Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = superconductive tunnelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1277 KB  
Perspective
Nanoscale Lattice Heterostructure in High-Tc Superconductors
by Annette Bussmann-Holder, Jürgen Haase, Hugo Keller, Reinhard K. Kremer, Sergei I. Mukhin, Alexey P. Menushenkov, Andrei Ivanov, Alexey Kuznetsov, Victor Velasco, Steven D. Conradson, Gaetano Campi and Antonio Bianconi
Condens. Matter 2025, 10(4), 56; https://doi.org/10.3390/condmat10040056 - 30 Oct 2025
Viewed by 245
Abstract
Low-temperature superconductivity has been known since 1957 to be described by BCS theory for effective single-band metals controlled by the density of states at the Fermi level, very far from band edges, the electron–phonon coupling constant l, and the energy of the boson [...] Read more.
Low-temperature superconductivity has been known since 1957 to be described by BCS theory for effective single-band metals controlled by the density of states at the Fermi level, very far from band edges, the electron–phonon coupling constant l, and the energy of the boson in the pairing interaction w0, but BCS has failed to predict high-temperature superconductivity in different materials above about 23 K. High-temperature superconductivity above 35 K, since 1986, has been a matter of materials science, where manipulating the lattice complexity of high-temperature superconducting ceramic oxides (HTSCs) has driven materials scientists to grow new HTSC quantum materials up to 138 K in HgBa2Ca2Cu3O8 (Hg1223) at ambient pressure and near room temperature in pressurized hydrides. This perspective covers the major results of materials scientists over the last 39 years in terms of investigating the role of lattice inhomogeneity detected in these new quantum complex materials. We highlight the nanoscale heterogeneity in these complex materials and elucidate their special role played in the physics of HTSCs. Especially, it is highlighted that the geometry of lattice and charge complex heterogeneity at the nanoscale is essential and intrinsic in the mechanism of rising quantum coherence at high temperatures. Full article
(This article belongs to the Special Issue Superstripes Physics, 4th Edition)
Show Figures

Figure 1

16 pages, 1242 KB  
Article
A Note on the Dynamics of Modified rf-SQUIDs: Simulations and Possible Control over Oscillations
by Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev and Todor Branzov
Mathematics 2025, 13(5), 722; https://doi.org/10.3390/math13050722 - 24 Feb 2025
Viewed by 693
Abstract
The so-call SQUIDs (abbreviated from superconducting quantum interference device) are very sensitive apparatuses especially built for metering very low magnetic fields. These systems have applications in various practical fields—biology, geology, medicine, different engineering areas, etc. Their features are mainly based on superconductors and [...] Read more.
The so-call SQUIDs (abbreviated from superconducting quantum interference device) are very sensitive apparatuses especially built for metering very low magnetic fields. These systems have applications in various practical fields—biology, geology, medicine, different engineering areas, etc. Their features are mainly based on superconductors and the Josephson effect. They can be differentiated into two main groups—direct current (DC) and radio frequency (RF) SQUIDs. Both of them were constructed in the 1960s at Ford Research Labs. The main difference between them is that the second ones use only one superconducting tunnel junction. This reduces their sensitivity, but makes them significantly cheaper. We investigate namely the rf-SQUIDs in the present work. A number of authors devote their research to the rf-SQUIDs driven by an oscillating external flux. We aim to enlarge the theoretical base of these systems by adding new factors in their dynamics. Several particular cases are explored and simulated. We demonstrate also some specialized modules for investigating the proposed model. One application for possible control over oscillations is also discussed. It is based on the Fourier transform and, as a consequence, on the characteristic function of some probability distributions. Full article
Show Figures

