Marco Sozzi, Andrea Zangrossi, Miriam Celli, Marta Mazzella di Bosco, Monica Bolognesi, Enrico Sella, Maurizio Corbetta, Francesca Pazzaglia and Raffaele Cavalli
Land 2025, 14(10), 1970; https://doi.org/10.3390/land14101970 - 30 Sep 2025
Viewed by 475
Abstract
Urban soundscapes are increasingly recognized as fundamental for both ecological integrity and human well-being, yet the complex interplay between the vegetation structure, seasonal dynamics, and microclimatic factors in shaping these soundscapes remains poorly understood. This study tests the hypothesis that vegetation structure and [...] Read more.
Urban soundscapes are increasingly recognized as fundamental for both ecological integrity and human well-being, yet the complex interplay between the vegetation structure, seasonal dynamics, and microclimatic factors in shaping these soundscapes remains poorly understood. This study tests the hypothesis that vegetation structure and seasonally driven biological activity mediate the balance and the quality of the urban acoustic environment. We investigated seasonal and spatial variations in five acoustic indices (NDSI, ACI, AEI, ADI, and BI) within a historical urban garden in Castelfranco Veneto, Italy. Using linear mixed-effects models, we analyzed the effects of season, microclimatic variables, and vegetation characteristics on soundscape composition. Non-parametric tests were used to assess spatial differences in vegetation metrics. Results revealed strong seasonal patterns, with spring showing increased NDSI (+0.17), ADI (+0.22), and BI (+1.15) values relative to winter, likely reflecting bird breeding phenology and enhanced biological productivity. Among microclimatic predictors, temperature (p < 0.001), humidity (p = 0.014), and solar radiation (p = 0.002) showed significant relationships with acoustic indices, confirming their influence on both animal behaviour and sound propagation. Spatial analyses showed significant differences in acoustic patterns across points (Kruskal–Wallis p < 0.01), with vegetation metrics such as tree density and evergreen proportion correlating with elevated biophonic activity. Although the canopy height model did not emerge as a significant predictor in the models, the observed spatial heterogeneity supports the role of vegetation in shaping urban sound environments. By integrating ecoacoustic indices, LiDAR-derived vegetation data, and microclimatic parameters, this study offers novel insights into how vegetational components should be considered to manage urban green areas to support biodiversity and foster acoustically restorative environments, advancing the evidence base for sound-informed urban planning. Full article
Show Figures

Figure 1

29 pages, 17179 KB  
Article
Spatiotemporal Cavitation Dynamics and Acoustic Responses of a Hydrofoil
by Ding Tian, Xin Xia, Yu Lu, Jianping Yuan and Qiaorui Si
Water 2025, 17(18), 2776; https://doi.org/10.3390/w17182776 - 19 Sep 2025
Viewed by 422
Abstract
This study aims to investigate the spatiotemporal evolution of cavitating flow and the associated acoustic responses around a NACA0015 hydrofoil. A coupled fluid–acoustic interaction model is developed by integrating a nonlinear cavitation model with vortex–sound coupling theory. Numerical simulations are conducted within a [...] Read more.
This study aims to investigate the spatiotemporal evolution of cavitating flow and the associated acoustic responses around a NACA0015 hydrofoil. A coupled fluid–acoustic interaction model is developed by integrating a nonlinear cavitation model with vortex–sound coupling theory. Numerical simulations are conducted within a computational domain established for the hydrofoil to capture the interactions between cavitation dynamics and acoustic radiation. The results indicate that the temporal variations in cavity evolution and pressure fluctuations agree well with experimental observations. The simulations predict a dominant pressure fluctuation frequency of 30.15 Hz, consistent with the cavitation shedding frequency, revealing that the evolution of leading-edge vortex structures governs the periodic variations in the lift-to-drag ratio. Cavitation significantly modifies the development of vortex structures, with vortex stretching effects mainly concentrated near cavitation regions. The dilation–contraction term is closely associated with cavity formation, while the pressure–torque tilting term predominantly affects cloud cavitation collapse. Dynamic mode decomposition (DMD) shows that the coherent structures of the leading modes exhibit morphological similarity to multiscale cavitation and vortex structures. Furthermore, hydrofoil cavitation noise consists mainly of loading noise and cavitation-induced pulsating radiation noise, with surface acoustic sources concentrated in cloud cavitation shedding regions. The dominant frequency of cavitation-induced radiation noise is highly consistent with experimental measurements. Full article
Show Figures

