Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = submarine landslide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 29215 KB  
Article
Morphological and Magnetic Analysis of Nieuwerkerk Volcano, Banda Sea, Indonesia: Preliminary Hazard Assessment and Geological Interpretation
by Aditya Pratama, Muhammad Aufaristama, Alutsyah Luthfian, Muhammad Zain Tuakia, Ratika Benita Nareswari, Putu Billy Suryanata, Gabriela Nogo Retnaningtyas Bunga Naen, Affan Fadhilah and Nurhidayat
Geosciences 2025, 15(9), 353; https://doi.org/10.3390/geosciences15090353 - 6 Sep 2025
Viewed by 1547
Abstract
Nieuwerkerk Volcano, located in the Banda Sea, Indonesia, is a submarine volcano whose entire edifice lies beneath sea level. Its proximity to several inhabited islands raises significant concerns regarding potential impacts from future volcanic hazards. Despite historical unrest recorded in 1925 and 1927, [...] Read more.
Nieuwerkerk Volcano, located in the Banda Sea, Indonesia, is a submarine volcano whose entire edifice lies beneath sea level. Its proximity to several inhabited islands raises significant concerns regarding potential impacts from future volcanic hazards. Despite historical unrest recorded in 1925 and 1927, a comprehensive geological and geophysical understanding of Nieuwerkerk remains notably limited, with the last research expedition being in 1930. This study seeks to advance our understanding of the geomorphological structure and subsurface characteristics of the region, contributing to a preliminary hazard assessment and delineating key directions for future geoscientific investigation. The data were obtained during our most recent expedition conducted in 2022. High-resolution multibeam bathymetry data were analyzed to delineate the volcano’s morphology, while marine magnetic survey data were processed to interpret magnetic anomalies associated with its structure beneath volcano. Our updated morphological analysis reveals the following: (1) Nieuwerkerk Volcano is among the largest submarine volcanic edifices in the Banda Sea (length = 80 km, width = 30 km, height = 3460 m); (2) there is the presence of twin peaks (depth~300m); (3) there are indications of sector collapse (diameter = 10–12 km); (4) there are significant fault lineaments; and (5) there are landslide deposits, suggesting a complex volcanic edifice shaped by various constructive and destructive processes. The magnetic data show a low magnetic anomaly beneath the surface, where one of the indications is the presence of active magma. These findings significantly enhance our understanding of Nieuwerkerk’s current condition and volcanic evolution for an initial assessment of potential hazards, including future eruptions, edifice collapse, and landslides, which could subsequently trigger tsunamis. Further investigation, including comprehensive geophysical surveys covering the entire Nieuwerkerk area, rock sample analysis, visual seafloor observation, and seawater characterization, is crucial for a comprehensive understanding of its magmatic system and a more robust hazard assessment. This research highlights the critical need for detailed investigations of active submarine volcanoes, particularly those with sparse historical records and close proximity to populated areas, within tectonically complex settings such as the Banda Sea. Full article
Show Figures