Figure 1

27 pages, 10002 KB  
Review
The Superconducting Mechanism in BiS2-Based Superconductors: A Comprehensive Review with Focus on Point-Contact Spectroscopy
by Paola Romano, Aniello Pelella, Antonio Di Bartolomeo and Filippo Giubileo
Nanomaterials 2024, 14(21), 1740; https://doi.org/10.3390/nano14211740 - 30 Oct 2024
Cited by 1 | Viewed by 2205
Abstract
The family of BiS2-based superconductors has attracted considerable attention since their discovery in 2012 due to the unique structural and electronic properties of these materials. Several experimental and theoretical studies have been performed to explore the basic properties and the underlying [...] Read more.
The family of BiS2-based superconductors has attracted considerable attention since their discovery in 2012 due to the unique structural and electronic properties of these materials. Several experimental and theoretical studies have been performed to explore the basic properties and the underlying mechanism for superconductivity. In this review, we discuss the current understanding of pairing symmetry in BiS2-based superconductors and particularly the role of point-contact spectroscopy in unravelling the mechanism underlying the superconducting state. We also review experimental results obtained with different techniques including angle-resolved photoemission spectroscopy, scanning tunnelling spectroscopy, specific heat measurements, and nuclear magnetic resonance spectroscopy. The integration of experimental results and theoretical predictions sheds light on the complex interplay between electronic correlations, spin fluctuations, and Fermi surface topology in determining the coupling mechanism. Finally, we highlight recent advances and future directions in the field of BiS2-based superconductors, underlining the potential technological applications. Full article
Show Figures

Figure 1

13 pages, 356 KB  
Review
Bose Metals, from Prediction to Realization
by M. C. Diamantini and C. A. Trugenberger
Materials 2024, 17(19), 4924; https://doi.org/10.3390/ma17194924 - 9 Oct 2024
Cited by 2 | Viewed by 1392
Abstract
Bose metals are metals made of Cooper pairs, which form at very low temperatures in superconducting films and Josephson junction arrays as an intermediate phase between superconductivity and superinsulation. We predicted the existence of this 2D metallic phase of bosons in the mid [...] Read more.
Bose metals are metals made of Cooper pairs, which form at very low temperatures in superconducting films and Josephson junction arrays as an intermediate phase between superconductivity and superinsulation. We predicted the existence of this 2D metallic phase of bosons in the mid 1990s, showing that they arise due to topological quantum effects. The observation of Bose metals in perfectly regular Josephson junction arrays fully confirms our prediction and rules out alternative models based on disorder. Here, we review the basic mechanism leading to Bose metals. The key points are that the relevant vortices in granular superconductors are core-less, mobile XY vortices which can tunnel through the system due to quantum phase slips, that there is no charge-phase commutation relation preventing such vortices from being simultaneously out of condensate with charges, and that out-of-condensate charges and vortices are subject to topological mutual statistics interactions, a quantum effect that dominates at low temperatures. These repulsive mutual statistics interactions are sufficient to increase the energy of the Cooper pairs and lift them out of condensate. The result is a topological ground state in which charge conduction along edges and vortex movement across them organize themselves so as to generate the observed metallic saturation at low temperatures. This state is known today as a bosonic topological insulator. Full article
(This article belongs to the Special Issue Advanced Materials with Strong Electron Correlations)
Show Figures