Figure 1

22 pages, 7039 KB  
Article
An Impedance Model for Angle-Dependent Sound Reflection and Absorption with Diffraction Effects
by Jens Holger Rindel
Acoustics 2025, 7(3), 53; https://doi.org/10.3390/acoustics7030053 - 29 Aug 2025
Viewed by 712
Abstract
Traditionally, an open window is considered a kind of reference for perfect sound absorption. The sound reflection and absorption of an aperture is analyzed by means of an impedance model representing a rectangular absorbing surface surrounded by a thin, infinite rigid baffle. The [...] Read more.
Traditionally, an open window is considered a kind of reference for perfect sound absorption. The sound reflection and absorption of an aperture is analyzed by means of an impedance model representing a rectangular absorbing surface surrounded by a thin, infinite rigid baffle. The most important part of the model is the complex radiation impedance. It is shown that the sound absorption coefficient of the open window is not exactly 1, but it is angle-dependent and decreases towards low frequencies. Two diffraction effects are identified: the refraction that appears when a wave passes through an aperture, and the scattering of waves from the edges of the aperture. A revised model for sound absorption is presented, taking these diffraction effects into account. It is shown that the refraction effect is the reason for measured absorption coefficients greater than 1, whereas the scattering effect can explain the typical decrease in absorption towards lower frequencies. The revised model is validated against examples of measured sound absorption. Finally, it is discussed how room acoustic calculation models can handle realistic absorption data. Full article
Show Figures

Figure 1

22 pages, 2709 KB  
Article
SPL-Based Modeling of Serrated Airfoil Noise via Functional Regression and Ensemble Learning
by Andrei-George Totu, Daniel-Eugeniu Crunțeanu, Luminița Drăgășanu, Grigore Cican and Constantin Levențiu
Computation 2025, 13(9), 203; https://doi.org/10.3390/computation13090203 - 22 Aug 2025
Viewed by 501
Abstract
This study presents a semi-empirical approach to generalizing the acoustic radiation generated by serrated airfoil configurations, based on small-scale aerodynamic/acoustic experiments and functional regression techniques. In the context of passive noise reduction strategies, such as leading-edge and trailing-edge serrations, acoustic measurements are performed [...] Read more.
This study presents a semi-empirical approach to generalizing the acoustic radiation generated by serrated airfoil configurations, based on small-scale aerodynamic/acoustic experiments and functional regression techniques. In the context of passive noise reduction strategies, such as leading-edge and trailing-edge serrations, acoustic measurements are performed in a controlled subsonic wind tunnel environment. Sound pressure level (SPL) spectra and acoustic power metrics are acquired for various geometric configurations and flow conditions. These spectral data are then analyzed using regression-based modeling techniques—linear, quadratic, logarithmic, and exponential forms—to capture the dependence of acoustic emission on key geometric and flow-related variables (e.g., serration amplitude, wavelength, angle of attack), without relying explicitly on predefined nondimensional numbers. The resulting predictive models aim to describe SPL behavior across relevant frequency bands (e.g., broadband or 1/3 octave) and to extrapolate acoustic trends for configurations beyond those tested. The proposed methodology allows for the identification of compact functional relationships between configuration parameters and acoustic output, offering a practical tool for the preliminary design and optimization of low-noise serrated profiles. The findings are intended to support both physical understanding and engineering application, bridging experimental data and parametric acoustic modeling in aerodynamic noise control. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Graphical abstract