Figure 1

21 pages, 14257 KB  
Article
Shallow-Water Submarine Landslide Susceptibility Map: The Example in a Sector of Capo d’Orlando Continental Margin (Southern Tyrrhenian Sea)
by Elena Scacchia, Daniele Casalbore, Fabiano Gamberi, Daniele Spatola, Marco Bianchini and Francesco Latino Chiocci
J. Mar. Sci. Eng. 2025, 13(7), 1350; https://doi.org/10.3390/jmse13071350 - 16 Jul 2025
Viewed by 884
Abstract
Active continental margins, generally characterized by narrow shelves incised by canyons, are pervasively shaped by submarine landslides that can occur near coastal areas. In this context, creating landslide susceptibility maps is the first step in landslide geohazard assessment. This paper focuses on shallow-water [...] Read more.
Active continental margins, generally characterized by narrow shelves incised by canyons, are pervasively shaped by submarine landslides that can occur near coastal areas. In this context, creating landslide susceptibility maps is the first step in landslide geohazard assessment. This paper focuses on shallow-water submarine landslides along the Capo d’Orlando continental margin and presents a related susceptibility map using the Weight of Evidence method. This method quantifies the strength of the association between a landslide inventory and predisposing factors. A geomorphological analysis of the continental shelf and upper slope yielded a landslide inventory of 450 initiation points, which were combined with five specifically selected preconditioning factors. The results revealed that the most favourable conditions for shallow-water landslides include slopes between 5° and 15°, proximity to faults (<1 km), proximity to river mouths (<2 km), the presence of consolidated lithologies and sandy terraces, and slopes facing NE and E. The landslide susceptibility map indicates that susceptible areas are in canyon heads and flanks, as well as in undisturbed slope portions near canyon heads where retrogressive landslides are likely. The model results are robust (AUC = 0.88), demonstrating that this method can be effectively applied in areas with limited geological data for preliminary susceptibility assessments. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 3373 KB  
Article
A Review of Potential Geological Hazards and Precautions in the Mining of Submarine Natural Gas Hydrate
by Zhanghuang Ye, Wenqi Hu and Qiang Yan
Processes 2025, 13(6), 1669; https://doi.org/10.3390/pr13061669 - 26 May 2025
Cited by 1 | Viewed by 751
Abstract
Natural gas hydrate (NGH hereafter), commonly known as combustible ice ((CH4)n·mH2O), is an abundant non-conventional clean energy resource. It is mainly located in permafrost areas and submarine sediment layers at depths of 0–200 m and 300~3000 m underwater. Submarine [...] Read more.
Natural gas hydrate (NGH hereafter), commonly known as combustible ice ((CH4)n·mH2O), is an abundant non-conventional clean energy resource. It is mainly located in permafrost areas and submarine sediment layers at depths of 0–200 m and 300~3000 m underwater. Submarine NGH accounts for about 97%. Its commercial mining may be a solution to mankind’s future energy problems, as well as the beginning of a series of geological risks. These risks can be divided into two categories: natural geological hazards and secondary geological accidents. Based on the viewpoints of Earth system science researchers, this paper discusses the main potential geo-hazards of submarine NGH mining: stratum subsidence, seafloor landslides, the greenhouse effect, sand piping, well blowout, and wellbore instability. To minimize the potential catastrophic impacts on the Earth’s ecosystem or mechanical accidents, corresponding technical precautions and policy suggestions have been put forward. Hopefully, this paper will provide a useful reference for the commercial mining of NGH. Full article
(This article belongs to the Special Issue Production of Energy-Efficient Natural Gas Hydrate)
Show Figures

Figure 1

18 pages, 6257 KB  
Article
Submarine Groundwater Discharge in the Nice Airport Landslide Area
by Christoph Witt and Achim Kopf
J. Mar. Sci. Eng. 2025, 13(5), 909; https://doi.org/10.3390/jmse13050909 - 3 May 2025
Cited by 1 | Viewed by 787
Abstract
Natural radioactivity was measured and analyzed at the Nice Slope for over a month using radon daughters in order to trace groundwater movement from a coastal aquifer to a nearshore continental shelf. Such groundwater movement may have resulted in submarine groundwater discharge (SGD) [...] Read more.
Natural radioactivity was measured and analyzed at the Nice Slope for over a month using radon daughters in order to trace groundwater movement from a coastal aquifer to a nearshore continental shelf. Such groundwater movement may have resulted in submarine groundwater discharge (SGD) and potentially sediment weakening and slope failure. The relationship among major hydrological parameters (precipitation, Var discharge, groundwater level, salinity and water origin) in the area is demonstrated in this study. Time series analyses also helped to detect tidal fluctuations in freshwater input, highlighting the crucial role SGD plays in the slope stability of the still failure-prone Nice Slope, parts of which collapsed in a tsunamigenic submarine landslide in 1979. Earlier deployments of the underwater mass spectrometer KATERINA showed that SGD is limited to the region of the 1979 landslide scar, suggesting that the spatially heterogenous lithologies do not support widespread groundwater charging. The calculated volumetric activities from groundwater tracing isotopes revealed peaks up to ca. 150 counts 214Bi, which is similar to those measured at other prominent SGD sites along the Mediterranean shoreline. Therefore, this rare long-term radioisotope dataset is a valuable contribution to the collaborative research at the Nice Slope and may not remain restricted to the unconfined landslide scar but may charge permeable sub-bottom areas nearby. Hence, it has to be taken into account for further slope stability studies. Full article
Show Figures

