Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = spermatogonial stem cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 862 KB  
Review
Spermatogonial Stem Cells in Domestic Animals: Current Insights and Future Directions with a Focus on Dogs
by Caterina Squillacioti, Nicola Mirabella, Mario Iasevoli, Simona Tafuri, Valeria Iervolino and Alessandra Pelagalli
Vet. Sci. 2025, 12(11), 1047; https://doi.org/10.3390/vetsci12111047 (registering DOI) - 1 Nov 2025
Abstract
The growing interest in improving the fertility-rate of livestock species, considering their high economic value, has prompted the development of new methodological approaches using male germline stem cells. Spermatogonial stem cells’ (SSCs) potential to self-renew and differentiate into mature spermatozoa holds promise for [...] Read more.
The growing interest in improving the fertility-rate of livestock species, considering their high economic value, has prompted the development of new methodological approaches using male germline stem cells. Spermatogonial stem cells’ (SSCs) potential to self-renew and differentiate into mature spermatozoa holds promise for their transplantation into testicular tissue and use in new biotechnological methodologies. Moreover, SSCs’ ability to convey genetic information to the next generation is a property that could be exploited for gene targeting. The review provides an update on the main aspects of SSC biology, focusing on the genetic regulators of self-renewal and differentiation processes and different isolation methods. In addition, recent advancement in the cryopreservation of SSCs from domestic animals and their transplantation into recipients’ testes are also discussed. Finally, a section focused on canine SSCs (cSSCs), their biological aspects, and their potential clinical application in the field of reproduction is included. This represents an effective animal model for human reproduction, development, and disease, given that the reproductive anatomy and physiology of canine species and human are similar. We then report on the potential clinical transplantation of SSCs into recipient testicular tissue and suggest future topics to explore for significant advances in fertility preservation. Full article
27 pages, 5349 KB  
Article
Programmed Genome Elimination Is Evolutionarily Conserved Across Pelophylax Hybrids—As Evidenced by P. grafi Hybridogenetic Reproduction
by Anna Dudzik, Beata Rozenblut-Kościsty, Dmitrij Dedukh, Pierre-André Crochet, Lukáš Choleva, Monika Przewłocka-Kosmala, Zuzanna Stryczak, Maria Ogielska and Magdalena Chmielewska
Biology 2025, 14(11), 1526; https://doi.org/10.3390/biology14111526 - 30 Oct 2025
Abstract
Gametogenesis is a fundamental biological process that ensures both genetic recombination and the continuity of successive generations. Interspecific hybrids can reproduce through modified mechanisms, such as hybridogenesis, by transmitting clonal, unrecombined genomes of only one of the parental species via their gametes. Pelophylax [...] Read more.
Gametogenesis is a fundamental biological process that ensures both genetic recombination and the continuity of successive generations. Interspecific hybrids can reproduce through modified mechanisms, such as hybridogenesis, by transmitting clonal, unrecombined genomes of only one of the parental species via their gametes. Pelophylax grafi (RP) is a natural hybrid frog composed of mixed genomes (subgenomes) of two related species, Pelophylax perezi (P) and Pelophylax ridibundus (R), and coexists in populations with P. perezi. This study tested the involvement of programmed genome elimination in gamete production of P. grafi, providing new insight into reproductive mechanisms of hybrid vertebrates. Using comparative genomic hybridization (CGH) and fluorescent in situ hybridization (FISH), we examined the genomic constitution of germline cells in tadpoles and adult male and female P. grafi. Controlled crosses between P. perezi and P. grafi produced F1 hybrid tadpoles, whose genotypes confirmed that P. grafi parents transmitted the R subgenome through their gametes. In the early germline cells (gonocytes) of these tadpoles, P chromosomes were selectively eliminated via micronuclei formation during interphase. The occasional presence of the R genome and mixed R/P genome micronuclei suggests variability and imperfect fidelity in the elimination process. In adult hybrids, the majority of diplotene oocytes, spermatogonial stem cells (SSC) and spermatocytes carried R subgenomes. We demonstrated that programmed genome rearrangement in Pelophylax hybrids is an evolutionarily conserved mechanism underlying this unique reproductive strategy. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
25 pages, 5974 KB  
Article
Identification of Regulatory RNA-Binding Genes in Spermatogonial Stem Cell Reprogramming to ES-like Cells Using Machine Learning–Integrated Transcriptomic and Network Analysis
by Ali Shakeri Abroudi, Hossein Azizi, Hewa Khalid Abdullah, Marwa Fadhil Alsaffar and Thomas Skutella
Cells 2025, 14(20), 1632; https://doi.org/10.3390/cells14201632 - 20 Oct 2025
Viewed by 432
Abstract
Spermatogonial stem cells (SSCs) are unipotent germline cells with emerging pluripotent potential under specific in vitro conditions. Understanding their capacity for reprogramming and the molecular mechanisms involved offers valuable insights into regenerative medicine and fertility preservation. SSCs were isolated from Oct4-GFP C57BL/6 transgenic [...] Read more.
Spermatogonial stem cells (SSCs) are unipotent germline cells with emerging pluripotent potential under specific in vitro conditions. Understanding their capacity for reprogramming and the molecular mechanisms involved offers valuable insights into regenerative medicine and fertility preservation. SSCs were isolated from Oct4-GFP C57BL/6 transgenic mice using enzymatic digestion and cultured in defined media. Under these conditions, ES-like colonies emerged expressing pluripotency markers. These cells were characterized by immunocytochemistry, teratoma assays, and transcriptomic analyses using bulk and single-cell RNA sequencing datasets. Gene expression profiles were compared with ESCs and SSCs using datasets from GEO (GSE43850, GSE38776, GSE149512). Protein–protein interaction (PPI) networks and co-expression modules were explored through STRING, Cytoscape, and WGCNA. ES-like cells derived from SSCs exhibited strong expression of OCT4, DAZL, and VASA. Transcriptomic analysis revealed key differentially expressed genes and shared regulatory networks with ESCs. WGCNA identified key co-expression modules and hub regulatory RNA binding genes (Ctdsp1, Rest, and Stra8) potentially responsible for the reprogramming process. Teratoma assays confirmed pluripotency, and single-cell RNA-seq validated expression of critical markers in cultured SSCs. This study demonstrates that SSCs can acquire pluripotency features and be reprogrammed into ES-like cells. The integration of transcriptomic and network-based analyses reveals novel insights into the molecular drivers of SSC reprogramming, highlighting their potential utility in stem cell-based therapies and male fertility preservation. Full article
Show Figures