13 pages, 769 KB  
Article
A Novel You Only Listen Once (YOLO) Deep Learning Model for Automatic Prominent Bowel Sounds Detection: Feasibility Study in Healthy Subjects
by Rohan Kalahasty, Gayathri Yerrapragada, Jieun Lee, Keerthy Gopalakrishnan, Avneet Kaur, Pratyusha Muddaloor, Divyanshi Sood, Charmy Parikh, Jay Gohri, Gianeshwaree Alias Rachna Panjwani, Naghmeh Asadimanesh, Rabiah Aslam Ansari, Swetha Rapolu, Poonguzhali Elangovan, Shiva Sankari Karuppiah, Vijaya M. Dasari, Scott A. Helgeson, Venkata S. Akshintala and Shivaram P. Arunachalam
Sensors 2025, 25(15), 4735; https://doi.org/10.3390/s25154735 - 31 Jul 2025
Cited by 2 | Viewed by 2929
Abstract
Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low [...] Read more.
Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low clinical value in diagnosis. Interpretation of the acoustic characteristics of BSs, i.e., using a phonoenterogram (PEG), may aid in diagnosing various GI conditions non-invasively. Use of artificial intelligence (AI) and improvements in computational analysis can enhance the use of PEGs in different GI diseases and lead to a non-invasive, cost-effective diagnostic modality that has not been explored before. The purpose of this work was to develop an automated AI model, You Only Listen Once (YOLO), to detect prominent bowel sounds that can enable real-time analysis for future GI disease detection and diagnosis. A total of 110 2-minute PEGs sampled at 44.1 kHz were recorded using the Eko DUO® stethoscope from eight healthy volunteers at two locations, namely, left upper quadrant (LUQ) and right lower quadrant (RLQ) after IRB approval. The datasets were annotated by trained physicians, categorizing BSs as prominent or obscure using version 1.7 of Label Studio Software®. Each BS recording was split up into 375 ms segments with 200 ms overlap for real-time BS detection. Each segment was binned based on whether it contained a prominent BS, resulting in a dataset of 36,149 non-prominent segments and 6435 prominent segments. Our dataset was divided into training, validation, and test sets (60/20/20% split). A 1D-CNN augmented transformer was trained to classify these segments via the input of Mel-frequency cepstral coefficients. The developed AI model achieved area under the receiver operating curve (ROC) of 0.92, accuracy of 86.6%, precision of 86.85%, and recall of 86.08%. This shows that the 1D-CNN augmented transformer with Mel-frequency cepstral coefficients achieved creditable performance metrics, signifying the YOLO model’s capability to classify prominent bowel sounds that can be further analyzed for various GI diseases. This proof-of-concept study in healthy volunteers demonstrates that automated BS detection can pave the way for developing more intuitive and efficient AI-PEG devices that can be trained and utilized to diagnose various GI conditions. To ensure the robustness and generalizability of these findings, further investigations encompassing a broader cohort, inclusive of both healthy and disease states are needed. Full article
(This article belongs to the Special Issue Biomedical Signals, Images and Healthcare Data Analysis: 2nd Edition)
Show Figures

