Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = supernova connection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 343 KB  
Article
Soliton Geometry of Modified Gravity Models Engaged with Strange Quark Matter Fluid and Penrose Singularity Theorem
by Mohd Danish Siddiqi and Fatemah Mofarreh
Symmetry 2025, 17(10), 1767; https://doi.org/10.3390/sym17101767 - 20 Oct 2025
Viewed by 252
Abstract
The nature of the F(R,T)-gravity in conjunction with the quark matter fluid (QMF) is examined in this research note. In the F(R,T)-gravity framework, we derive the equation [...] Read more.
The nature of the F(R,T)-gravity in conjunction with the quark matter fluid (QMF) is examined in this research note. In the F(R,T)-gravity framework, we derive the equation of state for the QMF in the form of: F(R,T)=F1(R)+F2(T) and the model of F(R)-gravity. We also discuss how the quark matter supports the Ricci solitons with a conformal vector field in F(R,T)-gravity. In this continuing work, we give estimates for the pressure and quark density in the phantom barrier period and the radiation epoch, respectively. Additionally, we use Ricci solitons to identify several black hole prospects and energy requirements for quark matter fluid spacetime (QMF-spacetime) connected with F(R,T)-gravity. Furthermore, in the F(R,T)-gravity model connected with QMF, we also discuss some applications of the Penrose singularity theorem in terms of Ricci solitons with a conformal vector field. Finally, we deduce the Schrödinger Equation using the equation of state of the F(R,T)-gravity model connected with QMF, and we uncover some constraints that imply the existence of compact quark stars of the Ia-supernova type in the QMF-spacetime with F(R,T)-gravity. Full article
(This article belongs to the Section Mathematics)
50 pages, 8738 KB  
Review
From Barthel–Randers–Kropina Geometries to the Accelerating Universe: A Brief Review of Recent Advances in Finslerian Cosmology
by Amine Bouali, Himanshu Chaudhary, Lehel Csillag, Rattanasak Hama, Tiberiu Harko, Sorin V. Sabau and Shahab Shahidi
Universe 2025, 11(7), 198; https://doi.org/10.3390/universe11070198 - 20 Jun 2025
Cited by 1 | Viewed by 867
Abstract
We present a review of recent developments in cosmological models based on Finsler geometry, as well as geometric extensions of general relativity formulated within this framework. Finsler geometry generalizes Riemannian geometry by allowing the metric tensor to depend not only on position but [...] Read more.
We present a review of recent developments in cosmological models based on Finsler geometry, as well as geometric extensions of general relativity formulated within this framework. Finsler geometry generalizes Riemannian geometry by allowing the metric tensor to depend not only on position but also on an additional internal degree of freedom, typically represented by a vector field at each point of the spacetime manifold. We examine in detail the possibility that Finsler-type geometries can describe the physical properties of the gravitational interaction, as well as the cosmological dynamics. In particular, we present and review the implications of a particular implementation of Finsler geometry, based on the Barthel connection, and of the (α,β) geometries, where α is a Riemannian metric, and β is a one-form. For a specific construction of the deviation part β, in these classes of geometries, the Barthel connection coincides with the Levi–Civita connection of the associated Riemann metric. We review the properties of the gravitational field, and of the cosmological evolution in three types of geometries: the Barthel–Randers geometry, in which the Finsler metric function F is given by F=α+β, in the Barthel–Kropina geometry, with F=α2/β, and in the conformally transformed Barthel–Kropina geometry, respectively. After a brief presentation of the mathematical foundations of the Finslerian-type modified gravity theories, the generalized Friedmann equations in these geometries are written down by considering that the background Riemannian metric in the Randers and Kropina line elements is of Friedmann–Lemaitre–Robertson–Walker type. The matter energy balance equations are also presented, and they are interpreted from the point of view of the thermodynamics of irreversible processes in the presence of particle creation. We investigate the cosmological properties of the Barthel–Randers and Barthel–Kropina cosmological models in detail. In these scenarios, the additional geometric terms arising from the Finslerian structure can be interpreted as an effective geometric dark energy component, capable of generating an effective cosmological constant. Several cosmological solutions—both analytical and numerical—are obtained and compared against observational datasets, including Cosmic Chronometers, Type Ia Supernovae, and Baryon Acoustic Oscillations, using a Markov Chain Monte Carlo (MCMC) analysis. A direct comparison with the standard ΛCDM model is also carried out. The results indicate that Finslerian cosmological models provide a satisfactory fit to the observational data, suggesting they represent a viable alternative to the standard cosmological model based on general relativity. Full article
(This article belongs to the Special Issue Cosmological Models of the Universe)
Show Figures