Figure 1

18 pages, 28824 KB  
Article
Multifactorial Controls on the Dongdaobei Submarine Canyon System, Xisha Sea, South China Sea
by Meijing Sun, Hongjun Chen, Chupeng Yang, Xiaosan Hu and Jie Liu
J. Mar. Sci. Eng. 2025, 13(3), 564; https://doi.org/10.3390/jmse13030564 - 14 Mar 2025
Viewed by 760
Abstract
The submarine canyons system is the most widely distributed geomorphic unit on the global continental margin. It is an important concept in the field of deep-water sedimentation and geohazards. Based on high-resolution multibeam bathymetry and two-dimensional seismic data, the dendritic canyon system north [...] Read more.
The submarine canyons system is the most widely distributed geomorphic unit on the global continental margin. It is an important concept in the field of deep-water sedimentation and geohazards. Based on high-resolution multibeam bathymetry and two-dimensional seismic data, the dendritic canyon system north of Dongdao island is studied at the eastern Xisha area of the South China Sea. The Dongdaobei submarine canyon is distributed in water depths between 1000 and 3150 m. The main source area in the upper course of the canyon originates from the northwest of Dongdao platform and the Yongxing platform. The sediments from the source area are transported to the main canyon in the form of various gravity flows. Landslides on the slope significantly impact canyon evolution by delivering sediment to the canyon head and causing channel deflection through substrate failure and flow-path reorganization. A large number of pockmarks are distributed around the north slope of the main canyon. The small-scale channels, which are formed as a result of the continuous erosion of the pockmark chains, are connected to the canyon sidewalls. The seamounts are distributed along the south bank of the canyon, exerting a controlling influence on the directional changes in the main canyon’s downstream segment. The formation and evolution of the Dongdaobei submarine canyon are primarily influenced by several factors, including tectonic activity and inherited negative topography, erosion by sedimentary gravity flows, sediment instability, and the shielding effect of seamounts. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

17 pages, 2973 KB  
Review
Review of Research Progress on the Influence of Groundwater Discharge on Seabed Stability
by Zhentian Jia, Hongxian Shan, Hanlu Liu, Zhengrong Zhang, Long Jiang, Siming Wang, Yonggang Jia and Yongzheng Quan
J. Mar. Sci. Eng. 2025, 13(3), 560; https://doi.org/10.3390/jmse13030560 - 13 Mar 2025
Cited by 1 | Viewed by 1207
Abstract
Submarine groundwater discharge (SGD) refers to the flow of groundwater that enters seawater through the seabed surface at the edge of the coastal shelf. During this discharge process, seepage and initiation can easily trigger seabed instability, which significantly influences the breeding, occurrence, and [...] Read more.
Submarine groundwater discharge (SGD) refers to the flow of groundwater that enters seawater through the seabed surface at the edge of the coastal shelf. During this discharge process, seepage and initiation can easily trigger seabed instability, which significantly influences the breeding, occurrence, and evolution of marine geological events. The narrow distribution of land near the coastline and the substantial flux of groundwater discharge are closely associated with typical seabed geological events, such as submarine landslides and collapse pits, which are prevalent in the sea area. This paper analyzes the current research status of SGD both domestically and internationally, elucidates the interaction mechanisms between groundwater discharge and the seabed, and integrates existing studies on discharge-induced slope instability, collapse pit formation, and seabed erosion and resuspension. It summarizes and evaluates the existing research on the influence of seabed groundwater discharge on the evolution of seabed geological structures, identifies key scientific problems that urgently need to be addressed, and proposes future research directions that require further emphasis. Additionally, the paper conducts research on the mechanisms by which groundwater discharge affects seabed stability, providing valuable insights for the study of coastal zones in China. It also offers a scientific basis for enhancing the understanding of the generation mechanisms of marine geological events and improving the technological capabilities for their prevention and control. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