Figure 1

28 pages, 1477 KB  
Review
Human Testicular Tissue Digestion, Testicular Cell Selection, and Downstream Characterization for Reproductive Purposes: A Scoping Review
by Sven De Windt, Neguine Nekounazar Azad and Christine Wyns
Int. J. Mol. Sci. 2025, 26(20), 10150; https://doi.org/10.3390/ijms262010150 - 18 Oct 2025
Viewed by 425
Abstract
Fertility preservation and restoration using cryo-banked prepubertal testicular tissue is a pivotal part of the childhood hematological cancer care pathway. Estimations indicate that one in 900–1400 young adults is a childhood cancer survivor, underlying the urge to develop fertility restoration protocols as some [...] Read more.
Fertility preservation and restoration using cryo-banked prepubertal testicular tissue is a pivotal part of the childhood hematological cancer care pathway. Estimations indicate that one in 900–1400 young adults is a childhood cancer survivor, underlying the urge to develop fertility restoration protocols as some of the patients have reached the age to father their own genetic child. While it has been reported that 39% of patients present cancer cells in their testes, no efficient decontamination technique has been identified to circumvent cancer reintroduction after autologous testicular cell transplantation. Obtaining single-cell suspensions and selecting only testicular cells might be an option. In this review, mechanical dissociation/enzymatic digestion protocols applied to human testicular tissue, as well as selection and enrichment strategies, and their outcome will be presented and discussed. While the literature revealed a plethora of mechanical dissociation/enzymatic digestion protocols, testicular tissue characteristics are often missing, precluding the comparison of protocols and their outcomes. Downstream selection and enrichment strategies showed promising results with flow cytometry reaching fractions with the highest purity. Future studies should focus on investigating digestion outcomes to elucidate potential influences on both the cell type-specific viability and the cell-to-cell interactions necessary for cell proliferation and differentiation of selected or enriched testicular cell types. Such research outputs will then also be crucial for further progress in in vitro spermatogenesis from testicular cell suspensions as another option for patients that banked testicular tissue at the time of a hematological cancer. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