Figure 1

24 pages, 13347 KB  
Article
Efficient Modeling of Underwater Target Radiation and Propagation Sound Field in Ocean Acoustic Environments Based on Modal Equivalent Sources
by Yan Lv, Wei Gao, Xiaolei Li, Haozhong Wang and Shoudong Wang
J. Mar. Sci. Eng. 2025, 13(8), 1456; https://doi.org/10.3390/jmse13081456 - 30 Jul 2025
Viewed by 640
Abstract
The equivalent source method (ESM) is a core algorithm in integrated radiation-propagation acoustic field modeling. However, in challenging marine environments, including deep-sea and polar regions, where sound speed profiles exhibit strong vertical gradients, the ESM must increase waveguide stratification to maintain accuracy. This [...] Read more.
The equivalent source method (ESM) is a core algorithm in integrated radiation-propagation acoustic field modeling. However, in challenging marine environments, including deep-sea and polar regions, where sound speed profiles exhibit strong vertical gradients, the ESM must increase waveguide stratification to maintain accuracy. This causes computational costs to scale exponentially with the number of layers, compromising efficiency and limiting applicability. To address this, this paper proposes a modal equivalent source (MES) model employing normal modes as basis functions instead of free-field Green’s functions. This model constructs a set of normal mode bases using full-depth hydroacoustic parameters, incorporating water column characteristics into the basis functions to eliminate waveguide stratification. This significantly reduces the computational matrix size of the ESM and computes acoustic fields in range-dependent waveguides using a single set of normal modes, resolving the dual limitations of inadequate precision and low efficiency in such environments. Concurrently, for the construction of basis functions, this paper also proposes a fast computation method for eigenvalues and eigenmodes in waveguide contexts based on phase functions and difference equations. Furthermore, coupling the MES method with the Finite Element Method (FEM) enables integrated computation of underwater target radiation and propagation fields. Multiple simulations demonstrate close agreement between the proposed model and reference results (errors < 4 dB). Under equivalent accuracy requirements, the proposed model reduces computation time to less than 1/25 of traditional ESM, achieving significant efficiency gains. Additionally, sea trial verification confirms model effectiveness, with mean correlation coefficients exceeding 0.9 and mean errors below 5 dB against experimental data. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 3444 KB  
Article
Multiphysics-Coupled Simulation of Ultrasound-Assisted Tailing Slurry Sedimentation
by Liang Peng and Congcong Zhao
Materials 2025, 18(15), 3430; https://doi.org/10.3390/ma18153430 - 22 Jul 2025
Cited by 1 | Viewed by 425
Abstract
This study establishes a multiphysics coupling model of acoustics, mechanics, and electrostatics through COMSOL, systematically explores the sound field distribution and stress–strain characteristics of tailing particles in sand silos under different frequencies of ultrasonic radiation, and proposes an optimization scheme for the sound [...] Read more.
This study establishes a multiphysics coupling model of acoustics, mechanics, and electrostatics through COMSOL, systematically explores the sound field distribution and stress–strain characteristics of tailing particles in sand silos under different frequencies of ultrasonic radiation, and proposes an optimization scheme for the sound field. The simulation results show that under 28 kHz ultrasonic radiation, the amplitude of sound pressure in the sand silo (173 Pa) is much lower than that at 40 kHz (1220 Pa), which can avoid damaging the original settlement mode of the tail mortar. At the same time, the periodic fluctuation amplitude of its longitudinal sound pressure is significantly greater than 25 kHz, which can promote settlement by enhancing particle tensile and compressive stress, achieving the best comprehensive effect. The staggered placement scheme of the transducer eliminates upward disturbance in the flow field by changing the longitudinal opposing sound field to oblique propagation, reduces energy dissipation, and increases the highest sound pressure level in the compartment to 130 dB. The sound pressure distribution density is significantly improved, further enhancing the settling effect. This study clarifies the correlation mechanism between ultrasound parameters and tailings’ settling efficiency, providing a theoretical basis for parameter optimization of ultrasound-assisted tailing treatment technology. Its results have important application value in the optimization of tailings settling in metal mine tailing filling. Full article
Show Figures