Figure 1

57 pages, 2185 KB  
Review
Exploring the GRB–Supernova Connection: Does a Superluminous Hypernova Population Exist?
by Achille Fiore, Ludovica Crosato Menegazzi and Giulia Stratta
Galaxies 2025, 13(3), 57; https://doi.org/10.3390/galaxies13030057 - 6 May 2025
Cited by 3 | Viewed by 2659
Abstract
Observations of several gamma-ray bursts (GRBs) that are temporally and spatially compatible with energetic supernovae (hypernovae) have established their common origin. In one case (GRB 111209A/SN 2011kl), the associated supernova was classified as superluminous (SN 2011kl). The exceptional duration of the observed gamma-ray [...] Read more.
Observations of several gamma-ray bursts (GRBs) that are temporally and spatially compatible with energetic supernovae (hypernovae) have established their common origin. In one case (GRB 111209A/SN 2011kl), the associated supernova was classified as superluminous (SN 2011kl). The exceptional duration of the observed gamma-ray prompt emission of GRB 111209A (about 7 h) is widely considered key to unlocking the physics behind the still mysterious origin of superluminous supernovae (SLSNe). We review the main observational and theoretical findings that may link some ultra-long GRBs to SLSNe. Specifically, we examine notable events and the role of progenitors and host galaxies in shaping these phenomena and focus on the proposed models. While a magnetar central engine is a plausible mechanism for both luminous and long-duration GRBs, a conclusive answer remains elusive, as alternative explanations are still viable. Further observational and theoretical work is required to clarify progenitor pathways and explosion mechanisms, potentially extending the classical GRB-SN connection to rare superluminous hypernovae. Full article
Show Figures

Figure 1

17 pages, 14016 KB  
Article
Estimation of the High-Frequency Feature Slope in Gravitational Wave Signals from Core Collapse Supernovae Using Machine Learning
by Alejandro Casallas-Lagos, Javier M. Antelis, Claudia Moreno and Ramiro Franco-Hernández
Appl. Sci. 2025, 15(1), 65; https://doi.org/10.3390/app15010065 - 25 Dec 2024
Viewed by 1032
Abstract
We conducted an in-depth exploration of the use of different machine learning (ML) for regression algorithms, including Linear, Ridge, LASSO, Bayesian Ridge, Decision Tree, and a variety of Deep Neural Network (DNN) architectures, to estimate the slope of the high-frequency feature (HFF), a [...] Read more.
We conducted an in-depth exploration of the use of different machine learning (ML) for regression algorithms, including Linear, Ridge, LASSO, Bayesian Ridge, Decision Tree, and a variety of Deep Neural Network (DNN) architectures, to estimate the slope of the high-frequency feature (HFF), a prominent emergent feature found in the gravitational wave (GW) signals of core collapse supernovae (CCSN). We created a data set of CCSN GW signals generated by an analytical model that mimics the characteristics of the signals obtained from numerical simulations, particularly the HFF. This enabled us to simulate a wide range of HFF slope values and analyze their properties. We opted to employ ML for regression techniques, particularly a supervised learning approach, to analyze the data set due to the parameter chosen for estimating the slope of the HFF. This type of architecture is ideal for this purpose as it can detect the connections between input and output data. In addition, it is suitable for handling high-dimensional input data and produces efficient results with low computational cost. We evaluated the efficiency and performance of the ML algorithms using a set of metrics to measure their ability to accurately predict the HFF slope within the data set. The results showed that a DNN algorithm for regression exhibits the highest accuracy in estimating the slope of the HFF. Full article
Show Figures

