Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = tantalum-niobium slag

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3002 KB  
Review
Engineered Artificial Minerals (EnAMs): Concept, Design Strategies, and Case Studies
by Wensheng Han, Joao Weiss, Xiang Lu, Daniel Munchen, Chuling Jiang, Hugo Lucas, Mengjie Ran, Wen Chen and Bernd Friedrich
Minerals 2025, 15(11), 1129; https://doi.org/10.3390/min15111129 - 29 Oct 2025
Viewed by 449
Abstract
With the continuous development of easily accessible resources, the exploitation of complex mineral resources, metallurgical waste slag containing high-value metals, and secondary resources is gradually becoming a mainstream trend. Due to the complex distribution characteristics of elements in these resources, efficient recycling is [...] Read more.
With the continuous development of easily accessible resources, the exploitation of complex mineral resources, metallurgical waste slag containing high-value metals, and secondary resources is gradually becoming a mainstream trend. Due to the complex distribution characteristics of elements in these resources, efficient recycling is difficult to achieve. A phase reconstruction strategy has been proposed to address the distribution forms of elements. The phase reconstruction strategy employs pyrometallurgical methods to subject complex resources to high-temperature smelting and cooling crystallization. In the cooling crystallization process, the target elements in melt are selectively enriched into engineered artificial minerals (EnAMs). Then, the target elements can be recovered by subsequently separating these EnAMs. However, the concept of and design strategies for EnAMs are still unclear. In this review, the concept of EnAMs is proposed based on previous studies. This review explores how to design EnAMs by phase equilibrium studies and utilizing geochemical behaviors. Additionally, the application cases of EnAMs in treating challenging tantalum–niobium and rare earth element (REE) resources, secondary resource recycling, and metallurgical slag were collected. Furthermore, the challenges and future perspectives of EnAMs for complex resources are discussed. Full article
Show Figures

Figure 1

16 pages, 4725 KB  
Article
Characterization of Brazilian Tin Slag and Evaluation of Its Potential as a Secondary Source of Nb and Ta
by Franco Garjulli, Gabriel Alves de Souza Gonçalves, Jorge Alberto Soares Tenório and Denise Crocce Romano Espinosa
Minerals 2025, 15(11), 1126; https://doi.org/10.3390/min15111126 - 28 Oct 2025
Viewed by 390
Abstract
Tin slags generated during cassiterite smelting in Brazil contain significant amounts of technologically important metals such as niobium, tantalum, and zirconium. Improper disposal of these materials represents both an environmental concern and the loss of a valuable secondary source of critical elements. This [...] Read more.
Tin slags generated during cassiterite smelting in Brazil contain significant amounts of technologically important metals such as niobium, tantalum, and zirconium. Improper disposal of these materials represents both an environmental concern and the loss of a valuable secondary source of critical elements. This study aimed to characterize a Brazilian tin slag sample to evaluate its composition, morphology, and potential for metal recovery. The material was homogenized and analyzed by laser diffraction (particle size), ICP-OES (chemical composition), X-ray diffraction (mineral phases), differential scanning calorimetry (metallic tin), and scanning electron microscopy with energy-dispersive spectroscopy (morphology). The slag exhibited a heterogeneous particle size distribution (D90 = 0.75 mm, D50 = 0.30 mm, D10 = 0.09 mm) and a complex multiphase structure composed mainly of silica, calcium silicate, and zirconia. The chemical analysis revealed 4.8 wt% Nb and 0.8 wt% Ta, along with high concentrations of Zr (11.1 wt%), confirming the material’s potential as a secondary resource. Thorium (2.7 wt%) and uranium (0.3 wt%) were also detected, indicating the presence of radioactive constituents. The detailed characterization of the slag provides essential insights into its chemical and mineralogical complexity, which directly influence the selection of suitable recovery routes. Understanding the distribution of Nb- and Ta-bearing phases within the refractory silicate–zirconia matrix is fundamental for defining pretreatment and leaching strategies. Therefore, this study establishes a necessary foundation for the design of efficient hydrometallurgical processes aimed at recovering critical metals from Brazilian tin slags. Full article
(This article belongs to the Special Issue Characterization and Reuse of Slag)
Show Figures

