Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,269)

Search Parameters:
Keywords = sustainable ecological environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6098 KB  
Article
Groundwater Extraction-Induced Land Subsidence in Decheng District: Evolution Law and Sustainable Management Strategies
by Guangzhong Jia, Yunxiang Chuai, Yan Yan, Jinliang Du, Pingsheng Ni, Wei Liang, Zhiyong Zhu, Kexin Lou, Zongjun Gao and Jiutan Liu
Water 2025, 17(22), 3240; https://doi.org/10.3390/w17223240 (registering DOI) - 13 Nov 2025
Abstract
Globally, intensive groundwater extraction has led to widespread land subsidence, posing severe threats to urban infrastructure, structural safety, and flood control capacity, and resulting in substantial economic losses and ecological degradation. Based on dynamic monitoring data and a poroelastic fluid–solid coupling model developed [...] Read more.
Globally, intensive groundwater extraction has led to widespread land subsidence, posing severe threats to urban infrastructure, structural safety, and flood control capacity, and resulting in substantial economic losses and ecological degradation. Based on dynamic monitoring data and a poroelastic fluid–solid coupling model developed using COMSOL Multiphysics 6.2, this study systematically investigates the characteristics and evolution of land subsidence in Decheng District before and after the implementation of a groundwater extraction ban. Furthermore, recommendations and strategies for the sustainable management of regional groundwater resources are proposed. The results indicate that after the ban was enforced in 2020, the extraction volumes of deep and shallow groundwater in Decheng District decreased from 830,000 m3/a and 33,070,000 m3/a to 178,000 m3/a and 20,775,000 m3/a, respectively. The ban significantly influenced groundwater levels, with the recovery rate of deep groundwater increasing markedly from approximately 0.5 m/a before the ban to about 5 m/a afterward. Groundwater levels directly govern the rate of land subsidence; their decline increases the effective stress within the strata, leading to aquifer compaction and subsequent subsidence. Following the ban, the subsidence rate in Decheng District decreased significantly, with the annual subsidence volume reduced by more than 80% compared to the pre-ban period. Predictive analysis using the fluid–solid coupling model reveals that extraction from deep confined aquifers is the main driver of regional subsidence, with a time lag of approximately five years between groundwater level changes and subsidence response. After the implementation of the extraction ban, the subsidence rate slowed considerably. Over the long term, the subsiding strata tend to stabilize, although most of the subsidence that has already occurred is irreversible, making it difficult for the strata to return to their original state. In summary, the groundwater extraction ban has effectively facilitated groundwater recovery and mitigated land subsidence in Decheng District, though the response exhibits both temporal lag and spatial variability. Future work should focus on establishing an integrated monitoring and regulation system for land subsidence and groundwater dynamics to ensure the coordinated security of both water resources and the geological environment. These findings provide a scientific basis for informing land subsidence prevention and guiding the rational exploitation of groundwater resources in Decheng District. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