Figure 1

16 pages, 2282 KB  
Article
Hybrid Isentropic Twin Stars
by Juan Pablo Carlomagno, Gustavo A. Contrera, Ana Gabriela Grunfeld and David Blaschke
Universe 2024, 10(9), 336; https://doi.org/10.3390/universe10090336 - 23 Aug 2024
Cited by 7 | Viewed by 1083
Abstract
We present a study of hybrid neutron stars with color superconducting quark matter cores at a finite temperature that results in sequences of stars with constant entropy per baryon, s/nB=const. For the quark matter equation of state, [...] Read more.
We present a study of hybrid neutron stars with color superconducting quark matter cores at a finite temperature that results in sequences of stars with constant entropy per baryon, s/nB=const. For the quark matter equation of state, we employ a recently developed nonlocal chiral quark model, while nuclear matter is described with a relativistic density functional model of the DD2 class. The phase transition is obtained through a Maxwell construction under isothermal conditions. We find that traversing the mixed phase on a trajectory at low s/nB2 in the phase diagram shows a heating effect, while at larger s/nB the temperature drops. This behavior may be attributed to the presence of a color superconducting quark matter phase at low temperatures and the melting of the diquark condensate which restores the normal quark matter phase at higher temperatures. While the isentropic hybrid star branch at low s/nB2 is connected to the neutron star branch, it becomes disconnected at higher entropy per baryon so that the “thermal twin” phenomenon is observed. We find that the transition from connected to disconnected hybrid star sequences may be estimated with the Seidov criterion for the difference in energy densities. The radii and masses at the onset of deconfinement exhibit a linear relationship and thus define a critical compactness of the isentropic star configuration for which the transition occurs and which, for large enough s/nB2 values, is accompanied by instability. The results of this study may be of relevance for uncovering the conditions for the supernova explodability of massive blue supergiant stars using the quark deconfinement mechanism. The accretion-induced deconfinement transition with thermal twin formation may contribute to explaining the origin of eccentric orbits in some binary systems and the origin of isolated millisecond pulsars. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Show Figures

Figure 1

41 pages, 5168 KB  
Review
A Short History of the First 50 Years: From the GRB Prompt Emission and Afterglow Discoveries to the Multimessenger Era
by Filippo Frontera
Universe 2024, 10(6), 260; https://doi.org/10.3390/universe10060260 - 12 Jun 2024
Cited by 4 | Viewed by 2364
Abstract
More than fifty years have elapsed from the first discovery of gamma-ray bursts (GRBs) with American Vela satellites, and more than twenty-five years from the discovery with the BeppoSAX satellite of the first X-ray afterglow of a GRB. Thanks to the afterglow discovery [...] Read more.
More than fifty years have elapsed from the first discovery of gamma-ray bursts (GRBs) with American Vela satellites, and more than twenty-five years from the discovery with the BeppoSAX satellite of the first X-ray afterglow of a GRB. Thanks to the afterglow discovery and to the possibility given to the optical and radio astronomers to discover the GRB optical counterparts, the long-time mystery about the origin of these events has been solved. Now we know that GRBs are huge explosions, mainly ultra relativistic jets, in galaxies at cosmological distances. Starting from the first GRB detection with the Vela satellites, I will review the story of these discoveries, those obtained with BeppoSAX, the contribution to GRBs by other satellites and ground experiments, among them being Venera, Compton Gamma Ray Observatory, HETE-2, Swift, Fermi, AGILE, MAGIC, H.E.S.S., which were, and some of them are still, very important for the study of GRB properties. Then, I will review the main results obtained thus far and the still open problems and prospects of GRB astronomy. Full article
(This article belongs to the Special Issue GRBs Phenomenology, Models and Applications: A Beginner Guide)
Show Figures