12 pages, 10576 KB  
Article
Agarose Gel-Supported Culture of Cryopreserved Calf Testicular Tissues
by Daozhen Jiang, Wenqian Zhu, Rui Yang, Boyang Zhang, Yingshu Pan, Yifei Mao, Yueqi Wang, Yan Zhang, Bo Tang and Xueming Zhang
Vet. Sci. 2025, 12(10), 1005; https://doi.org/10.3390/vetsci12101005 - 17 Oct 2025
Viewed by 322
Abstract
Optimizing the cultivation system is crucial for tissue culture. The culture of cryopreserved testicular tissues is of great importance for the germplasm preservation of endangered animals and especially to ensure high-quality and high-output livestock. In this study, we compared two cultivation systems (Agarose-Supported [...] Read more.
Optimizing the cultivation system is crucial for tissue culture. The culture of cryopreserved testicular tissues is of great importance for the germplasm preservation of endangered animals and especially to ensure high-quality and high-output livestock. In this study, we compared two cultivation systems (Agarose-Supported system and Direct Adherent system) by evaluating their effects on tissue morphology, cell proliferation, apoptosis, gene expression, and endocrine function in cryopreserved testicular tissues from 30-day-old calves. The testicular tissues were cultured for 18 and 27 days with three biological replicates per group, aiming to identify which system better supports tissue preservation, cellular viability, and spermatogenic differentiation. This allowed us to clarify how different cultivation systems influence the structural maintenance and developmental potential of immature bovine testicular tissues. Histological and gene expression analyses revealed that the Agarose-Supported system better preserved the seminiferous cord architecture and supported the development of the seminiferous epithelium compared to the Direct Adherent system. The Agarose system significantly reduced the apoptosis and enhanced the expression of some key genes, including spermatogonial stem cell (SSC) markers (GFRα-1, UCHL1), meiotic marker (SYCP3), mature sperm marker (CRISP1), and testicular somatic cell markers (STAR, SOX9, ACTA2). The Agarose-Supported system also benefited spermatogenic differentiation and testosterone secretion. These findings demonstrate that the Agarose-Supported system facilitates the in vitro development of spermatogenic cells and Leydig cells in post-cryopreserved immature bovine testicular tissues. Full article
(This article belongs to the Special Issue Current Method and Perspective in Animal Reproduction)
Show Figures

Graphical abstract

22 pages, 10459 KB  
Article
Effect of Extracellular Matrix Derived from Porcine Tissue on Stemness of Porcine Spermatogonial Stem Cells
by Donghyeon Kim, Min-Gi Han, Yoseop Jeon, Hyoyoung Maeng, Youngseok Choi, Kwonho Hong, Jeong Tae Do and Hyuk Song
Int. J. Mol. Sci. 2025, 26(20), 9937; https://doi.org/10.3390/ijms26209937 - 13 Oct 2025
Viewed by 435
Abstract
The extracellular matrix (ECM) supports spermatogonial stem cell (SSC) function by mimicking biochemical and structural features of the native niche. However, optimal feeder systems and ECM materials remain key limitations in porcine SSC (pSSC) cultures. We developed a porcine-derived ECM (pECM) from porcine [...] Read more.
The extracellular matrix (ECM) supports spermatogonial stem cell (SSC) function by mimicking biochemical and structural features of the native niche. However, optimal feeder systems and ECM materials remain key limitations in porcine SSC (pSSC) cultures. We developed a porcine-derived ECM (pECM) from porcine feet and evaluated its effectiveness in supporting pSSC maintenance and proliferation under feeder-dependent conditions. We examined protein molecular weight distribution and pECM extract composition. Surface characterization was performed using scanning electron microscopy and atomic force microscopy. We compared pECM with conventional coatings, including gelatin and non-coated controls, using morphological analysis, WST-1 assay, cell cycle analysis, and gene/protein expression of SSC markers. pECM promoted larger, well-defined pSSC colonies and enhanced stemness-related marker expression, including PGP9.5, Thy-1, PLZF, GFRA1, NANOG, and VASA. Additionally, pECM facilitated active pSSC proliferation while suppressing feeder overgrowth, contributing to a stable and functional co-culture environment. Conversely, gelatin supported early feeder proliferation but led to growth saturation, whereas N/C showed delayed attachment and reduced viability. These findings suggest that pECM mimics the native SSC niche and improves pSSC culture. The dual function of pECM in regulating feeder behavior and enhancing pSSC maintenance highlights its potential as a biomaterial for species lacking established feeder-free protocols. Full article
(This article belongs to the Special Issue Molecular Research in Animal Reproduction)
Show Figures