23 pages, 25801 KB  
Article
A Large-Scale Focused Fluid Flow Zone Between Atolls in the Xisha Islands (South China Sea): Types, Characteristics, and Evolution
by Jixiang Zhao, Benjun Ma, Zhiliang Qin, Wenjian Lan, Benyu Zhu, Shuyi Pang, Mingzhe Li and Ruining Wang
J. Mar. Sci. Eng. 2025, 13(2), 216; https://doi.org/10.3390/jmse13020216 - 23 Jan 2025
Viewed by 1059
Abstract
A large number of seabed depressions, covering an area of 2500 km2 in the Xisha Massif of the South China Sea, are investigated using newly collected high-resolution acoustic data. By analyzing the morphological features and seismic attributes of the focused fluid flow [...] Read more.
A large number of seabed depressions, covering an area of 2500 km2 in the Xisha Massif of the South China Sea, are investigated using newly collected high-resolution acoustic data. By analyzing the morphological features and seismic attributes of the focused fluid flow system, five geological structures are recognized and described in detail, including pockmarks, volcanic mounds, pipes, faults, and forced folds. Pockmarks and volcanic mounds occur as clustered groups and their distributions are related to two large-scale volcanic zones with chaotic seismic reflections. Pipes, characterized by disordered seismic reflections, mainly occur within the focused fluid flow zone (FFFZ) and directly link with the large-scale deep volcano and its surrounding areas. Faults and fractures mainly occur along pipes and extend to the seafloor, commonly presenting lateral walls of mega-pockmarks. Forced folds are primarily clustered above volcanic zones and commonly restricted between faults or pipes, characterized by sediment deformations as indicated in seismic profiles. By comprehensive analysis of the above observations and a simplified simulation model, the volcanism-induced hydrothermal fluid activities are argued herein to contribute to these focused fluid flow structures. In addition, traces of suspected submarine instability disasters such as landslides have been found in this sea area, and more observational data will be needed to determine whether seafloor fluid flow zones can be used as a predictor of seafloor instability in the future. Full article
Show Figures

Figure 1

19 pages, 5425 KB  
Article
Rheological Behavior of Gassy Marine Clay: Coupling Effects of Bubbles and Salinity
by Zhuanzhuan Zhang, Xionghuan Tan, Lizhong Wang, Gang Cao, Yuan Lin and Yi Hong
J. Mar. Sci. Eng. 2025, 13(1), 139; https://doi.org/10.3390/jmse13010139 - 15 Jan 2025
Cited by 1 | Viewed by 1041
Abstract
Understanding the rheological behavior of marine clay is crucial to analyzing submarine landslides and their impact on marine resource exploitation. Dispersed bubbles in marine clay (gassy clay) and electrolytes in seawater (e.g., NaCl concentration of 0.47 M) significantly impacts rheological properties. Under low [...] Read more.
Understanding the rheological behavior of marine clay is crucial to analyzing submarine landslides and their impact on marine resource exploitation. Dispersed bubbles in marine clay (gassy clay) and electrolytes in seawater (e.g., NaCl concentration of 0.47 M) significantly impacts rheological properties. Under low ionic strength and low pore water pressure conditions, dispersed bubbles have a strengthening effect on the yield stress and the viscosity of clays. This effect turns into a weakening effect when the pore water pressure reaches 300 kPa or the ionic strength exceeds 0.18 M. It was proposed that the effect of bubbles, whether strengthening or weakening, was determined by the size of bubbles with respect to the characteristic size of the particle structure formed by clay particles. A theoretical model was developed, which reasonably captures rheological behaviors of gassy clays. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

28 pages, 9686 KB  
Review
Gas Hydrate Distribution Influenced by Sea Floor Slide and Canyon Erosion in the Shenhu Slope, Northern South China Sea Margin
by Yuhang Huang, Xinghe Yu and Chao Fu
Processes 2025, 13(1), 193; https://doi.org/10.3390/pr13010193 - 11 Jan 2025
Cited by 1 | Viewed by 1664
Abstract
The Shenhu area, located on the northern continental slope of the South China Sea, is a confirmed gas hydrate-enriching region, but the sedimentary unit, causative mechanisms, and evolution processes of the strata that contain hydrate remain unclear. Furthermore, the recognition of bottom simulating [...] Read more.
The Shenhu area, located on the northern continental slope of the South China Sea, is a confirmed gas hydrate-enriching region, but the sedimentary unit, causative mechanisms, and evolution processes of the strata that contain hydrate remain unclear. Furthermore, the recognition of bottom simulating reflectors (BSRs) rests on qualitative description; there is no quantitative method for the characterization or three-dimensional depiction of BSRs. This review examines the sedimentary features and key factors controlling gas hydrate distribution in the region, based on high-resolution sequence stratigraphy combined with drilling and logging data from hydrate drilling projects in the Shenhu area. The main findings of this study include (1) BSRs are mainly distributed in the ridges of the continental slope and in the slip blocks of the side slope, with hydrates developing along a thin layer (10–40 m) below the hydrate stability zone, as confirmed by drilling results; (2) The distribution of BSRs is strongly influenced by the presence of gas chimneys, the migration of deepwater channels, and the erosion and sedimentation processes of canyons, all of which are directly or indirectly related to the accumulation, distribution, and formation of hydrate reservoirs; (3) The sand factor is generally less than 10%, and BSRs accumulate in areas where the sand factor is higher (4–10%). Hydrate saturation shows a positive correlation with porosity. This research also identifies the early Pleistocene erosion/resedimentation event as a key factor that controls the non-homogeneous distribution of hydrates in the region. This research highlights the role of deepwater canyon erosion and slumping processes in controlling gas hydrate formation, offering new insights into the impact of dynamic geological processes on hydrate accumulation. This study provides valuable knowledge for future hydrate exploration and global resource assessments. Full article
(This article belongs to the Special Issue Production of Energy-Efficient Natural Gas Hydrate)
Show Figures