Figure 1

29 pages, 14958 KB  
Review
A Review on Lithium Extraction Processes from Spodumene and Resource Utilization of the Generated Lithium Slag
by Yongjie Bu, Wenxuan Yan, Xingxing Deng, Sen Huang, Aihui Sun, Qingjun Guan, Shuang Zhou, Wenqing Peng, Weijun Wang, Peng Ge and Yue Yang
Minerals 2025, 15(10), 1073; https://doi.org/10.3390/min15101073 - 14 Oct 2025
Viewed by 1693
Abstract
The booming new energy industry has fueled a surge in global lithium demand, with the annual demand for lithium carbonate (Li2CO3) equivalent (LCE) projected to reach 11.2 million tons by 2050. As a key raw material for lithium extraction, [...] Read more.
The booming new energy industry has fueled a surge in global lithium demand, with the annual demand for lithium carbonate (Li2CO3) equivalent (LCE) projected to reach 11.2 million tons by 2050. As a key raw material for lithium extraction, spodumene generates approximately 10–15 tons of lithium slag per ton of lithium carbonate (Li2CO3) produced. However, the comprehensive utilization rate of lithium slag in China remains below 30%, and most of it is disposed of through landfilling, posing soil pollution risks. This review summarizes the main lithium extraction processes from spodumene: the sulfuric acid method (with a lithium recovery rate of over 96% but high acid consumption); alkali processes (achieving 96%–99% lithium recovery and featuring low equipment corrosion, yet with untested applicability to low-grade ores); salt roasting (simplifying purification processes but only achieving ~60% sulfate recovery); and chlorination roasting (with a lithium recovery rate of over 95% but requiring strict safety controls). Additionally, this review covers the resource utilization of lithium slag: 8–10 million tons of gypsum can be recovered annually (filling 16%–20% of China’s industrial by-product gypsum supply gap); the silica–alumina micro-powder can enhance concrete strength and reduce glass fiber production costs; and over 94% of tantalum (Ta) and niobium (Nb) can be recovered from fine tantalite concentrate slag. Key research gaps and future development directions are also identified to support the low-carbon development of the lithium industry. Full article
Show Figures

Figure 1

17 pages, 3629 KB  
Article
Mineralogical Properties of a Refractory Tantalum-Niobium Slag and the Effect of Roasting on the Leaching of Uranium-Thorium
by Min Huang, Ke Hu, Xiang Li, Yun Wang, Jinbo Ouyang, Limin Zhou and Zhirong Liu
Toxics 2022, 10(8), 469; https://doi.org/10.3390/toxics10080469 - 12 Aug 2022
Cited by 5 | Viewed by 2627
Abstract
In order to realize sustainable development, it is beneficial to explore an appropriate process to recover the radionuclides contained in tantalum-niobium slag. By micro-mineralogical analysis and roasting experiments, the effect of uranium-thorium leaching from a refractory tantalum-niobium slag is investigated. The uranium and [...] Read more.
In order to realize sustainable development, it is beneficial to explore an appropriate process to recover the radionuclides contained in tantalum-niobium slag. By micro-mineralogical analysis and roasting experiments, the effect of uranium-thorium leaching from a refractory tantalum-niobium slag is investigated. The uranium and thorium content in the slag is 2.26 × 103 mg/kg and 7.84 × 103 mg/kg, which have large recovery value. As the surface area and pore size of the slag are very small, the leaching agent cannot fully penetrate the particles. Various methods of characterization are used to analyze the mineralogical properties of roasted slag at different temperatures. The leaching ratio of U-Th is 90.84% and 96.62% at the optimum roasting temperature of 500 °C, which are about 39% and 27% higher than original samples. The oxidants Fe3+, O2 and Mn can also promote the conversion of insoluble U(IV) to soluble U(VI). Roasting reduces the content of organic C and S, thereby preventing reduction of U(VI), and increasing pore size as well as specific surface area also promote radionuclide leaching. Thus, the roasting method at 500 °C can destroy the surface wrapping structure of radionuclides, reduce the internal density of minerals, and improve uranium-thorium leaching ratio significantly. It is of great practical significance to reduce the radioactive hazard of waste tantalum-niobium slag and to strengthen the sustainable utilization of resources by suitable process improvement techniques. Full article
(This article belongs to the Special Issue Novel Adsorbents and Adsorption Methods for Pollutants Removal)
Show Figures