Figure 1

21 pages, 6921 KB  
Article
Transcriptomic Analysis Identifies Oxidative Stress-Related Hub Genes and Key Pathways in Sperm Maturation
by Ali Shakeri Abroudi, Hossein Azizi, Vyan A. Qadir, Melika Djamali, Marwa Fadhil Alsaffar and Thomas Skutella
Antioxidants 2025, 14(8), 936; https://doi.org/10.3390/antiox14080936 - 30 Jul 2025
Viewed by 1367
Abstract
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved [...] Read more.
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved in SSC function. Methods: SSCs were enriched from human orchiectomy samples using CD49f-based magnetic-activated cell sorting (MACS) and laminin-binding matrix selection. Enriched cultures were assessed through morphological criteria and immunocytochemistry using VASA and SSEA4. Transcriptomic profiling was performed using microarray and single-cell RNA sequencing (scRNA-seq) to identify oxidative stress-related genes. Bioinformatic analyses included STRING-based protein–protein interaction (PPI) networks, FunRich enrichment, weighted gene co-expression network analysis (WGCNA), and predictive modeling using machine learning algorithms. Results: The enriched SSC populations displayed characteristic morphology, positive germline marker expression, and minimal fibroblast contamination. Microarray analysis revealed six significantly upregulated oxidative stress-related genes in SSCs—including CYB5R3 and NDUFA10—and three downregulated genes, such as TXN and SQLE, compared to fibroblasts. PPI and functional enrichment analyses highlighted tightly clustered gene networks involved in mitochondrial function, redox balance, and spermatogenesis. scRNA-seq data further confirmed stage-specific expression of antioxidant genes during spermatogenic differentiation, particularly in late germ cell stages. Among the machine learning models tested, logistic regression demonstrated the highest predictive accuracy for antioxidant gene expression, with an area under the curve (AUC) of 0.741. Protein oxidation was implicated as a major mechanism of oxidative damage, affecting sperm motility, metabolism, and acrosome integrity. Conclusion: This study identifies key oxidative stress-related genes and pathways in human SSCs that may regulate spermatogenesis and impact sperm function. These findings offer potential targets for future functional validation and therapeutic interventions, including antioxidant-based strategies to improve male fertility outcomes. Full article
(This article belongs to the Special Issue Oxidative Stress and Male Reproductive Health)
Show Figures

Figure 1

21 pages, 1412 KB  
Review
Multi-Omics Perspectives on Testicular Aging: Unraveling Germline Dysregulation, Niche Dysfunction, and Epigenetic Remodeling
by Aris Kaltsas
Cells 2025, 14(12), 899; https://doi.org/10.3390/cells14120899 - 13 Jun 2025
Cited by 2 | Viewed by 1822
Abstract
Male reproductive aging proceeds gradually and involves complex alterations across germ cells, somatic cells, and the testicular niche. Multi-omics analyses highlight shifts in spermatogonial stem cell dynamics, diminished sperm quantity and quality, and reconfigured support from Sertoli and Leydig cells. These somatic cells [...] Read more.
Male reproductive aging proceeds gradually and involves complex alterations across germ cells, somatic cells, and the testicular niche. Multi-omics analyses highlight shifts in spermatogonial stem cell dynamics, diminished sperm quantity and quality, and reconfigured support from Sertoli and Leydig cells. These somatic cells show numerical declines and exhibit senescence-associated changes that amplify inflammatory signals and compromise blood–testis barrier integrity. Concurrently, fibrosis and heightened immune cell infiltration disrupt intercellular communication, contributing to further deterioration of spermatogenesis. Epigenetic remodeling—including DNA methylation drift, histone modification imbalances, and altered small non-coding RNA profiles—adds another dimension, reducing sperm integrity and potentially exerting transgenerational effects on offspring health. Observed hormonal changes, such as reduced testosterone and INSL3 production by aging Leydig cells, reflect the additional weakening of testicular function. These multifactorial processes collectively underlie the drop in male fertility and the increased incidence of adverse outcomes, such as miscarriages and developmental anomalies in the offspring of older fathers. Research into mitigation strategies, including interventions targeting senescent cells, oxidative stress, and inflammatory pathways, may slow or reverse key mechanisms of testicular aging. These findings underscore the importance of understanding the molecular hallmarks of male reproductive aging for preserving fertility and safeguarding offspring well-being. Full article
Show Figures