35 pages, 3434 KB  
Review
Grapevine Rootstocks and Salt Stress Tolerance: Mechanisms, Omics Insights, and Implications for Sustainable Viticulture
by Abdullateef Mustapha, Abdul Hakeem, Shaonan Li, Ghulam Mustafa, Essam Elatafi, Jinggui Fang and Cunshan Zhou
Int. J. Plant Biol. 2025, 16(4), 129; https://doi.org/10.3390/ijpb16040129 - 13 Nov 2025
Abstract
Salinity is a long-standing global environmental stressor of terrestrial agroecosystems, with important implications for viticulture sustainability, especially in arid and semi-arid environments. Salt-induced physiological and biochemical disruptions to grapevines undermine yield and long-term vineyard sustainability. This review aims to integrate physiological, molecular, and [...] Read more.
Salinity is a long-standing global environmental stressor of terrestrial agroecosystems, with important implications for viticulture sustainability, especially in arid and semi-arid environments. Salt-induced physiological and biochemical disruptions to grapevines undermine yield and long-term vineyard sustainability. This review aims to integrate physiological, molecular, and omics-based insights to elucidate how grapevine rootstocks confer salinity tolerance and to identify future breeding directions for sustainable viticulture. This review critically assesses the ecological and molecular processes underlying salt stress adaptation in grapevine (Vitis spp.) rootstocks, with an emphasis on their contribution to modulating scion performance under saline conditions. Core adaptive mechanisms include morphological plasticity, ion compartmentalization, hormonal regulation, antioxidant defense, and activation of responsive genes to stress. Particular emphasis is given to recent integrative biotechnological developments—including transcriptomics, proteomics, metabolomics, and genomics—that reveal the intricate signaling and regulatory networks enabling rootstock-mediated tolerance. By integrating advances across eco-physiological, agronomic, and molecular realms, this review identifies rootstock selection as a promising strategy for bolstering resilience in grapevine production systems confronted by salinization, a phenomenon increasingly exacerbated by anthropogenic land use and climate change. The research highlights the value of stress ecology and adaptive root system strategies for alleviating the environmental consequences of soil salinity for perennial crop systems. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Graphical abstract

11 pages, 1206 KB  
Article
Designing Biomimetic Learning Environments for Animal Welfare Education: A Gamified Approach
by Ebru Emsen, Bahadir Baran Odevci, Muzeyyen Kutluca Korkmaz, Fatma Alshamsi and Alyaziya Alkaabi
Biomimetics 2025, 10(11), 769; https://doi.org/10.3390/biomimetics10110769 (registering DOI) - 13 Nov 2025
Abstract
Animal welfare education requires pedagogical models that bridge conceptual knowledge with practice. This study presents GamifyWELL, a biomimetic, gamified learning environment for students, farmers, and veterinary technicians. Grounded in ecological principles of adaptation, diversification, and niche specialization, the design emulates how living systems [...] Read more.
Animal welfare education requires pedagogical models that bridge conceptual knowledge with practice. This study presents GamifyWELL, a biomimetic, gamified learning environment for students, farmers, and veterinary technicians. Grounded in ecological principles of adaptation, diversification, and niche specialization, the design emulates how living systems evolve through feedback and cooperation. These principles were translated into an instructional model that integrates a core pathway (Pre-Test, Levels 1–4, Post-Test) with optional enrichment tasks and a role-specific Reward Marketplace. Question formats are constant across levels (MCQ, image-based, video-based) while cognitive difficulty increases, culminating in Positive Welfare scenarios. We describe the learning design structure and report preliminary implementation observations using a mixed-methods evaluation plan (pre/post knowledge assessments and engagement indicators). Results from early deployment indicate strong usability and engagement, with high voluntary uptake of enrichment tasks and positive learner feedback on role-tailored rewards; full empirical testing is in progress. Findings support the feasibility and pedagogical promise of biomimetic gamification to enhance knowledge, motivation, and intended practice in animal welfare education. GamifyWELL offers a replicable framework for nature-inspired instructional design that can be extended to allied sustainability domains. Full article
(This article belongs to the Special Issue Biologically-Inspired Product Development)
Show Figures