Figure 1

20 pages, 4806 KB  
Article
Intelligent Prediction and Application Research on Soft Rock Tunnel Deformation Based on the ICPO-LSTM Model
by Chunpeng Zhang, Haiming Liu, Yongmei Peng, Wenyun Ding and Jing Cao
Buildings 2024, 14(7), 2244; https://doi.org/10.3390/buildings14072244 - 21 Jul 2024
Cited by 6 | Viewed by 1814
Abstract
In tunnel construction, the prediction of the surrounding rock deformation is related to the construction safety and stability of the tunnel structure. In order to achieve an accurate prediction of the surrounding rock deformation in soft rock tunnel construction, a Long Short-Term Memory [...] Read more.
In tunnel construction, the prediction of the surrounding rock deformation is related to the construction safety and stability of the tunnel structure. In order to achieve an accurate prediction of the surrounding rock deformation in soft rock tunnel construction, a Long Short-Term Memory (LSTM) neural network is used to construct a prediction model of the vault settlement and the horizontal convergence of the upper conductor in soft rock tunnels. The crested porcupine optimisation (CPO) algorithm is used to realise the hyper-parameter optimisation of the LSTM model and to construct the framework of the calculation process of the CPO-LSTM model. Taking the soft rock section of the Baoshishan Tunnel as an example, the large deformation of the surrounding rock is measured and analysed in situ, and the monitoring data of arch settlement and superconducting level convergence are obtained, which are substituted into the CPO-LSTM model for calculation, and compared and analysed with traditional machine learning and optimisation algorithms. The results show that the CPO-LSTM model has an R2 of 0.9982, a MAPE of 0.8595% and an RMSE of 0.1922, which are the best among all the models. In order to further improve the optimisation capability of the CPO, some improvements were made to the CPO and an Improved Crested Porcupine Optimiser (ICPO) was proposed. The ICPO-LSTM prediction model was established, and the ZK6 + 834 section was selected as a research object for comparison and analysis with the CPO-LSTM model. The results of the error analysis show that the prediction accuracy of the improved ICPO-LSTM model has been further improved, and the prediction accuracy of the model meets the requirements of guiding construction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 549 KB  
Article
Quark Clusters, QCD Vacuum and the Cosmological 7Li, Dark Matter and Dark Energy Problems
by Rachid Ouyed, Denis Leahy, Nico Koning and Prashanth Jaikumar
Universe 2024, 10(3), 115; https://doi.org/10.3390/universe10030115 - 1 Mar 2024
Cited by 3 | Viewed by 1796
Abstract
We propose a non-exotic electromagnetic solution (within the standard model of particle physics) to the cosmological 7Li problem based upon a narrow 2 MeV photo-emission line from the decay of light glueballs (LGBs). These LGBs form within color superconducting quark clusters (SQCs), [...] Read more.
We propose a non-exotic electromagnetic solution (within the standard model of particle physics) to the cosmological 7Li problem based upon a narrow 2 MeV photo-emission line from the decay of light glueballs (LGBs). These LGBs form within color superconducting quark clusters (SQCs), which are tens of Fermi in size, in the radiation-dominated post-BBN epoch. The mono-chromatic line from the LGBγ+γ decay reduces Big Bang nucleosynthesis (BBN) 7Be by 2/3 without affecting other abundances or the cosmic microwave background (CMB) physics, provided the combined mass of the SQCs is greater than the total baryonic mass in the universe. Following the LGB emission, the in-SQC Quantum ChromoDynamics (QCD) vacuum becomes unstable and “leaks” (via quantum tunneling) into the external space-time (trivial) vacuum, inducing a decoupling of SQCs from hadrons. In seeking a solution to the 7Li problem, we uncovered a solution that also addresses the Dark Energy (DE) and dark matter (DM) problem, making these critical problems intertwined in our model. Being colorless, charge-neutral, optically thin, and transparent to hadrons, SQCs interact only gravitationally, making them a viable cold DM (CDM) candidate. The leakage (i.e., quantum tunneling) of the in-SQC QCD vacuum to the trivial vacuum offers an explanation of DE in our model and allows for a cosmology that evolves into a ΛCDM universe at a low redshift with a possible resolution of the Hubble tension. Our model distinguishes itself by proposing that the QCD vacuum within SQCs possesses the ability to tunnel into the exterior trivial vacuum, resulting in the generation of DE. This implies the possibility that DM and hadrons might represent distinct phases of quark matter within the framework of QCD, characterized by different vacuum properties. We discuss SQC formation in heavy-ion collision experiments at moderate temperatures and the possibility of detection of MeV photons from the LGBγ+γ decay. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