Figure 1

21 pages, 15229 KB  
Article
Establishment and Characteristics of the Spermatogonial Stem Cell Line from the Yellow River Carp (Cyprinus carpio haematopterus)
by Huijie Zhou, Tianqi Liu, Tan Zhang, Zhipeng Sun, Huan Xu, Tingting Zhang, Yashan Yin, Na Li, Ting Yan and Youyi Kuang
Biology 2025, 14(5), 536; https://doi.org/10.3390/biology14050536 - 12 May 2025
Viewed by 1073
Abstract
To address the growing consumer demands for improved fish meat quality, desirable morphological traits, and sustainable production practices, researchers have intensified efforts in the selective breeding and genetic improvement of carp (Cyprinus carpio) varieties. However, traditional breeding methods are often time-consuming [...] Read more.
To address the growing consumer demands for improved fish meat quality, desirable morphological traits, and sustainable production practices, researchers have intensified efforts in the selective breeding and genetic improvement of carp (Cyprinus carpio) varieties. However, traditional breeding methods are often time-consuming and inefficient, which poses challenges to the sustainable development of the carp aquaculture industry. The establishment of germ stem cell lines offers a crucial tool for the study of germ cells, genetic improvement, and species conservation. In this study, we successfully established a spermatogonial stem cell line (YRSSCs) from Yellow River carp (Cyprinus carpio haematopterus) that can be cultured in vitro for the long term. We optimized the culture conditions to maintain their self-renewal and differentiation capabilities. The results demonstrated that YRSSCs have a diploid karyotype and can stably proliferate for over a year in L-15 medium supplemented with 5 mmol/L HEPES, 50 μmol/L β-mercaptoethanol, 15% FBS, 2 ng/mL bFGF, 2 ng/mL LIF, 1% carp serum, 800 IU/mL penicillin, 0.8 mg/mL streptomycin, 2 μg/mL amphotericin B, 1% zebrafish embryo extract, and 1% glutamine at 30 °C in the absence of CO2. The cells exhibited a typical germ stem cell gene expression profile, with strong expression of the vasa, plzf-a, and Oct4-a genes. Additionally, this study found that YRSSCs possess the ability to differentiate in vitro and functionally colonize in vivo within recipient bodies. This research explored the establishment of YRSSCs and their differentiation potential both in vitro and in vivo, providing a novel strategy for the genetic improvement of aquaculture fish species through germ stem cell-based gene editing and transplantation technologies. Full article
Show Figures