Figure 1

18 pages, 1219 KB  
Article
Elliptical Space with the McVittie Metrics
by Vladimir N. Yershov
Universe 2024, 10(4), 165; https://doi.org/10.3390/universe10040165 - 31 Mar 2024
Viewed by 2071
Abstract
The main feature of elliptical space—the topological identification of its antipodal points—could be fundamental for understanding the nature of the cosmological redshift. The physical interpretation of the mathematical (topological) structure of elliptical space is made by using physical connections in the form of [...] Read more.
The main feature of elliptical space—the topological identification of its antipodal points—could be fundamental for understanding the nature of the cosmological redshift. The physical interpretation of the mathematical (topological) structure of elliptical space is made by using physical connections in the form of Einstein-Rosen bridges (also called “wormholes”). The Schwarzschild metric of these structures embedded into a dynamic (expanding) spacetime corresponds to McVittie’s solution of Einstein’s field equations. The cosmological redshift of spectral lines of remote sources in this metric is a combination of gravitational redshift and the time-dependent scale factor of the Friedmann-Lemaitre-Robertson-Walker metric. I compare calculated distance moduli of type-Ia supernovae, which are commonly regarded as “standard candles” in cosmology, with the observational data published in the catalogue “Pantheon+”. The constraint based on these accurate data gives a much smaller expansion rate of the Universe than is currently assumed by modern cosmology, the major part of the cosmological redshift being gravitational by its nature. The estimated age of the Universe within the discussed model is 1.48·1012 yr, which is more than two orders of magnitude larger than the age assumed by using the standard cosmological model parameters. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

33 pages, 7875 KB  
Review
A Very-High-Energy Gamma-Ray View of the Transient Sky
by Alessandro Carosi and Alicia López-Oramas
Universe 2024, 10(4), 163; https://doi.org/10.3390/universe10040163 - 29 Mar 2024
Cited by 1 | Viewed by 2537
Abstract
The development of the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) over recent decades has led to the discovery of new extreme astrophysical phenomena in the very-high-energy (VHE, E > 100 GeV) gamma-ray regime. Time-domain and multi-messenger astronomy are inevitably connected to [...] Read more.
The development of the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) over recent decades has led to the discovery of new extreme astrophysical phenomena in the very-high-energy (VHE, E > 100 GeV) gamma-ray regime. Time-domain and multi-messenger astronomy are inevitably connected to the physics of transient VHE emitters, which show unexpected (and mostly unpredictable) flaring or exploding episodes at different timescales. These transients often share the physical processes responsible for the production of the gamma-ray emission, through cosmic-ray acceleration, magnetic reconnection, jet production and/or outflows, and shocks interactions. In this review, we present an up-to-date overview of the VHE transients field, spanning from novae to supernovae, neutrino counterparts or fast radio bursts, among others, and we outline the expectations for future facilities. Full article
(This article belongs to the Special Issue Recent Advances in Gamma Ray Astrophysics and Future Perspectives)
Show Figures