Graphical abstract

38 pages, 5637 KB  
Article
Perceptions and Use of Urban Green Spaces, Leading Pathways to Urban Resilience
by Angeliki T. Paraskevopoulou, Eleni Mougiakou and Chrysovalantis Malesios
Sustainability 2025, 17(22), 10093; https://doi.org/10.3390/su172210093 - 12 Nov 2025
Abstract
This study examined residents’ perceptions, preferences, and experiences of urban green spaces in four regional units of the Region of Attica—West Athens, Central Athens, South Athens, and Piraeus—demonstrating how demographic diversity, urban morphology, and external stressors—such as extreme heat and the COVID-19 pandemic—shape [...] Read more.
This study examined residents’ perceptions, preferences, and experiences of urban green spaces in four regional units of the Region of Attica—West Athens, Central Athens, South Athens, and Piraeus—demonstrating how demographic diversity, urban morphology, and external stressors—such as extreme heat and the COVID-19 pandemic—shape green space use. The results show that, while green spaces are essential for health, well-being, and social cohesion, their distribution is uneven, which limits their availability (27.3%) and access (21.8%) to residents. Main concerns expressed by residents when visiting green spaces and open green spaces are poor maintenance (50.7%), lack of security (36.7%), and socially irresponsible behaviour (e.g., littering, vandalism) (32.8%). Extreme heat emerged as a major constraint on outdoor activities, particularly affecting women and the elderly. Household-associated outdoor areas (balconies, courtyards, and verandas) were highly valued (59.8%), highlighting the role of private green spaces in dense urban environments. Major metropolitan parks were the most visited and valued by residents for providing contact with nature (23.0%) and benefiting from stress relief (54.0%) while practicing their favourite activity, though their use was limited during heatwaves (30.3% of the residents do not visit). Most activities during and after the COVID-19 pandemic were reported unchanged, though reported increases in walking (34.3%) and park visits (28.3%) demonstrate the importance of green spaces in fostering urban resilience. However, the reported lack of engagement in gardening (48.0%), indoor plant care (41.2%) and bird/wildlife watching (58.3%) suggest missed opportunities for ecological and cultural enrichment. Overall, the study underscores the urgent need for integrated planning strategies to improve accessibility, maintenance, and equity in green space provision. By aligning with the sustainable development goals, the four regional units of the Region of Attica can transform its green infrastructure into an inclusive, resilient system that supports public health, social inclusion, and climate adaptation. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

22 pages, 6888 KB  
Article
Research on the Disaster-Causing Factors of Water and Sand Inrush and the Evolution of Surface Collapse Funnel
by Rongqiang Wang, Binghan Lv, Qirui Yang and Guibin Zhang
Water 2025, 17(22), 3218; https://doi.org/10.3390/w17223218 - 11 Nov 2025
Abstract
Water and sand inrush is frequently accompanied by surface subsidence, which severely constrains the sustainable development of coordinated coal mining and ecological environment. This study investigated four key influencing factors based on a water and sand inrush test system: fracture width, aquifer thickness, [...] Read more.
Water and sand inrush is frequently accompanied by surface subsidence, which severely constrains the sustainable development of coordinated coal mining and ecological environment. This study investigated four key influencing factors based on a water and sand inrush test system: fracture width, aquifer thickness, sand particle size composition and stratigraphic sedimentary structure. It obtained the morphological evolution characteristics of collapse funnels and revealed the evolution mechanism of collapse funnels induced by water and sand inrush. The results indicate that fracture width and aquifer thickness mainly affect the range of collapse funnel, and both show a positive correlation with the radius of collapse funnels. Sandy particle size composition plays a dominant role in the morphology of collapse funnels induced by disasters: as the size of the soil skeleton particles increases, the morphology of collapse funnels changes sequentially from a bowl shape to an inverted cone shape and then to a funnel shape with a sunken center and raised slopes. The stratigraphic sedimentary structure has a significant impact on the morphology and damage induced by disasters in collapse funnels. The upper clay layer of the underlying aquifer inhibits the water and sand inrush processes to some extent. An increase in the thickness and number of clay layers effectively prevents the water and sand mixture from flowing into the fracture channel from the lateral direction. This reduces the damage range of collapse funnels and decreases the rate of water and sand inrush. This study clarifies the formation mechanism of surface collapse funnels under the influence of the disaster-causing factors of water and sand inrush, and provides theoretical guidance for the prevention and control of such disasters. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