Figure 1

15 pages, 2921 KB  
Article
Application of Inertial Microfluidics for Isolation and Removal of Round Spermatids from a Spermatogenic Cell Sample to Assist In-Vitro Human Spermatogenesis
by Sabin Nepal, Joey Casalini, Alex Jafek and Bruce Gale
Micromachines 2025, 16(5), 500; https://doi.org/10.3390/mi16050500 - 25 Apr 2025
Viewed by 851
Abstract
In-vitro spermatogenesis holds great potential in addressing male infertility, yet one of the main challenges is separating round spermatids from other germ cells in spermatogonial stem cell cultures. STA-PUT, a method based on velocity sedimentation, has been extensively tested for this application. Though [...] Read more.
In-vitro spermatogenesis holds great potential in addressing male infertility, yet one of the main challenges is separating round spermatids from other germ cells in spermatogonial stem cell cultures. STA-PUT, a method based on velocity sedimentation, has been extensively tested for this application. Though somewhat effective, it requires bulky, expensive equipment and significant time. In contrast, the method of inertial microfluidics offers a compact, cost-effective, and faster alternative. In this study, we designed, fabricated, and tested a microfluidic spiral channel for isolating round spermatids and purifying spermatogenic cells. A commercially available spiral device close to the calculated specifications was tested for rapid prototyping, achieving 79% purity for non-spermatid cells in a single pass, with ability to achieve higher purity through repeated passes. However, the commercial device’s narrow outlets caused clogging, prompting the fabrication of a custom polydimethylsiloxane device matching the calculated specifications. This custom device demonstrated significant improvements, achieving 86% purity in a single pass compared to STA-PUT’s 38%, and that without any clogging issues. Further purification could be attained by repeated passes, as shown in earlier studies. This work underscores the efficacy of inertial microfluidics for efficient, high-purity cell separation, with the potential to revolutionize workflows in in-vitro spermatogenesis research. Full article
(This article belongs to the Special Issue Application of Microfluidic Technology in Biology)
Show Figures

Figure 1

18 pages, 38533 KB  
Article
Integration of Microarray and Single-Cell RNA-Seq Data and Machine Learning Allows the Identification of Key Histone Modification Gene Changes in Spermatogonial Stem Cells
by Ali Shakeri Abroudi, Hossein Azizi, Melika Djamali, Ali Qorbanee and Thomas Skutella
Biology 2025, 14(4), 387; https://doi.org/10.3390/biology14040387 - 8 Apr 2025
Viewed by 1708
Abstract
Histone modifications play a critical role in regulating gene expression and maintaining the functionality of spermatogonial stem cells (SSCs), which are essential for male fertility and spermatogenesis. In this study, we integrated microarray and single-cell RNA-sequencing (scRNA-seq) data to identify key histone modification [...] Read more.
Histone modifications play a critical role in regulating gene expression and maintaining the functionality of spermatogonial stem cells (SSCs), which are essential for male fertility and spermatogenesis. In this study, we integrated microarray and single-cell RNA-sequencing (scRNA-seq) data to identify key histone modification gene changes associated with SSC function and aging. Through differential expression analysis, we identified 2509 differentially expressed genes (DEGs) in SSCs compared to fibroblasts. Among these, genes involved in histone modification, such as KDM5B, SCML2, SIN3A, and ASXL3, were highlighted for their significant roles in chromatin remodeling and gene regulation. Protein–protein interaction (PPI) networks and gene ontology (GO) enrichment analysis revealed critical biological processes such as chromatin organization, histone demethylation, and chromosome structure maintenance. Weighted gene co-expression network analysis (WGCNA) further revealed three key modules of co-expressed genes related to spermatogonial aging. Additionally, ligand–receptor interaction scoring based on tumor microenvironment analysis suggested potential signaling pathways that could influence the stemness and differentiation of SSCs. Our findings provide new insights into the molecular mechanisms underlying SSC aging, highlighting histone modification genes as potential therapeutic targets for preserving male fertility and improving SSC-culturing techniques. This study advances our understanding of histone modification in SSC biology and will serve as a valuable resource for future investigations into male fertility preservation. Full article
(This article belongs to the Special Issue Feature Papers on Developmental and Reproductive Biology)
Show Figures