17 pages, 1140 KB  
Article
Upper Critical Field and Tunneling Spectroscopy of Underdoped Na(Fe,Co)As Single Crystals
by Leonid Morgun, Svetoslav Kuzmichev, Igor Morozov, Alena Degtyarenko, Andrey Sadakov, Andrey Shilov, Ilya Zhuvagin, Yevgeny Rakhmanov and Tatiana Kuzmicheva
Materials 2023, 16(19), 6421; https://doi.org/10.3390/ma16196421 - 27 Sep 2023
Cited by 9 | Viewed by 1576
Abstract
A comprehensive study of superconducting properties of underdoped NaFe0.979Co0.021As single crystals by a combination of upper critical field measurements and incoherent multiple Andreev reflection effect (IMARE) spectroscopy is presented. The Hc2(T) temperature dependences are [...] Read more.
A comprehensive study of superconducting properties of underdoped NaFe0.979Co0.021As single crystals by a combination of upper critical field measurements and incoherent multiple Andreev reflection effect (IMARE) spectroscopy is presented. The Hc2(T) temperature dependences are measured at magnetic fields up to 16 T with in-plane and out-of-plane field directions and considered within single-band and two-band models in order to estimate the Hc2(0) value. In IMARE spectroscopy probes, the magnitude, characteristic ratio, and temperature dependence of the superconducting order parameters (ΔL,S(T)) are determined locally and directly. A possible k-space anisotropy of the large superconducting gap is demonstrated. We show that usage of a quadruple of λij0 coupling constants obtained in the IMARE experiment can significantly reduce the number of free parameters required to fit the Hc2(T) dependence within a two-band approach (from six to two). Full article
(This article belongs to the Special Issue Characterization and Application of Superconducting Materials)
Show Figures

Figure 1

14 pages, 1885 KB  
Article
Dynamics of Dispersive Measurements of Flux-Qubit States: Energy-Level Splitting Connected to Quantum Wave Mechanics
by Jeong Ryeol Choi
Nanomaterials 2023, 13(17), 2395; https://doi.org/10.3390/nano13172395 - 23 Aug 2023
Viewed by 1835
Abstract
Superconducting flux qubits have many advantages as a storage of quantum information, such as broad range tunability of frequency, small-size fabricability, and high controllability. In the flux qubit–oscillator, qubits are connected to SQUID resonators for the purpose of performing dispersive non-destructive readouts of [...] Read more.
Superconducting flux qubits have many advantages as a storage of quantum information, such as broad range tunability of frequency, small-size fabricability, and high controllability. In the flux qubit–oscillator, qubits are connected to SQUID resonators for the purpose of performing dispersive non-destructive readouts of qubit signals with high fidelity. In this work, we propose a theoretical model for analyzing quantum characteristics of a flux qubit–oscillator on the basis of quantum solutions obtained using a unitary transformation approach. The energy levels of the combined system (qubit + resonator) are analyzed in detail. Equally spaced each energy level of the resonator splits into two parts depending on qubit states. Besides, coupling of the qubit to the resonator brings about an additional modification in the split energy levels. So long as the coupling strength and the tunnel splitting are not zero but finite values, the energy-level splitting of the resonator does not disappear. We conclude that quantum nondemolition dispersive measurements of the qubit states are possible by inducing bifurcation of the resonator states through the coupling. Full article
Show Figures

Figure 1

12 pages, 2756 KB  
Article
Atomic-Layer Engineering of La2−xSrxCuO4—La2−xSrxZnO4 Heterostructures
by Xiaotao Xu, Xi He, Anthony T. Bollinger, Xiaoyan Shi and Ivan Božović
Nanomaterials 2023, 13(15), 2207; https://doi.org/10.3390/nano13152207 - 29 Jul 2023
Cited by 2 | Viewed by 1673
Abstract
The fabrication of trilayer superconductor-insulator-superconductor (SIS) Josephson junctions with high-temperature superconductor (HTS) electrodes requires atomically perfect interfaces. Therefore, despite great interest and efforts, this remained a challenge for over three decades. Here, we report the discovery of a new family of metastable materials, [...] Read more.
The fabrication of trilayer superconductor-insulator-superconductor (SIS) Josephson junctions with high-temperature superconductor (HTS) electrodes requires atomically perfect interfaces. Therefore, despite great interest and efforts, this remained a challenge for over three decades. Here, we report the discovery of a new family of metastable materials, La2−xSrxZnO4 (LSZO), synthesized by atomic-layer-by-layer molecular beam epitaxy (ALL-MBE). We show that LSZO is insulating and epitaxially compatible with an HTS compound, La2−xSrxCuO4 (LSCO). Since the “parent” compound La2ZnO4 (LZO) is easier to grow, here we focus on this material as our insulating layer. Growing LZO at very low temperatures to reduce cation interdiffusion makes LSCO/LZO interfaces atomically sharp. We show that in LSCO/LZO/LSCO trilayers, the superconducting properties of the LSCO electrodes remain undiminished, unlike in previous attempts with insulator barriers made of other materials. This opens prospects to produce high-quality HTS tunnel junctions. Full article
(This article belongs to the Special Issue Recent Advances in Nanowires and Superconductors)
Show Figures