Figure 1

30 pages, 1088 KB  
Review
The Physics of Core-Collapse Supernovae: Explosion Mechanism and Explosive Nucleosynthesis
by Luca Boccioli and Lorenzo Roberti
Universe 2024, 10(3), 148; https://doi.org/10.3390/universe10030148 - 19 Mar 2024
Cited by 32 | Viewed by 4860
Abstract
Recent developments in multi-dimensional simulations of core-collapse supernovae have considerably improved our understanding of this complex phenomenon. In addition to that, one-dimensional (1D) studies have been employed to study the explosion mechanism and its causal connection to the pre-collapse structure of the star, [...] Read more.
Recent developments in multi-dimensional simulations of core-collapse supernovae have considerably improved our understanding of this complex phenomenon. In addition to that, one-dimensional (1D) studies have been employed to study the explosion mechanism and its causal connection to the pre-collapse structure of the star, as well as to explore the vast parameter space of supernovae. Nonetheless, many uncertainties still affect the late stages of the evolution of massive stars, their collapse, and the subsequent shock propagation. In this review, we will briefly summarize the state-of-the-art of both 1D and 3D simulations and how they can be employed to study the evolution of massive stars, supernova explosions, and shock propagation, focusing on the uncertainties that affect each of these phases. Finally, we will illustrate the typical nucleosynthesis products that emerge from the explosion. Full article
(This article belongs to the Special Issue Recent Outcomes and Future Challenges in Nuclear Astrophysics)
Show Figures

Figure 1

19 pages, 641 KB  
Article
Thermodynamics of Hot Neutron Stars and Universal Relations
by Pavlos Laskos-Patkos, Polychronis S. Koliogiannis, Alkiviadis Kanakis-Pegios and Charalampos C. Moustakidis
Universe 2022, 8(8), 395; https://doi.org/10.3390/universe8080395 - 27 Jul 2022
Cited by 8 | Viewed by 3309
Abstract
Over the last few years, the detection of gravitational waves from binary neutron star systems has rekindled our hopes for a deeper understanding of the unknown nature of ultradense matter. In particular, gravitational wave constraints on the tidal deformability of a neutron star [...] Read more.
Over the last few years, the detection of gravitational waves from binary neutron star systems has rekindled our hopes for a deeper understanding of the unknown nature of ultradense matter. In particular, gravitational wave constraints on the tidal deformability of a neutron star can be translated into constraints on several neutron star properties using a set of universal relations. Apart from binary neutron star mergers, supernova explosions are also important candidates for the detection of multimessenger signals. Such observations may allow us to impose significant constraints on the binding energy of neutron stars. The purpose of the present study is twofold. Firstly, we investigate the agreement of finite temperature equations of state with established universal relations. Secondly, we examine the possible existence of a universal relation between the binding energy and the dimensionless tidal deformability, which are the bulk properties connected to the most promising sources for multimessenger signals. We find that hot equations of state are not always compatible with accepted universal relations. Therefore, the use of such expressions for probing general relativity or imposing constraints on the structure of neutron stars would be inconclusive (when thermal effects are present). Additionally, we show that the binding energy and the dimensionless tidal deformability exhibit a universal trend at least for moderate neutron star masses. The latter allows us to set bounds on the binding energy of a 1.4 M neutron star using data from the GW170817 event. Finally, we provide a relation between the compactness, the binding energy and the dimensionless tidal deformability of a neutron star that is accurate for cold and hot isentropic equations of state. Full article
Show Figures

Figure 1

26 pages, 3061 KB  
Review
Inflammation as A Precursor of Atherothrombosis, Diabetes and Early Vascular Aging
by Elena Barbu, Mihaela-Roxana Popescu, Andreea-Catarina Popescu and Serban-Mihai Balanescu
Int. J. Mol. Sci. 2022, 23(2), 963; https://doi.org/10.3390/ijms23020963 - 16 Jan 2022
Cited by 71 | Viewed by 7375
Abstract
Vascular disease was for a long time considered a disease of the old age, but it is becoming increasingly clear that a cumulus of factors can cause early vascular aging (EVA). Inflammation plays a key role in vascular stiffening and also in other [...] Read more.
Vascular disease was for a long time considered a disease of the old age, but it is becoming increasingly clear that a cumulus of factors can cause early vascular aging (EVA). Inflammation plays a key role in vascular stiffening and also in other pathologies that induce vascular damage. There is a known and confirmed connection between inflammation and atherosclerosis. However, it has taken a long time to prove the beneficial effects of anti-inflammatory drugs on cardiovascular events. Diabetes can be both a product of inflammation and a cofactor implicated in the progression of vascular disease. When diabetes and inflammation are accompanied by obesity, this ominous trifecta leads to an increased incidence of atherothrombotic events. Research into earlier stages of vascular disease, and documentation of vulnerability to premature vascular disease, might be the key to success in preventing clinical events. Modulation of inflammation, combined with strict control of classical cardiovascular risk factors, seems to be the winning recipe. Identification of population subsets with a successful vascular aging (supernormal vascular aging—SUPERNOVA) pattern could also bring forth novel therapeutic interventions. Full article
Show Figures

