Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,421)

Search Parameters:
Keywords = tempering temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2649 KB  
Article
Stepwise Single-Axis Tracking of Flat-Plate Solar Collectors: Optimal Rotation Step Size in a Continental Climate
by Robert Kowalik and Aleksandar Nešović
Energies 2025, 18(21), 5776; https://doi.org/10.3390/en18215776 (registering DOI) - 1 Nov 2025
Abstract
This study investigates the effect of rotation step size on the performance of flat-plate solar collectors (FPSC) equipped with single-axis tracking. Numerical simulations were carried out in EnergyPlus, coupled with a custom Python interface enabling dynamic control of collector orientation. The analysis was [...] Read more.
This study investigates the effect of rotation step size on the performance of flat-plate solar collectors (FPSC) equipped with single-axis tracking. Numerical simulations were carried out in EnergyPlus, coupled with a custom Python interface enabling dynamic control of collector orientation. The analysis was carried out for the city of Kragujevac in Serbia, located in a temperate continental climate zone, based on five representative summer days (3 July–29 September) to account for seasonal variability. Three collector types with different efficiency parameters were considered, and inlet water temperatures of 20 °C, 30 °C, and 40 °C were applied to represent typical operating conditions. The results show that single-axis tracking increased the incident irradiance by up to 28% and the useful seasonal heat gain by up to 25% compared to the fixed configuration. Continuous tracking (ψ = 1°) achieved the highest energy yield but required 181 daily movements, which makes it mechanically demanding. Stepwise tracking with ψ = 10–15° retained more than 90–95% of the energy benefit of continuous tracking while reducing the number of daily movements to 13–19. For larger steps (ψ = 45–90°), the advantage of tracking decreased sharply, with thermal output only 5–10% higher than the fixed case. Increasing the inlet temperature from 20 °C to 40 °C reduced seasonal heat gain by approximately 30% across all scenarios. Overall, the findings indicate that relative single-axis tracking with ψ between 10° and 15° provides the most practical balance between energy efficiency, reliability, and economic viability, making it well-suited for residential-scale solar thermal systems. This is the first study to quantify how discrete rotation steps in single-axis tracking affect both thermal and economic performance of flat-plate collectors. The proposed EnergyPlus–Python model demonstrates that a 10–15° step offers 90–95% of the continuous-tracking energy gain while reducing actuator motion by ~85%. The results provide practical guidance for optimizing low-cost solar-thermal tracking in continental climates. Full article
Show Figures