Figure 1

17 pages, 6476 KB  
Article
Magnetic Heating Effect for Quarter-Wave Resonator (QWR) Superconducting Cavities
by Heetae Kim, Sungmin Jeon, Yoochul Jung and Juwan Kim
Quantum Beam Sci. 2023, 7(3), 21; https://doi.org/10.3390/qubs7030021 - 3 Jul 2023
Cited by 8 | Viewed by 2832
Abstract
In this paper, the magnetic heating effect of the superconducting quarter-wave resonator (QWR) cavities is investigated, and the Q slopes of the superconducting cavities are measured with an increasing accelerating field. Bardeen–Cooper–Schrieffer (BCS) resistance is calculated for the zero-temperature limit. The vertical test [...] Read more.
In this paper, the magnetic heating effect of the superconducting quarter-wave resonator (QWR) cavities is investigated, and the Q slopes of the superconducting cavities are measured with an increasing accelerating field. Bardeen–Cooper–Schrieffer (BCS) resistance is calculated for the zero-temperature limit. The vertical test is shown for the performance test of the QWR cavities. The parameters for the QWR cavity are presented. The Q slopes are measured as a function of an accelerating electric field at 4.2 K. The surface resistance of the superconducting cavity increases with an increasing peak magnetic field. The magnetic defects degrade the quality factor. From the magnetic degradation, we determine the magnetic moments of the superconducting cavities. All quarter-wave resonator (QWR) cryomodules are installed in the tunnel, and beam commissioning is performed successfully. Full article
(This article belongs to the Special Issue Quantum Beam and Its Applications for Quantum Technologies)
Show Figures

Figure 1

15 pages, 4167 KB  
Article
Phonon-Assisted Tunneling through Quantum Dot Systems Connected to Majorana Bound States
by Levente Máthé, Zoltán Kovács-Krausz, Ioan Botiz, Ioan Grosu, Khadija El Anouz, Abderrahim El Allati and Liviu P. Zârbo
Nanomaterials 2023, 13(10), 1616; https://doi.org/10.3390/nano13101616 - 11 May 2023
Cited by 4 | Viewed by 3065
Abstract
We theoretically analyze phonon-assisted tunneling transport in a quantum dot side connected to a Majorana bound state in a topological superconducting nanowire. We investigate the behavior of the current through the dot, for a range of experimentally relevant parameters, in the presence of [...] Read more.
We theoretically analyze phonon-assisted tunneling transport in a quantum dot side connected to a Majorana bound state in a topological superconducting nanowire. We investigate the behavior of the current through the dot, for a range of experimentally relevant parameters, in the presence of one long-wave optical phonon mode. We consider the current-gate voltage, the current-bias voltage and the current-dot–Majorana coupling characteristics under the influence of the electron–phonon coupling. In the absence of electron–phonon interaction, the Majorana bound states suppress the current when the gate voltage matches the Fermi level, but the increase in the bias voltage counteracts this effect. In the presence of electron–phonon coupling, the current behaves similarly as a function of the renormalized gate voltage. As an added feature at large bias voltages, it presents a dip or a plateau, depending on the size of the dot–Majorana coupling. Lastly, we show that the currents are most sensitive to, and depend non-trivially on the parameters of the Majorana circuit element, in the regime of low temperatures combined with low voltages. Our results provide insights into the complex physics of quantum dot devices used to probe Majorana bound states. Full article
(This article belongs to the Special Issue Recent Advances in Nanowires and Superconductors)
Show Figures