Figure 1

24 pages, 1694 KB  
Article
Particle Acceleration in Mildly Relativistic Outflows of Fast Energetic Transient Sources
by Andrei Bykov, Vadim Romansky and Sergei Osipov
Universe 2022, 8(1), 32; https://doi.org/10.3390/universe8010032 - 5 Jan 2022
Cited by 14 | Viewed by 3547
Abstract
Recent discovery of fast blue optical transients (FBOTs)—a new class of energetic transient sources—can shed light on the long-standing problem of supernova—long gamma-ray burst connections. A distinctive feature of such objects is the presence of modestly relativistic outflows which place them in between [...] Read more.
Recent discovery of fast blue optical transients (FBOTs)—a new class of energetic transient sources—can shed light on the long-standing problem of supernova—long gamma-ray burst connections. A distinctive feature of such objects is the presence of modestly relativistic outflows which place them in between the non-relativistic and relativistic supernovae-related events. Here we present the results of kinetic particle-in-cell and Monte Carlo simulations of particle acceleration and magnetic field amplification by shocks with the velocities in the interval between 0.1 and 0.7 c. These simulations are needed for the interpretation of the observed broad band radiation of FBOTs. Their fast, mildly to moderately relativistic outflows may efficiently accelerate relativistic particles. With particle-in-cell simulations we demonstrate that synchrotron radiation of accelerated relativistic electrons in the shock downstream may fit the observed radio fluxes. At longer timescales, well beyond those reachable within a particle-in-cell approach, our nonlinear Monte Carlo model predicts that protons and nuclei can be accelerated to petaelectronvolt (PeV) energies. Therefore, such fast and energetic transient sources can contribute to galactic populations of high energy cosmic rays. Full article
(This article belongs to the Special Issue Advances in the Physics of Stars - in Memory of Prof. Yuri N. Gnedin)
Show Figures

Figure 1

20 pages, 400 KB  
Article
Relativistic Fractional-Dimension Gravity
by Gabriele U. Varieschi
Universe 2021, 7(10), 387; https://doi.org/10.3390/universe7100387 - 18 Oct 2021
Cited by 10 | Viewed by 2486
Abstract
This paper presents a relativistic version of Newtonian Fractional-Dimension Gravity (NFDG), an alternative gravitational model recently introduced and based on the theory of fractional-dimension spaces. This extended version—Relativistic Fractional-Dimension Gravity (RFDG)—is based on other existing theories in the literature and might be useful [...] Read more.
This paper presents a relativistic version of Newtonian Fractional-Dimension Gravity (NFDG), an alternative gravitational model recently introduced and based on the theory of fractional-dimension spaces. This extended version—Relativistic Fractional-Dimension Gravity (RFDG)—is based on other existing theories in the literature and might be useful for astrophysical and cosmological applications. In particular, in this work, we review the mathematical theory for spaces with non-integer dimensions and its connections with the non-relativistic NFDG. The Euler–Lagrange equations for scalar fields can also be extended to spaces with fractional dimensions, by adding an appropriate weight factor, and then can be used to generalize the Laplacian operator for rectangular, spherical, and cylindrical coordinates. In addition, the same weight factor can be added to the standard Hilbert action in order to obtain the field equations, following methods used for scalar-tensor models of gravity, multi-scale spacetimes, and fractional gravity theories. We then apply the field equations to standard cosmology and to the Friedmann-Lemaître-Robertson-Walker metric. Using a suitable weight vtt, depending on the synchronous time t and on a single time-dimension parameter αt, we extend the Friedmann equations to the RFDG case. This allows for the computation of the scale factor at for different values of the fractional time-dimension αt and the comparison with standard cosmology results. Future additional work on the subject, including studies of the cosmological late-time acceleration, type Ia supernovae data, and related dark energy theory will be needed to establish this model as a relativistic alternative theory of gravity. Full article
(This article belongs to the Special Issue Modified Theories of Gravity and Cosmological Applications)
Show Figures