Figure 1

16 pages, 281 KB  
Article
Lighthill’s Theory of Sound Generation in Non-Isothermal and Turbulent Fluids
by Swati Routh and Zdzislaw E. Musielak
Fluids 2025, 10(6), 156; https://doi.org/10.3390/fluids10060156 - 13 Jun 2025
Viewed by 788
Abstract
Lighthill’s theory of sound generation was developed to calculate acoustic radiation from a narrow region of turbulent flow embedded in an infinite homogeneous fluid. The theory is extended to include a simple model of non-isothermal fluid that allows finding analytical solutions. The effects [...] Read more.
Lighthill’s theory of sound generation was developed to calculate acoustic radiation from a narrow region of turbulent flow embedded in an infinite homogeneous fluid. The theory is extended to include a simple model of non-isothermal fluid that allows finding analytical solutions. The effects of one specific temperature gradient on the wave generation and propagation are studied. It is shown that the presence of the temperature gradient in the region of wave generation leads to monopole and dipole sources of acoustic emission and that the efficiency of these two sources may be higher than Lighthill’s quadrupoles. In addition, the wave propagation far from the source is different than in Lighthill’s original work because of the presence of the acoustic cutoff frequency resulting from the temperature gradient. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
18 pages, 13439 KB  
Article
Experimental Investigation into the Active Narrowband Reshaping of a Ship Model’s Acoustic Signature
by Steffen Ungnad, Delf Sachau, Carsten Zerbs, Andreas Müller and Anton Homm
Acoustics 2025, 7(2), 34; https://doi.org/10.3390/acoustics7020034 - 7 Jun 2025
Viewed by 1535
Abstract
The use of inertial actuators to control the radiated sound pressure of a steel ship model at a lake measurement facility is examined. Therefore, methods of active vibration control as well as active control of target sound fields are applied using a fixed [...] Read more.
The use of inertial actuators to control the radiated sound pressure of a steel ship model at a lake measurement facility is examined. Therefore, methods of active vibration control as well as active control of target sound fields are applied using a fixed configuration of twelve accelerometers, eight control actuators, and five hydrophones. A narrowband feedforward active control system is used to manipulate the sound pressure at hydrophone positions, focusing not only on reducing but also on adding spectral lines in the radiated signature. The performance is assessed using measured data by additional accelerometers inside the ship model as well as by hydrophones surrounding the measurement facility. It is found that less control effort is necessary for the generation of additional tones compared to the control of a present disturbance at hydrophones. In the frequency range considered (below 500 Hz), the actively induced change in the mean structural velocity is not necessarily proportional to the change in the radiated sound pressure. In contrast to the vibration velocity, no unwanted amplification of the sound pressure is found for the frequencies observed. Full article
Show Figures

Figure 1

18 pages, 3381 KB  
Article
Sea Breeze-Driven Variations in Planetary Boundary Layer Height over Barrow: Insights from Meteorological and Lidar Observations
by Hui Li, Wei Gong, Boming Liu, Yingying Ma, Shikuan Jin, Weiyan Wang, Ruonan Fan, Shuailong Jiang, Yujie Wang and Zhe Tong
Remote Sens. 2025, 17(9), 1633; https://doi.org/10.3390/rs17091633 - 5 May 2025
Viewed by 1246
Abstract
The planetary boundary layer height (PBLH) in coastal Arctic regions is influenced by sea breeze circulation. However, the specific mechanisms through which sea breeze affects PBLH evolution remain insufficiently explored. This study uses meteorological data, micro-pulse lidar (MPL) data, and sounding profiles from [...] Read more.
The planetary boundary layer height (PBLH) in coastal Arctic regions is influenced by sea breeze circulation. However, the specific mechanisms through which sea breeze affects PBLH evolution remain insufficiently explored. This study uses meteorological data, micro-pulse lidar (MPL) data, and sounding profiles from 2014 to 2021 to investigate the annual and polar day PBLH evolution driven by sea breezes in the Barrow region of Alaska, as well as the specific mechanisms. The results show that sea breeze events significantly suppress PBLH, especially during the polar day, when prolonged solar radiation intensifies the thermal contrast between land and ocean. The cold, moist sea breeze stabilizes the atmospheric conditions, reducing net radiation and sensible heat flux. All these factors inhibit turbulent mixing and PBLH development. Lidar and sounding analyses further reveal that PBLH is lower during sea breeze events compared to non-sea-breeze conditions, with the peak of its probability density distribution occurring at a lower PBLH range. The variable importance in projection (VIP) analysis identifies relative humidity (VIP = 1.95) and temperature (VIP = 1.1) as the primary factors controlling PBLH, highlighting the influence of atmospheric stability in regulating PBLH. These findings emphasize the crucial role of sea breeze in modulating PBL dynamics in the Arctic, with significant implications for improving climate models and studies on pollutant dispersion in polar regions. Full article
Show Figures