Figure 1

10 pages, 5753 KB  
Article
A Novel Atomically Resolved Scanning Tunneling Microscope Capable of Working in Cryogen-Free Superconducting Magnet
by Tao Geng, Jihao Wang, Wenjie Meng, Jing Zhang, Qiyuan Feng, Yubin Hou and Qingyou Lu
Micromachines 2023, 14(3), 637; https://doi.org/10.3390/mi14030637 - 11 Mar 2023
Cited by 7 | Viewed by 3400
Abstract
We present a novel homebuilt scanning tunneling microscope (STM) with atomic resolution integrated into a cryogen-free superconducting magnet system with a variable temperature insert. The STM head is designed as a nested structure of double piezoelectric tubes (PTs), which are connected coaxially through [...] Read more.
We present a novel homebuilt scanning tunneling microscope (STM) with atomic resolution integrated into a cryogen-free superconducting magnet system with a variable temperature insert. The STM head is designed as a nested structure of double piezoelectric tubes (PTs), which are connected coaxially through a sapphire frame whose top has a sample stage. A single shaft made of tantalum, with the STM tip on top, is held firmly by a spring strip inside the internal PT. The external PT drives the shaft to the tip–sample junction based on the SpiderDrive principle, and the internal PT completes the subsequent scanning and imaging work. The STM head is simple, compact, and easy to assemble. The excellent performance of the device was demonstrated by obtaining atomic-resolution images of graphite and low drift rates of 30.2 pm/min and 41.4 pm/min in the X–Y plane and Z direction, respectively, at 300K. In addition, we cooled the sample to 1.6 K and took atomic-resolution images of graphite and NbSe2. Finally, we performed a magnetic field sweep test from 0 T to 9 T at 70 K, obtaining distinct graphite images with atomic resolution under varying magnetic fields. These experiments show our newly developed STM’s high stability, vibration resistance, and immunity to high magnetic fields. Full article
Show Figures

Figure 1

9 pages, 697 KB  
Article
Superconductivity and Fermi Surface Studies of β-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-Crown-6
by Brett Laramee, Raju Ghimire, David Graf, Lee Martin, Toby J. Blundell and Charles C. Agosta
Magnetochemistry 2023, 9(3), 64; https://doi.org/10.3390/magnetochemistry9030064 - 24 Feb 2023
Cited by 2 | Viewed by 2441
Abstract
We report rf-penetration depth measurements of the quasi-2D organic superconductor β-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-crown-6, which has the largest separation between consecutive conduction layers of any 2D organic metal with a [...] Read more.
We report rf-penetration depth measurements of the quasi-2D organic superconductor β-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-crown-6, which has the largest separation between consecutive conduction layers of any 2D organic metal with a single packing motif. Using a contactless tunnel diode oscillator measurement technique, we show the zero-field cooling dependence and field sweeps up to 28 T oriented at various angles with respect to the crystal conduction planes. When oriented parallel to the layers, the upper critical field, Hc2=7.6 T, which is the calculated paramagnetic limit for this material. No signs of inhomogeneous superconductivity are seen, despite previous predictions. When oriented perpendicular to the layers, Shubnikov–de Haas oscillations are seen as low as 6 T, and from these we calculate Fermi surface parameters such as the superconducting coherence length and Dingle temperature. One remarkable result from our data is the high anisotropy of Hc2 in the parallel and perpendicular directions, due to an abnormally low Hc2=0.4 T. Such high anisotropy is rare in other organics and the origin of the smaller Hc2 may be a consequence of a lower effective mass. Full article
Show Figures