Figure 1

32 pages, 10731 KB  
Article
Depositional Environments and Soft Sediment Deformation in the Early Jurassic Ammonitico Rosso Formation of Western Greece
by Vasilis Golfinopoulos, David J. W. Piper, Avraam Zelilidis, Georgia Pe-Piper, Penelope Papadopoulou, Nicolina Bourli and George Iliopoulos
Geosciences 2025, 15(1), 10; https://doi.org/10.3390/geosciences15010010 - 4 Jan 2025
Cited by 1 | Viewed by 1702
Abstract
This study investigates the depositional environments and soft sediment deformation within the Early Jurassic Ammonitico Rosso Formation in the External Ionian Basin (Western Greece), focusing on its biostratigraphy, sedimentology, and tectonic activity. This research provides new insights into the depositional environment of the [...] Read more.
This study investigates the depositional environments and soft sediment deformation within the Early Jurassic Ammonitico Rosso Formation in the External Ionian Basin (Western Greece), focusing on its biostratigraphy, sedimentology, and tectonic activity. This research provides new insights into the depositional environment of the Ammonitico Rosso Formation and its transitions with the underlying and overlying formations. Syn-rift tectonics at the time of deposition formed half-grabens, which influenced sedimentary processes and created conditions for seabed slumping. Detailed field mapping and microfacies analysis revealed two distinct depositional environments: deep-water to open-shelf settings and platform-margin reefs. The entire Ammonitico Rosso Formation is allochthonous, deposited as repetitive slices of little-disturbed stratified sediments capped by debrites near the toe of a complex submarine landslide. The presence of well-preserved fossils, such as planktonic and benthic foraminifera, Radiolaria (both Spumellaria and Nassellaria), and ammonites, allowed precise age determinations, suggesting that the first appearance of Globuligerina might predate previous records, occurring first in the Pliensbachian rather than the Toarcian. These findings contribute to the ongoing debate on the depth and conditions of Ammonitico Rosso deposition, supporting the hypothesis of a relatively deep, open-shelf environment influenced by slope instability. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

25 pages, 1781 KB  
Article
An Analytical Study of Tsunamis Generated by Submarine Landslides
by Francisco Uribe, Mauricio Fuentes and Jaime Campos
J. Mar. Sci. Eng. 2024, 12(11), 2052; https://doi.org/10.3390/jmse12112052 - 13 Nov 2024
Cited by 1 | Viewed by 1988
Abstract
In this work, the problem of tsunamis generated by underwater landslides is addressed. Two new solutions are derived in the framework of the linear shallow water equations and linear potential wave theory, respectively. Those solutions are analytical (1 + 1D) and another is [...] Read more.
In this work, the problem of tsunamis generated by underwater landslides is addressed. Two new solutions are derived in the framework of the linear shallow water equations and linear potential wave theory, respectively. Those solutions are analytical (1 + 1D) and another is semi-analytical (2 + 1D). The 1 + 1D model considers a solid body sliding over a sloping beach at a constant speed, and the 2 + 1D model considers a solid landslide that moves at a constant velocity on a flat bottom. The solution 1 + 1D is checked numerically using a different finite scheme. The 2 + 1D model examines the kinematic and geometric features of the landslide at a constant ocean depth and its influence on the generation of tsunamis. Landslide geometry significantly influences run-up height. Our results reveal a power law relationship between normalized run-up and landslide velocity within a realistic range and a negative power law for the landslide length–thickness. Additionally, a critical aspect ratio between the length and width of the sliding body is identified, which enhances the tsunamigenic process. Finally, the results show that the landslide shape does not have a decisive influence on the pattern of tsunami wave generation and propagation. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