Figure 1

13 pages, 1629 KB  
Article
Follicle-Stimulating Hormone and Testosterone Play a Role in the Regulation of Sertoli Cell Functions Following Germ Cell Depletion In Vitro
by Alaa Sawaied, Bat-El Levy, Eden Arazi, Eitan Lunenfeld, Qinghua Shi and Mahmoud Huleihel
Int. J. Mol. Sci. 2025, 26(6), 2702; https://doi.org/10.3390/ijms26062702 - 17 Mar 2025
Cited by 2 | Viewed by 2156
Abstract
Spermatogenesis is a process of self-renewal of spermatogonial stem cells and their proliferation and differentiation to generate mature sperm. This process involves interactions between testicular somatic (mainly Sertoli cells) and spermatogonial cells at their different stages of development. The functionality of Sertoli cells [...] Read more.
Spermatogenesis is a process of self-renewal of spermatogonial stem cells and their proliferation and differentiation to generate mature sperm. This process involves interactions between testicular somatic (mainly Sertoli cells) and spermatogonial cells at their different stages of development. The functionality of Sertoli cells is regulated by hormones and testicular autocrine/paracrine factors. In this study, we investigated the effects of follicle-stimulating hormone (FSH) and testosterone addition on Sertoli cell cultures that undergo hypotonic shock, with a primary focus on Sertoli cell activity. Cells were enzymatically isolated from testicular seminiferous tubules of 7-day-old mice. These cells were cultured in vitro for 3 days. Thereafter, some cultures were treated with hypotonic shock to remove germ cells. After overnight, fresh media without (control; CT) or with FSH, testosterone (Tes), or FSH+T were added to the hypotonic shock-treated or untreated (CT) cultures for 24 h. The morphology of the cultures and the presence of Sertoli cells and germ cells were examined. The expression of growth factors (CSF-1, LIF, SCF, GDNF) or other specific Sertoli cell factors [transferrin, inhibin b, androgen receptor (AR), androgen binding protein (ABP), FSH receptor (FSHR)] was examined by qPCR. Our immunofluorescence staining showed depletion/major reduction in VASA-positive germ cells in Sertoli cell cultures following hypotonic shock (HYP) treatment compared to untreated cultures (WO). Furthermore, the expression of the examined growth factors and other factors was significantly increased in HYP cultures compared to WO (in the CT). However, the addition of hormones significantly decreased the expression levels of the growth factors in HYP cultures compared to WO cultures under the same treatment. In addition, the expression of all other examined Sertoli cell factors significantly changed following HYP treatment compared to WO and following treatment with FSH and or T. However, the expression levels of some factors remained normal following the treatment of Sertoli cell cultures with one or both hormones (transferrin, Fsh-r, Abp, Ar). Thus, our results demonstrate the crucial role of germ cells in the functionality of Sertoli cells and the possible role of FSH and T in maintaining, at least partially, the normal activity of Sertoli cells following germ cell depletion in vitro by hypotonic shock treatment. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

20 pages, 6909 KB  
Article
Altered Sertoli Cell Function Contributes to Spermatogenic Arrest in Dogs with Chronic Asymptomatic Orchitis
by Pauline Rehder, Eva-Maria Packeiser, Hanna Körber and Sandra Goericke-Pesch
Int. J. Mol. Sci. 2025, 26(3), 1108; https://doi.org/10.3390/ijms26031108 - 27 Jan 2025
Cited by 1 | Viewed by 3047
Abstract
Acquired infertility due to chronic asymptomatic orchitis (CAO) is a common finding in male dogs. It is characterized by spermatogenic arrest, a significant reduction in spermatogonia, immune cell infiltration and a disruption of the blood–testis barrier. Sertoli cells are a key factor for [...] Read more.
Acquired infertility due to chronic asymptomatic orchitis (CAO) is a common finding in male dogs. It is characterized by spermatogenic arrest, a significant reduction in spermatogonia, immune cell infiltration and a disruption of the blood–testis barrier. Sertoli cells are a key factor for spermatogenesis and the testicular micromilieu. We hypothesize altered Sertoli cell function to be involved in the pathogenesis of canine CAO. Consequently, the aim was to gain further insights into the spermatogonial stem cell niche and Sertoli cell function in CAO-affected dogs. Therefore, the testicular expression of the Sertoli cell-derived factors bFGF, GDNF, WNT5A, BMP4, CXCL12 and LDHC were evaluated in 15 CAO testis tissues and 10 normospermic controls by relative quantitative real-time PCR (qPCR). Additionally, the protein expression patterns of bFGF, GDNF and WNT5A were visualized immunohistochemically (IHC). This study revealed an overexpression of bFGF (IHC, p < 0.0001), GDNF (qPCR, p = 0.0036), WNT5A (IHC, p = 0.0066) and CXCL12 (qPCR, p = 0.0003) and a reduction in BMP4 (qPCR, p = 0.0041) and LDHC (qPCR, p = 0.0003) in CAO-affected testis in dogs, clearly confirming impaired Sertoli cell function in canine CAO. Sertoli cell function is essential for spermatogenesis and must be considered for potential therapeutic approaches. Full article
(This article belongs to the Special Issue Molecular Insights into Reproductive Biology and Related Diseases)
Show Figures