Figure 1

16 pages, 4566 KB  
Article
Recovery and Preparation of Potassium Fluorotantalate from High-Tantalum-Bearing Waste Slag by Pressure Alkaline Decomposition
by Kangde Xie, Xiuyu Wei, Longgang Ye, Mingyuan Wan, Shilin Li and Jianguo Wu
Metals 2022, 12(4), 648; https://doi.org/10.3390/met12040648 - 11 Apr 2022
Cited by 7 | Viewed by 3186
Abstract
Tantalum slag is a type of high-grade tantalum resource with great recovery value. In this paper, a low fluorine process, including alkali pressure decomposition, low-acid transformation, solvent extraction, and crystallization, is proposed to recover tantalum and prepare potassium fluotantalate. First, some tantalum slag [...] Read more.
Tantalum slag is a type of high-grade tantalum resource with great recovery value. In this paper, a low fluorine process, including alkali pressure decomposition, low-acid transformation, solvent extraction, and crystallization, is proposed to recover tantalum and prepare potassium fluotantalate. First, some tantalum slag underwent alkali pressure decomposition, and the optimal decomposition conditions were obtained under a reaction time of 2 h, oxygen partial pressure 2.5 MPa, liquid–solid ratio 4:1, basicity 40 wt.%, and temperature 200 °C. Under these conditions, the decomposition efficiencies of Ta and Nb were 93.62% and 95.42%, respectively. X-Ray diffraction (XRD) and scanning electron microscope (SEM) were used to detect the main phase of the decomposition residue and showed that it was mainly sodium tantalate. With the increase in oxygen partial pressure, the particle size of decomposition slag gradually decreases and becomes loose. Second, the alkali decomposition residue was subjected to low-acid leaching to obtain fluorine tantalate and fluorine niobate, and the leaching efficiencies of tantalum and niobium were more than 99%. Last, the low-acid leaching solution was subjected to solvent extraction and evaporative crystallization to prepare potassium fluotantalate. The results showed that the tantalum extraction rate and tantalum and niobium separation factors were above 94% and 200, respectively, and the purity of potassium fluotantalate met the requirements of commercial products. Compared with current industrial practice, the consumption of hydrofluoric acid was greatly reduced, and the recovery rate of tantalum was increased. Full article
Show Figures

Figure 1

12 pages, 1753 KB  
Article
Simulation to Recover Niobium and Tantalum from the Tin Slags of the Old Penouta Mine: A Case Study
by Ricardo Magdalena, Alicia Valero, Guiomar Calvo, Francisco J. Alguacil and Félix Antonio López
Minerals 2021, 11(10), 1123; https://doi.org/10.3390/min11101123 - 13 Oct 2021
Cited by 11 | Viewed by 4845
Abstract
Demand for niobium and tantalum is increasing exponentially as these are essential ingredients for the manufacture of, among others, capacitors in technological devices and ferroniobium. Mine tailings rich in such elements could constitute an important source of Nb and Ta in the future [...] Read more.
Demand for niobium and tantalum is increasing exponentially as these are essential ingredients for the manufacture of, among others, capacitors in technological devices and ferroniobium. Mine tailings rich in such elements could constitute an important source of Nb and Ta in the future and alleviate potential supply risks. This paper evaluates the possibility of recovering niobium and tantalum from the slags generated during the tin beneficiation process of mine tailings from the old Penouta mine, located in Spain. To do so, a simulation of the processes required to beneficiate and refine both elements is carried out. After carbothermic tin reduction, the slags are sent to a hydrometallurgical process where niobium oxide and tantalum oxide are obtained at the end. Reagents, water, and energy consumption, in addition to emissions, effluents, and product yields, are assessed. Certain factors were identified as critical, and recirculation was encouraged in the model to maximise production and minimise reagents’ use and wastes. With this simulation, considering 3000 production hours per year, the metal output from the tailings of the old mine could cover around 1% and 7.4% of the world annual Nb and Ta demand, respectively. Full article
(This article belongs to the Special Issue Pollution and Remediation in Mining and Metallurgical Districts)
Show Figures

Figure 1

Back to TopTop