21 pages, 7370 KB  
Article
Submarine Landslide Identification Based on Improved DeepLabv3 with Spatial and Channel Attention
by Jingwen Huang, Weijing Song, Tao Liu, Xiaoyu Cui, Jining Yan and Xiaoyu Wang
Remote Sens. 2024, 16(22), 4205; https://doi.org/10.3390/rs16224205 - 12 Nov 2024
Cited by 2 | Viewed by 1845
Abstract
As one of the most destructive, hazardous, and frequent marine geohazards, correctly recognizing submarine landslides holds substantial importance for regional risk assessment, disaster prevention, and marine resource development. Many conventional approaches to prediction and mapping necessitate the involvement of expert insights, oversight, and [...] Read more.
As one of the most destructive, hazardous, and frequent marine geohazards, correctly recognizing submarine landslides holds substantial importance for regional risk assessment, disaster prevention, and marine resource development. Many conventional approaches to prediction and mapping necessitate the involvement of expert insights, oversight, and extensive field investigations, which can result in significant time and effort invested in the prediction process. This paper focuses on employing a deep neural network semantic segmentation technique to detect submarine landslides to replace previous methods, such as numerical analysis and physical modeling, to predict and identify the landslide areas quickly. The peripheral zone of the western Iberian Sea is selected as the study area. Since the neural network image recognition task usually requires RGB images as input data, factors such as slope, hillshade, and elevation extracted from digital elevation model (DEM) data are used to synthesize RGB images through band synthesis methods, and the number and diversity of data are increased utilizing data enhancement. Based on the classical semantic segmentation model DeepLabV3, this paper proposes an improved deep learning method, which strengthens the ability of model feature extraction for complex situations by adding an attention mechanism module, improving the spatial pyramid pooling module, and improving the landslide intersection over union metric from 0.4257 to 0.5219 and the F1-score metric from 0.609 to 0.6631 to achieve effective identification of submarine landslides. Full article
(This article belongs to the Special Issue Artificial Intelligence and Big Data for Oceanography)
Show Figures

Figure 1

20 pages, 1893 KB  
Article
Numerical Modeling of Tsunamis Generated by Subaerial, Partially Submerged, and Submarine Landslides
by Tomoyuki Takabatake and Ryosei Takemoto
GeoHazards 2024, 5(4), 1152-1171; https://doi.org/10.3390/geohazards5040054 - 21 Oct 2024
Cited by 2 | Viewed by 2438
Abstract
Using the existing two-dimensional experimental data and Open-source Fields Operation and Manipulation (OpenFOAM) software, this study performs a comprehensive comparative analysis of three types of landslide-generated tsunamis (subaerial, partially submerged, and submarine). The primary objective was to assess whether numerical simulations can accurately [...] Read more.
Using the existing two-dimensional experimental data and Open-source Fields Operation and Manipulation (OpenFOAM) software, this study performs a comprehensive comparative analysis of three types of landslide-generated tsunamis (subaerial, partially submerged, and submarine). The primary objective was to assess whether numerical simulations can accurately reproduce the experimental results of each type and to compare the predictive equations of the tsunami amplitudes derived from experimental and simulated data. The mesh size and dynamic viscosity parameters were initially optimized for a specific partially submerged landslide tsunami scenario and then applied across a broader range of experimental scenarios. Most of the simulated wave amplitudes remained within the 50% error margin, although significant discrepancies were observed between landslide types. When focusing on the crest amplitude of the first wave, the simulations of subaerial landslides least deviated from the experimental data, with a mean absolute percentage error of approximately 20%, versus approximately 40% for the partially submerged and submarine landslides. The predictive equations derived from the simulations closely matched those from the experimental data, confirming that OpenFOAM can effectively capture complex landslide–tsunami dynamics. Nonetheless, variations in the coefficients related to slope angles highlight the need for further calibration to enhance the simulation fidelity. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