23 pages, 1991 KB  
Article
Assessment of Glyphosate Runoff Pollution in Water Samples from Agricultural, Touristic and Ecologically Protected Areas
by Anna Maria Sulej-Suchomska, Joanna Katarzyna Jóźwik, Katarzyna Kozłowska-Tylingo, Marek Ruman, Sara Lehmann-Konera, Piotr Przybyłowski, Aleksander Maria Astel and Żaneta Polkowska
Sustainability 2025, 17(22), 10054; https://doi.org/10.3390/su172210054 - 11 Nov 2025
Abstract
The global spread of glyphosate (GLY) via agricultural runoff poses a significant threat to ecosystems, human health, and the environment, underscoring the need for sustainable agricultural practices. A comprehensive study on glyphosate contamination in runoff water, flowing surface waters, groundwater-influenced, and stagnant water [...] Read more.
The global spread of glyphosate (GLY) via agricultural runoff poses a significant threat to ecosystems, human health, and the environment, underscoring the need for sustainable agricultural practices. A comprehensive study on glyphosate contamination in runoff water, flowing surface waters, groundwater-influenced, and stagnant water samples was conducted from 2019 to 2021, across a diverse range of landscape types and environmental zones. This research constitutes a novel contribution to the field, focused on several distinct regions, including agricultural regions, tourist zones, and ecologically sensitive areas, including the Beka Natura Reserve, Natura 2000 sites and the Coastal Landscape Park in Poland. Glyphosate residues, with a maximum concentration range of 43.0–8406 ng/L, were detected in 63.5% of water samples collected from protected and unprotected areas. Glyphosate concentrations in water at high-tourism areas were highest in runoff samples from recreational and protected areas, including the Czarna Wda River in Ostrowo (512 ± 9.91 ng/L). Investigated water samples showed target hazard quotient values for glyphosate < 1, indicating no human health risk, and risk quotient values for GLY < 0.1, indicating a low ecotoxicological risk. The presented study is aligned with the United Nations’ 2030 Agenda for Sustainable Development, aiming to contribute to global sustainability goals. Full article
Show Figures

Figure 1

15 pages, 2107 KB  
Article
A Conflict-Coordination Framework for Constructing Living Shorelines: A Case Study of Ecological Seawalls
by Jiali Gu, Xiaoran Wei, Yu Han, Jian Zeng, Miao Hu and Zheng Gong
Sustainability 2025, 17(22), 10050; https://doi.org/10.3390/su172210050 - 11 Nov 2025
Viewed by 61
Abstract
While coastal zones support economic and social development, they also face prominent contradictions between shoreline utilization and ecological protection. This study proposed an innovative conflict-coordination framework for constructing living shorelines, aiming to identify and mitigate multi-dimensional conflicts in coastal engineering. The framework introduced [...] Read more.
While coastal zones support economic and social development, they also face prominent contradictions between shoreline utilization and ecological protection. This study proposed an innovative conflict-coordination framework for constructing living shorelines, aiming to identify and mitigate multi-dimensional conflicts in coastal engineering. The framework introduced a four-dimensional conflict analysis structure encompassing policy, social environment, ecological environment, and technical capacity, thereby extending beyond traditional single-dimensional or ecological-only assessments. Furthermore, it integrated the Comprehensive Conflict Index (CCI) with a multi-objective coordination model that couples three core indicators (e.g., whole-life-cycle carbon emissions, comprehensive impact intensity, and the living shoreline index) to achieve synergistic optimization among lower carbon emission, less human intervention, and higher ecological function objectives. Applied to an ecological restoration and seawall ecologization project in Zhenhai District, Ningbo, the results demonstrated that the framework helped constructing living shorelines by effectively reducing comprehensive conflict intensity with 21.2%, decreasing total carbon emissions with 60.2%, and significantly improving both the living shoreline index and multi-objective coordination level. Compared to traditional coastal zone assessment methods, these findings highlighted the differentiated advantages of the proposed framework in quantifying conflict sources, enhancing coordination among multi-objectives, and providing scientific support for living shoreline construction and sustainable coastal management. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