Figure 1

29 pages, 1376 KB  
Review
Radiation-Driven Stellar Eruptions
by Kris Davidson
Galaxies 2020, 8(1), 10; https://doi.org/10.3390/galaxies8010010 - 5 Feb 2020
Cited by 19 | Viewed by 4235
Abstract
Very massive stars occasionally expel material in colossal eruptions, driven by continuum radiation pressure rather than blast waves. Some of them rival supernovae in total radiative output, and the mass loss is crucial for subsequent evolution. Some are supernova impostors, including SN precursor [...] Read more.
Very massive stars occasionally expel material in colossal eruptions, driven by continuum radiation pressure rather than blast waves. Some of them rival supernovae in total radiative output, and the mass loss is crucial for subsequent evolution. Some are supernova impostors, including SN precursor outbursts, while others are true SN events shrouded by material that was ejected earlier. Luminous Blue Variable stars (LBV’s) are traditionally cited in relation with giant eruptions, though this connection is not well established. After four decades of research, the fundamental causes of giant eruptions and LBV events remain elusive. This review outlines the basic relevant physics, with a brief summary of essential observational facts. Reasons are described for the spectrum and emergent radiation temperature of an opaque outflow. Proposed mechanisms are noted for instabilities in the star’s photosphere, in its iron opacity peak zones, and in its central region. Various remarks and conjectures are mentioned, some of them relatively unfamiliar in the published literature. Full article
(This article belongs to the Special Issue Luminous Stars in Nearby Galaxies)
Show Figures

Figure 1

12 pages, 249 KB  
Article
Do Fractals Confirm the General Theory of Relativity?
by Irina Rozgacheva
Symmetry 2019, 11(6), 740; https://doi.org/10.3390/sym11060740 - 1 Jun 2019
Cited by 1 | Viewed by 2949
Abstract
The relatively high abundance of fractal properties of complex systems on Earth and in space is considered an argument in support of the general relativity of the geometric theory of gravity. The fractality may be called the fractal symmetry of physical interactions providing [...] Read more.
The relatively high abundance of fractal properties of complex systems on Earth and in space is considered an argument in support of the general relativity of the geometric theory of gravity. The fractality may be called the fractal symmetry of physical interactions providing self-similarities of complex systems. Fractal symmetry is discrete. A class of geometric solutions of the general relativity equations for a complex scalar field is offered. This class allows analogy to spatial fractals in large-scale structures of the universe due to its invariance with respect to the discrete scale transformation of the interval d s q d s ˜ . The method of constructing such solutions is described. As an application, the treatment of spatial variations of the Hubble constant H 0 H S T (Riess et al., 2016) is considered. It is noted that the values H 0 H S T form an almost fractal set. It has been shown that: a) the variation H 0 H S T may be connected with the local gravitational perturbations of the space-time metrics in the vicinity of the galaxies containing Cepheids and supernovae selected for measurements; b) the value of the variation H 0 H S T can be a consequence of variations in the space-time metric on the outskirts of the local supercluster, and their self-similarity indicates the fractal distribution of matter in this region. Full article
(This article belongs to the Special Issue Symmetries in the Universe)
Back to TopTop