47 pages, 3839 KB  
Article
Global Historical Megatsunamis Catalog (GHMCat)
by Mercedes Ferrer and Luis I. González-de-Vallejo
GeoHazards 2024, 5(3), 971-1017; https://doi.org/10.3390/geohazards5030048 - 23 Sep 2024
Cited by 2 | Viewed by 7487
Abstract
The Global Historical Megatsunamis Catalog (GHMCat) is presented for the first time, including events with the largest waves recorded in historical times. An objective criterion is established to identify megatsunamis based on the maximum wave height (runup) of all recorded events. A threshold [...] Read more.
The Global Historical Megatsunamis Catalog (GHMCat) is presented for the first time, including events with the largest waves recorded in historical times. An objective criterion is established to identify megatsunamis based on the maximum wave height (runup) of all recorded events. A threshold value of 35 m for maximum wave height is proposed based on the analysis of the statistical distribution of the maximum wave heights documented. The catalog was compiled through a systematic review and verification of tsunami events from the two existing Global Historical Tsunami Databases (GHTDs). A list of 40 megatsunamis from 1674 to the present is presented, including descriptions of their maximum wave heights, causes and sources according to the available and verified information, along with the main bibliographical references that support the data gathered in the catalog. The majority of megatsunamis have originated from large landslides, predominantly subaerial, with fewer caused by submarine landslides or associated with volcanic explosions. The geographical distribution of source locations shows that megatsunamis most frequently occur in bays and fjords in glaciated areas and in inland bodies of water, such as lakes and rivers. Notably, certain regions of Alaska and Norway experienced an unusual frequency of megatsunamis, particularly in the early 20th century. The information provided by the GHMCat allows for a comprehensive historical overview of megatsunamis, establishing relationships between their causes, wave heights, and geographic distribution over the past 350 years. This may contribute to advancing the study of the causes and origins of megatsunamis and aid in their prevention in high-risk regions. Full article
Show Figures

Figure 1

24 pages, 5700 KB  
Article
Temporal Scales of Mass Wasting Sedimentation across the Mississippi River Delta Front Delineated by 210Pb/137Cs Geochronology
by Jeffrey Duxbury, Samuel J. Bentley, Kehui Xu and Navid H. Jafari
J. Mar. Sci. Eng. 2024, 12(9), 1644; https://doi.org/10.3390/jmse12091644 - 13 Sep 2024
Cited by 2 | Viewed by 1713
Abstract
The Mississippi River Delta Front (MRDF) is a subaqueous apron of rapidly deposited and weakly consolidated sediment extending from the subaerial portions of the Birdsfoot Delta of the Mississippi River, long characterized by mass-wasting sediment transport. Four (4) depositional environments dominate regionally (an [...] Read more.
The Mississippi River Delta Front (MRDF) is a subaqueous apron of rapidly deposited and weakly consolidated sediment extending from the subaerial portions of the Birdsfoot Delta of the Mississippi River, long characterized by mass-wasting sediment transport. Four (4) depositional environments dominate regionally (an undisturbed topset apron, mudflow gully, mudflow lobe, and prodelta), centering around mudflow distribution initiated by a variety of factors (hurricanes, storms, and fluid pressure). To better understand the spatiotemporal scales of the events as well as the controlling processes, eight cores (5.8–8.0 m long) taken offshore from the South Pass (SP) and the Southwest Pass (SWP) were analyzed for gamma density, grain size, sediment fabric (X-radiography), and geochronology (210Pb/137Cs radionuclides). Previous work has focused on the deposition of individual passes and has been restricted to <3 m core penetration, limiting its geochronologic completeness. Building on other recent studies, within the mudflow gully and lobe cores, the homogeneous stepped profiles of 210Pb activities and the corresponding decreased gamma density indicate the presence of gravity-driven mass failures. 210Pb/137Cs indicates that gully sedimentary sediment accumulation since 1953 is greater than 580 cm (sediment accumulation rate [SAR] of 12.8 cm/y) in the southwest pass site, and a lower SAR of the South Pass gully sites (2.6 cm/y). This study shows that (1) recent dated mudflow deposits are identifiable in both the SWP and SP; (2) SWP mudflows have return periods of 10.7 y, six times more frequent than at the SP (66.7 y); (3) 210Pb inventories display higher levels in the SWP area, with the highest focusing factors in proximal/gully sedimentation, and (4) submarine landslides in both study areas remain important for sediment transport despite the differences in sediment delivery and discharge source proximity. Full article
Show Figures

Figure 1

Back to TopTop