18 pages, 2094 KB  
Article
Influence of Nitrogen Addition on the Physicochemical Properties and Microbial Diversity of Spring Wheat Soil in the Loess Plateau
by Jingbo Li and Guang Li
Agronomy 2025, 15(11), 2584; https://doi.org/10.3390/agronomy15112584 - 10 Nov 2025
Viewed by 93
Abstract
Excessive nitrogen addition in farmland on the Loess Plateau reduces soil quality and endangers the atmospheric environment. We designed an experiment to investigate the effects of different nitrogen application rates on the soil physicochemical properties and microbial diversity of spring wheat fields on [...] Read more.
Excessive nitrogen addition in farmland on the Loess Plateau reduces soil quality and endangers the atmospheric environment. We designed an experiment to investigate the effects of different nitrogen application rates on the soil physicochemical properties and microbial diversity of spring wheat fields on the Loess Plateau, aiming to identify the optimal nitrogen application rate and avoid the detrimental effects of excessive nitrogen addition. A field experiment was conducted from 2022 to 2023 with four nitrogen (N) application rates (0, 55, 110, and 220 kg·N·ha−1·y−1). This study aimed to assess the changes in soil properties, nutrient contents, enzyme activities, and bacterial community structure. The results showed that increasing N application generally enhanced soil bulk density, nitrate nitrogen (NO3-N), ammonium nitrogen (NH4+-N), and microbial biomass nitrogen (MBN) (p < 0.05). In contrast, soil water content initially increased and then decreased. Soil organic carbon and total nitrogen rose markedly with higher N inputs, particularly in the 0–20 cm layer, whereas total phosphorus was less affected. Nitrogen addition stimulated soil enzyme activities (protease, urease, nitrate reductase, and nitrite reductase), though excessive input (220 kg·N·ha−1·y−1) produced inhibitory effects. Actinobacteria (relative abundance: 29–35%) and Proteobacteria (relative abundance: 14–22%) were the dominant phyla in all treatments. Alpha diversity peaked at low nitrogen input (55 kg·N·ha−1·y−1), while high N level reduced evenness and species richness (p < 0.05). Principle Coordinate Analysis (PCoA) revealed that both N application and soil depth shaped microbial community assembly, with deeper layers (20–40 cm) being more sensitive to N input. Correlation analysis indicated that soil moisture, bulk density, and C:N:P stoichiometry were key drivers of bacterial community variation. Overall, moderate nitrogen input (110 kg·N·ha−1·y−1) improved soil fertility and supported microbial functionality, whereas excessive application degraded soil structure and reduced biodiversity. These findings highlight the need for balanced N management strategies in rain-fed agriculture of the Loess Plateau to sustain both productivity and ecological stability. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 10055 KB  
Article
An Integrated CA–Markov Modeling Framework for Forecasting Land Use and Land Cover Dynamics in Arkansas, USA
by Rasool Vahid and Mohamed H. Aly
Geomatics 2025, 5(4), 62; https://doi.org/10.3390/geomatics5040062 - 10 Nov 2025
Viewed by 157
Abstract
Land use and land cover (LULC) changes significantly shape urban environments and directly impact ecological and socioeconomic systems. This study aims to explore these interconnections by employing the Cellular Automata–Markov (CA–Markov) model to assess and predict LULC dynamics in Arkansas. Historical LULC datasets [...] Read more.
Land use and land cover (LULC) changes significantly shape urban environments and directly impact ecological and socioeconomic systems. This study aims to explore these interconnections by employing the Cellular Automata–Markov (CA–Markov) model to assess and predict LULC dynamics in Arkansas. Historical LULC datasets from 2001 to 2021, obtained from the National Land Cover Database, were simplified from 11 into 5 classes to facilitate analysis and effectively map transitions. The model was validated by predicting LULC for 2016 and 2021 and comparing the predictions with the real maps, achieving an overall accuracy of approximately 91.9%, using model validation metrics, including precision, recall, F1-score, and Kappa Coefficient, and highlighting the strength of the predictions. Predictions for 2026 and 2031 reveal a continuous increase in built-up areas at the expense of vegetation cover, underscoring ongoing urbanization trends. Specifically, built-up areas are projected to increase from 28.39% in 2021 to 30.15% in 2031, while vegetation cover is expected to decline from 49.30% to 47.48%. This research demonstrates the utility of the CA–Markov model in simulating urban growth patterns and provides actionable insights into sustainable urban planning and land management strategies. Full article
Show Figures