Figure 1

27 pages, 16538 KB  
Article
Attempts at Pseudo-Inverse Vibro-Acoustics by Means of SLDV-Based Full-Field Mobilities
by Alessandro Zanarini
Machines 2025, 13(4), 324; https://doi.org/10.3390/machines13040324 - 16 Apr 2025
Viewed by 638
Abstract
Lightweight components can have structural integrity and reliability concerns, coming from dynamic airborne pressure fields. Hardly tuned numerical structural models may enter into vibro-acoustic simulations of the pressure fields radiated by vibrating plates, potentially masking the forecast of severe outputs. Instead, this paper [...] Read more.
Lightweight components can have structural integrity and reliability concerns, coming from dynamic airborne pressure fields. Hardly tuned numerical structural models may enter into vibro-acoustic simulations of the pressure fields radiated by vibrating plates, potentially masking the forecast of severe outputs. Instead, this paper proposes—for the direct and inverse vibro-acoustic approaches—to characterise the broad frequency band structural dynamics of radiating surfaces by means of experiment-based full-field contactless techniques, with increased spatial resolution, but without the inertia-related distortions of traditional measurement transducers. The SLDV-based mobilities bring the real-life behaviour of the component into the vibro-acoustic simulations, with the actual realisation-related complete structural dynamics and broad frequency band excitation. The paper aims at assessing the procedure for the estimation, in the whole spectrum, of the airborne force, which can be transmitted by an airborne pressure field to known structural locations. The simulation tools revisit the simple Rayleigh integral approximation of sound radiation from a vibrating surface, a real thin flat plate, describable by SLDV-based complex-valued full-field mobilities. Airborne pressure fields and excitation forces concern the early attempts of direct and pseudo-inverse vibro-acoustics. Details, examples and considerations about the whole procedures are thoroughly provided: on the simulation of the vibro-acoustic transfer matrix and of the radiated sound pressures with given excitation forces; on the retrieval of the airborne forces in restraining locations, together with the assessment of the numerical precision of the retrieving procedure. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

18 pages, 5221 KB  
Article
Prediction Model for the Environmental Noise Distribution of High-Speed Maglev Trains Using a Segmented Line Source Approach
by Shiquan Cheng, Jianmin Ge, Longhua Ju and Yuhao Chen
Appl. Sci. 2025, 15(8), 4184; https://doi.org/10.3390/app15084184 - 10 Apr 2025
Viewed by 921
Abstract
Based on the theory of uniform finite-length incoherent line source radiation and real vehicle online test data of Shanghai Maglev trains, a prediction model for environmental noise is established using an equivalent segmented line sound source approach. The noise produced by Shanghai high-speed [...] Read more.
Based on the theory of uniform finite-length incoherent line source radiation and real vehicle online test data of Shanghai Maglev trains, a prediction model for environmental noise is established using an equivalent segmented line sound source approach. The noise produced by Shanghai high-speed Maglev trains running at speeds of 235, 300, and 430 km/h is tested and analyzed using microphones. The test data are combined with computational fluid dynamics simulations to divide the train’s sound sources equally into five sections. Theoretical calculations are carried out on the noise test data collected as the train passes by, and the source strength of each individual sub-sound source during the train operation is determined using the least-squares method. As a result, a prediction model for the environmental noise of high-speed Maglev trains, represented as a combination of multiple sources, is developed. The predicted results are compared with the measured values to validate the accuracy of the model. The proposed model can be used for environmental assessments before new train lines are launched, allowing for appropriate mitigation measures to be taken in advance to reduce the impact of Maglev noise on the surrounding residential and ecological environments. Full article
(This article belongs to the Special Issue Noise Measurement, Acoustic Signal Processing and Noise Control)
Show Figures

Figure 1

Back to TopTop