Figure 1

18 pages, 4578 KB  
Review
Mast Cells as a Component of Spermatogonial Stem Cells’ Microenvironment
by Ali Sadek, Yulia Khramtsova and Boris Yushkov
Int. J. Mol. Sci. 2024, 25(23), 13177; https://doi.org/10.3390/ijms252313177 - 7 Dec 2024
Cited by 3 | Viewed by 2493
Abstract
The formation of mature spermatozoa originates from spermatogonial stem cells (SSCs) located near the basement membrane of the seminiferous tubules. This developmental process, known as spermatogenesis, is tightly regulated to ensure continuous sperm production. A critical aspect of this regulation is the balance [...] Read more.
The formation of mature spermatozoa originates from spermatogonial stem cells (SSCs) located near the basement membrane of the seminiferous tubules. This developmental process, known as spermatogenesis, is tightly regulated to ensure continuous sperm production. A critical aspect of this regulation is the balance between SSC differentiation and self-renewal, which is directed by various factors guiding SSCs in either of these two directions. The SSC niche, defined functionally rather than anatomically, includes all factors necessary for SSC maintenance. These factors are produced by cells surrounding the SSC niche, collectively creating the microenvironment of the seminiferous tubules. Coordination between the cells in this microenvironment is essential for the proper function of the SSC niche and successful spermatogenesis. Testicular mast cells (MCs) significantly influence the regulation of this niche, as they contain various biologically active substances that regulate a wide range of physiological processes and contribute to different pathological conditions affecting fertility. This review explores the effects of testicular MCs on SSCs, their role in regulating spermatogenesis under normal and pathological conditions, and their interactions with other components of the testicular microenvironment, with a focus on their potentially critical impact on spermatogenesis and male fertility. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

13 pages, 2906 KB  
Article
The Chicken HDAC4 Promoter and Its Regulation by MYC and HIF1A
by Yingjie Wang, Ruihong Kong, Ke Xie, Xu Wang, Han Wu and Yani Zhang
Genes 2024, 15(12), 1518; https://doi.org/10.3390/genes15121518 - 26 Nov 2024
Viewed by 1041
Abstract
Background: Histone deacetylase 4 (HDAC4) is a member of the class II histone deacetylase family, whose members play a crucial role in various biological processes. An in-depth investigation of the transcriptional characteristics of chicken HDAC4 can provide fundamental insights into its [...] Read more.
Background: Histone deacetylase 4 (HDAC4) is a member of the class II histone deacetylase family, whose members play a crucial role in various biological processes. An in-depth investigation of the transcriptional characteristics of chicken HDAC4 can provide fundamental insights into its function. Methods: We examined HDAC4 expression in chicken embryonic stem cells (ESC) and spermatogonial stem cells (SSC) and cloned a 444 bp fragment from upstream of the chicken HDAC4 transcription start site. Subsequently, we constructed pEGFP-HDAC4 and a series of 5′-deletion luciferase reporter constructs, which we transfected into DF-1 cells to measure their transcriptional activity. The regulatory mechanisms of chicken HDAC4 expression were investigated by performing trichostatin A (TSA) treatment, deleting putative transcription factor binding sites, and altering transcription factor expression levels. Results: HDAC4 exhibited higher expression in SSC than in ESC. We confirmed that the upstream region from −295 bp to 0 bp is the core transcriptional region of HDAC4. TSA effectively inhibited HDAC4 transcription, and bioinformatics analysis indicated that the chicken core HDAC4 promoter sequence exhibits high homology with those of other avian species. The myelocytomatosis viral oncogene homolog (MYC) and hypoxia-inducible factor 1 α (HIF1A) transcription factors were predicted to bind to this core region. Treatment with TSA for 24 h resulted in the upregulation of MYC and HIF1A, which repressed HDAC4 transcription. Conclusions: Our results provide a basis for subsequent investigations into the regulation of HDAC4 expression and biological function. Full article
(This article belongs to the Special Issue Genetic Breeding of Poultry)
Show Figures

Figure 1

Back to TopTop