Figure 1

18 pages, 1713 KB  
Article
Fine-Scale Environmental Heterogeneity Shapes Post-Fire Macrofungal Richness in a Mediterranean Relict Forest
by Celeste Santos-Silva, Bruno Natário and Ricardo Pita
Fire 2025, 8(11), 438; https://doi.org/10.3390/fire8110438 - 9 Nov 2025
Viewed by 242
Abstract
Mediterranean relict forests, including Laurisilva and other humid forest refugia, are rare and ecologically distinctive habitats often embedded in fire-prone landscapes. Understanding how these ecosystems respond to disturbance is essential for biodiversity conservation and land management under increasing fire risk. However, the effects [...] Read more.
Mediterranean relict forests, including Laurisilva and other humid forest refugia, are rare and ecologically distinctive habitats often embedded in fire-prone landscapes. Understanding how these ecosystems respond to disturbance is essential for biodiversity conservation and land management under increasing fire risk. However, the effects of fire on key components of these forests, such as macrofungi, remain poorly understood. Here, we examined how fine-scale spatial heterogeneity in fire severity, topography and vegetation shapes post-fire macrofungal communities in a Laurisilva relict forest in central Portugal. Fire severity reduced mycorrhizal richness while having negligible effects on saprotrophs, leading to shifts in the mycorrhizal-to-saprotrophic richness ratio along severity gradients. A similar shift toward saprotrophs also occurred from low to moderate–high elevations, consistent with more exposed, drier conditions at higher elevations. Aspect, topographic ruggedness, and wetness showed weaker, guild-specific associations with macrofungal richness, while vegetation cover and richness had more limited influence, possibly reflecting the complexity and vulnerability of post-fire plant–fungus interactions. Overall, these results highlight the importance of conserving humid and structurally complex environments to foster post-fire fungal diversity in relict forests. More broadly, our findings suggest that fine-scale environmental heterogeneity may help sustain relict forest resilience under intensifying wildfires and other disturbances associated with land-use and climate change. Full article
Show Figures

Figure 1

25 pages, 3894 KB  
Article
From Shores to Systems: The Evolution of Coastal and Island Tourism Research
by Pei-Chuan Sun and Sai-Leung Ng
Water 2025, 17(22), 3199; https://doi.org/10.3390/w17223199 - 9 Nov 2025
Viewed by 184
Abstract
Coastal and island tourism represents a key and environmentally sensitive component of the global tourism system, integrating ecological, cultural, and economic dimensions within marine and insular environments. This study presents a comprehensive bibliometric analysis of 1226 Scopus-indexed journal articles in accordance with the [...] Read more.
Coastal and island tourism represents a key and environmentally sensitive component of the global tourism system, integrating ecological, cultural, and economic dimensions within marine and insular environments. This study presents a comprehensive bibliometric analysis of 1226 Scopus-indexed journal articles in accordance with the PRISMA protocol. By combining performance analysis and science mapping, it examines publication dynamics, thematic structures, intellectual foundations, and global collaboration patterns. The results show steady growth that accelerates after 2010, reflecting the development of descriptive case-based studies to multidisciplinary research. The research landscape reveals four major thematic clusters focusing on tourism development and management, governance and sustainability, climate change adaptation, and technological innovation. The intellectual structure is characterized by seminal works and conceptual foundations that have shaped the development of the field. However, global productivity and collaboration show significant geographic imbalances. This study provides a consolidated understanding of how coastal and island tourism scholarship has evolved and highlights the need for greater theoretical integration, inclusivity, and cooperation to promote sustainable and resilient tourism futures. Full article
(This article belongs to the Special Issue Coastal and Marine Governance and Protection, 2nd Edition)
Show Figures