Figure 1

15 pages, 2115 KB  
Article
Robust and Fragile Majorana Bound States in Proximitized Topological Insulator Nanoribbons
by Dennis Heffels, Declan Burke, Malcolm R. Connolly, Peter Schüffelgen, Detlev Grützmacher and Kristof Moors
Nanomaterials 2023, 13(4), 723; https://doi.org/10.3390/nano13040723 - 14 Feb 2023
Cited by 10 | Viewed by 3496
Abstract
Topological insulator (TI) nanoribbons with proximity-induced superconductivity are a promising platform for Majorana bound states (MBSs). In this work, we consider a detailed modeling approach for a TI nanoribbon in contact with a superconductor via its top surface, which induces a superconducting gap [...] Read more.
Topological insulator (TI) nanoribbons with proximity-induced superconductivity are a promising platform for Majorana bound states (MBSs). In this work, we consider a detailed modeling approach for a TI nanoribbon in contact with a superconductor via its top surface, which induces a superconducting gap in its surface-state spectrum. The system displays a rich phase diagram with different numbers of end-localized MBSs as a function of chemical potential and magnetic flux piercing the cross section of the ribbon. These MBSs can be robust or fragile upon consideration of electrostatic disorder. We simulate a tunneling spectroscopy setup to probe the different topological phases of top-proximitized TI nanoribbons. Our simulation results indicate that a top-proximitized TI nanoribbon is ideally suited for realizing fully gapped topological superconductivity, in particular when the Fermi level is pinned near the Dirac point. In this regime, the setup yields a single pair of MBSs, well separated at opposite ends of the proximitized ribbon, which gives rise to a robust quantized zero-bias conductance peak. Full article
(This article belongs to the Special Issue Topological Materials in Low Dimensions)
Show Figures

Figure 1

9 pages, 2542 KB  
Communication
Observations of Nematicity, Dopants, and Zero-Bias Conductance Peaks for the Ca0.9La0.1FeAs2 Superconductor
by Jae-Joon Kim, Min Seok Park, Kyoung Seok Lee, Sang Hyun Joo, Jung Hoon Yoo, Dilip Bhoi, Byeong Hun Min, Kee Hoon Kim and Jinho Lee
Nanomaterials 2023, 13(4), 622; https://doi.org/10.3390/nano13040622 - 4 Feb 2023
Cited by 2 | Viewed by 2040
Abstract
Ca1−xLaxFeAs2 (CLFA112) belongs to a new family of Fe-based superconductors (FeSCs) and has a unique crystal structure featuring an arsenic zigzag chain layer, which has been proposed to be a possible two-dimensional topological insulator. This suggests that CLFA112 [...] Read more.
Ca1−xLaxFeAs2 (CLFA112) belongs to a new family of Fe-based superconductors (FeSCs) and has a unique crystal structure featuring an arsenic zigzag chain layer, which has been proposed to be a possible two-dimensional topological insulator. This suggests that CLFA112 is a potential topological superconductor—a platform to realize Majorana fermions. Up to now, even a clear superconducting (SC) gap in CLFA112 has never been observed, and the SC properties of CLFA112 remain largely elusive. In this letter, we report the results of an atomic-scale investigation of the electronic structure of CLFA112 crystals using low-temperature scanning tunneling microscopy (STM). We revealed four different types of surfaces exhibiting distinct electronic properties, with all surfaces displaying dominating 2 × 1 surface reconstructions. On a Ca/La layer on top of an FeAs layer, a clear SC gap of ~12 mV was observed only at the crevices (vacancies) where the FeAs layer can be directly accessed. Remarkably, the FeAs termination layer displayed a dispersing nematic modulation both in real and q space. We also present peculiar zero-bias conductance peaks for the very As chain layer that is believed to exhibit a topological edge state as well as the influence of La dopants on the As chain layer. Full article
(This article belongs to the Special Issue Super-resolution Microscopy and Nanoscience)
Show Figures

Figure 1

Back to TopTop