Figure 1

38 pages, 1379 KB  
Article
Assessing the Interdependencies Between the Production Environmental and Fiscal Activities of European Union Industrial Enterprises Using Structural Equation Modeling
by Małgorzata Sztorc and Medard Makrenek
Sustainability 2025, 17(22), 9982; https://doi.org/10.3390/su17229982 - 8 Nov 2025
Viewed by 167
Abstract
Today, industrial activity is a significant factor in the economic growth of the European Union countries. It is characterized by complex relationships between economic efficiency, environmental impact, and the social environment. This study aims to identify and analyze the interconnections between the economic, [...] Read more.
Today, industrial activity is a significant factor in the economic growth of the European Union countries. It is characterized by complex relationships between economic efficiency, environmental impact, and the social environment. This study aims to identify and analyze the interconnections between the economic, ecological, and social dimensions of the operations of industrial enterprises, with particular emphasis on their importance in the implementation of the principles of sustainable development. This article attempts to create a theoretical model of sustainable development composed of three latent variables: Work, Eco, and Poll, for industrial enterprises from 27 European Union countries, based on statistical data from Eurostat databases. Structural equation modeling was used to analyze complex relationships between variables. The model was verified, estimated, and evaluated using two approaches: Covariance-Based Structural Equation Modeling and Partial Least Squares Structural Equation Modeling. The research confirmed that the intensity of production activity of industrial enterprises promotes the implementation of advanced pro-ecological strategies that contribute to the optimization of fiscal obligations. Implementing a sustainable development strategy not only minimizes negative environmental impacts but also enhances the economic efficiency and competitiveness of industrial enterprises. The results indicate a significant need to integrate the economic, ecological, and fiscal dimensions within a coherent sustainable development strategy. Full article
Show Figures

Figure 1

22 pages, 10951 KB  
Article
Driving Forces of Ecosystem Transformation in Extremely Arid Areas: Insights from Hami City in Xinjiang, China
by Zhiwei Li, Younian Wang, Shuaiyu Wang and Chengzhi Li
Land 2025, 14(11), 2212; https://doi.org/10.3390/land14112212 - 8 Nov 2025
Viewed by 216
Abstract
Global ecosystems have undergone significant degradation and deterioration, making the identification of ecosystem changes essential for promoting sustainable development and enhancing quality of life. Hami City, a representative region characterized by the complex “desert–oasis–mountain” ecosystem in Xinjiang, China, provides a critical context for [...] Read more.
Global ecosystems have undergone significant degradation and deterioration, making the identification of ecosystem changes essential for promoting sustainable development and enhancing quality of life. Hami City, a representative region characterized by the complex “desert–oasis–mountain” ecosystem in Xinjiang, China, provides a critical context for examining ecosystem changes in extremely arid environments. This study utilizes remote sensing data alongside the Revised Wind Erosion Equation and Revised Universal Soil Loss Equation models to analyze the transformations within the desert–oasis ecosystems of Hami City and their driving forces. The findings reveal that (1) over the past 24 years, there have been substantial alterations in the ecosystem patterns of Hami City, primarily marked by an expansion of cropland and grassland ecosystems and a reduction in desert ecosystems. (2) Between 2000 and 2023, there has been an upward trend in Fractional Vegetation Cover, Net Primary Productivity, and windbreak and sand fixation amount in Hami City, whereas soil retention has shown a declining trend. (3) The overall ecosystem change in Hami City is moderate, encompassing 61.85% of the area, with regions exhibiting positive change comprising 16.79% and those with negative change comprising 21.33%. (4) Temperature, precipitation, and evapotranspiration are the primary drivers of ecosystem change in Hami City. Although the overall changes in ecosystems in Hami City have shown an improving trend, significant spatial heterogeneity still exists. The natural climatic conditions of Hami City constrain the potential for further ecological improvement. This study enhances the understanding of ecosystem change processes in extremely arid regions and demonstrates that strategies for mitigating or adapting to climate change need to be implemented as soon as possible to ensure the sustainable development of ecosystems in arid areas. Full article
Show Figures

Figure 1

20 pages, 4501 KB  
Article
Golf Courses as Soundscape Refugia: Toward Sustainable Management of Acoustic Landscapes
by Agata Gajdek, Anna Sołtysik, Sebastian Wójcik and Anna Martyka
Sustainability 2025, 17(22), 9977; https://doi.org/10.3390/su17229977 - 8 Nov 2025
Viewed by 224
Abstract
Noise exposure in urbanized environments poses a growing challenge to human health and well-being. Consequently, there is an urgent need to identify and preserve areas with high acoustic quality to support restorative experiences in urban environments. This study examined the soundscape of the [...] Read more.
Noise exposure in urbanized environments poses a growing challenge to human health and well-being. Consequently, there is an urgent need to identify and preserve areas with high acoustic quality to support restorative experiences in urban environments. This study examined the soundscape of the Two Ponds Golf Course in Trzciana, Poland, and evaluated its potential as a setting for acoustic and psychological regeneration. A mixed-method design was adopted, integrating a questionnaire survey of 36 players (n = 36), binaural sound recordings, and landscape analysis. The results indicated that 63% of respondents evaluated the sound environment positively, highlighting the dominance of natural sounds (birds, wind, and amphibians), complemented by golf-related and rural background sounds. Only 13% of respondents perceived the sounds as disruptive. Occasional negative acoustic events, such as aircraft overflights or lawnmower activity, occurred infrequently and had a limited influence on the overall positive perception of the site. These findings suggest that suburban golf courses may function as “soundscape refugia,” providing restorative auditory experiences while supporting biodiversity conservation. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

13 pages, 1538 KB  
Article
The Differences in the Responses of Pelagic Fish Distribution in the Northern South China Sea to Environmental Factors: A Case Study of Round Scad and Jack Mackerel in the Hainan Island Offshore Area
by Liangming Wang, Binbin Shan, Changping Yang, Yan Liu and Dianrong Sun
Fishes 2025, 10(11), 574; https://doi.org/10.3390/fishes10110574 - 7 Nov 2025
Viewed by 188
Abstract
Round scad (Decapterus maruadsi) and jack mackerel (Trachurus japonicus) are economically significant pelagic species widely distributed in the northern South China Sea (SCS), with overlapping habitats and life history stages. To examine the distribution patterns of round scad and [...] Read more.
Round scad (Decapterus maruadsi) and jack mackerel (Trachurus japonicus) are economically significant pelagic species widely distributed in the northern South China Sea (SCS), with overlapping habitats and life history stages. To examine the distribution patterns of round scad and jack mackerel and their responses to environmental variables, we conducted a preliminary analysis using catch and environmental data from four seasonal surveys around Hainan Island. Three species distribution models—generalized linear models (GLM), generalized additive models (GAM), and random forests (RF)—were applied to quantify species–environment relationships. Explanatory variables included both biotic and abiotic factors: temperature, salinity, water depth, sea surface chlorophyll a concentration (SSC), phytoplankton abundance, and zooplankton abundance. The results revealed pronounced spatial heterogeneity in the high-density areas of both species. Among the models, GAM consistently explained a higher proportion of deviance in the observed distributions. Further analysis showed that round scad and jack mackerel responded differently to environmental gradients such as water depth and temperature, although their responses to varying plankton concentrations were largely consistent. Specifically, round scad are typically found in waters at depths ranging from 0 to 50 m, whereas jack mackerel tend to inhabit depths exceeding 100 m. In response to high plankton abundance, both species exhibit a notable increase in resource availability when plankton levels surpass 3. These findings indicate distinct spatial niches and suggest potential competition in feeding ecology between the two species. Overall, the study enhances understanding of the spatial dynamics of key commercial species in the northern SCS and provides valuable insights for sustainable fisheries management and conservation planning. Full article
(This article belongs to the Special Issue Sustainable Fisheries Dynamics)
Show Figures

Figure 1

Back to TopTop