Figure 1

21 pages, 1206 KB  
Article
Regulatory Effects of Different Compost Amendments on Soil Urease Kinetics, Thermodynamics, and Nutrient Stoichiometry in a Temperate Agroecosystem
by Qian Liu, Xu Zhang, Xingchi Guo, Ying Qu, Junyan Zheng, Yuhe Xing, Zhiyu Dong, Wei Yu, Guoyu Zhang and Pengbing Wu
Agronomy 2025, 15(11), 2544; https://doi.org/10.3390/agronomy15112544 (registering DOI) - 31 Oct 2025
Abstract
Compost amendments are widely recognized as an effective strategy for improving soil quality, modulating enzyme activities, and enhancing nitrogen cycling. Urease, a key enzyme in nitrogen transformation, is characterized by kinetic parameters such as the maximum reaction rate (Vmax) and Michaelis [...] Read more.
Compost amendments are widely recognized as an effective strategy for improving soil quality, modulating enzyme activities, and enhancing nitrogen cycling. Urease, a key enzyme in nitrogen transformation, is characterized by kinetic parameters such as the maximum reaction rate (Vmax) and Michaelis constant (Km), as well as thermodynamic attributes including temperature sensitivity (Q10), activation energy (Ea), enthalpy change (ΔH), Gibbs free energy change (ΔG), and entropy change (ΔS). However, how different compost sources regulate urease kinetics, thermodynamics, and nitrogen availability remains poorly understood. In this study, we evaluated the effects of three compost amendments—mushroom residue (MR), mushroom residue–straw mixture (MSM), and leaf litter (LL)—on urease kinetics and thermodynamics in a temperate agroecosystem. The MSM treatment significantly enhanced urea hydrolysis capacity and catalytic efficiency. In contrast, LL treatment resulted in the highest Km value, indicating a substantially lower enzyme-substrate affinity. Furthermore, MSM reduced the Ea and increased the thermal stability of urease, thereby supporting enzymatic performance under fluctuating temperatures. Collectively, our findings highlight that compost composition is a critical determinant of urease function and nitrogen turnover. By elucidating the coupled kinetic and thermodynamic responses of urease to compost inputs, this study provides mechanistic insights to guide optimized soil management and sustainable nitrogen utilization in temperate agricultural systems. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
32 pages, 11840 KB  
Article
Long-Term Spatiotemporal Relationship of Urban–Rural Gradient Between Land Surface Temperature and Nighttime Light in Representative Cities Across China’s Climate Zones
by Juanzhu Liang, Wenfang Li, Yuke Zhou, Xueyang Han and Daqing Li
Remote Sens. 2025, 17(21), 3585; https://doi.org/10.3390/rs17213585 - 30 Oct 2025
Viewed by 196
Abstract
In the context of rapid urbanization, human activities have profoundly transformed urban thermal environments. However, most existing studies have focused on single cities or relatively uniform climatic contexts, and the long-term dynamics between land surface temperature (LST) and nighttime light (NTL) across urban–rural [...] Read more.
In the context of rapid urbanization, human activities have profoundly transformed urban thermal environments. However, most existing studies have focused on single cities or relatively uniform climatic contexts, and the long-term dynamics between land surface temperature (LST) and nighttime light (NTL) across urban–rural gradients in diverse climates remain insufficiently explored. This gap limits a systematic understanding of how human activities and thermal environments co-evolve under varying regional conditions. To address this gap, we selected ten representative cities spanning multiple climate zones in China. Using MODIS LST and NTL datasets from 2000 to 2020, we developed an urban–rural gradient analysis framework to systematically assess the spatiotemporal response patterns and coupling mechanisms between LST and NTL. Our findings reveal the following: (1) From 2000 to 2020, NTL exhibited a pronounced upward trend across all climate zones, most notably in the marginal tropical humid region, while LST changes were relatively moderate. (2) LST and NTL displayed power-law distributions along urban–rural transects, marked by steep declines in monocentric cities and gradual transitions in polycentric cities, with sharper thermal gradients in northern and inland areas and more gradual transitions in southern and coastal regions. (3) The long-term increase in NTL was most evident in suburban areas (0.94 nW/cm2/sr/a), surpassing that in urban cores (0.68 nW/cm2/sr/a) and rural zones (0.60 nW/cm2/sr/a), with inland cities (0.84 nW/cm2/sr/a) outpacing their coastal counterparts. Although LST changes were modest, suburban warming (0.16 ± 0.08 °C/a) was over twice that of urban and rural areas. Notably, the synergistic escalation of light and heat was most pronounced in tropical and subtropical cities. (4) Eastern coastal cities exhibited strongly synchronized rises in NTL and LST, whereas cities in the plateau, temperate semi-arid, and mid-temperate arid regions showed clear decoupling. Along urban–rural gradients, NTL–LST correlations generally weakened from urban centers to peripheries, yet coupling coordination peaked in fringe areas (mean = 0.63), underscoring pronounced spatial heterogeneity. This study advances our understanding of the spatiotemporal coupling of urban light and heat under varying climatic and urbanization contexts, offering critical insights into managing urban thermal environments. Full article
Show Figures

Figure 1

32 pages, 3083 KB  
Article
Comparative Analysis of Passive Thermal Solutions for Building Resilience Under Future Climate Scenarios
by José Pedro Teixeira, Pedro Dinho da Silva, Luís Carvalho Pires and Pedro Dinis Gaspar
Energies 2025, 18(21), 5693; https://doi.org/10.3390/en18215693 - 29 Oct 2025
Viewed by 151
Abstract
The intensification of thermal extremes increases the need for strategies that protect indoor comfort and reduce the energy demand of active systems. This study employs EnergyPlus dynamic simulations to evaluate how passive thermal design solutions for heating and cooling can minimize indoor temperature [...] Read more.
The intensification of thermal extremes increases the need for strategies that protect indoor comfort and reduce the energy demand of active systems. This study employs EnergyPlus dynamic simulations to evaluate how passive thermal design solutions for heating and cooling can minimize indoor temperature fluctuations. The analysis covers multiple locations to identify the most effective techniques for improving indoor thermal performance and energy efficiency. Results demonstrate that passive thermal strategies offer a sustainable and efficient approach to adapting buildings to extreme temperature variations, thereby reducing dependence on mechanical systems. The greatest reduction in energy demand is achieved by increasing the envelope’s thermal mass, particularly in hot and temperate climates. Enhanced insulation and green roofs are more effective in cold and humid climates. In addition, solar control measures, such as external shading and reduced glazing areas, help lower indoor temperatures in high-thermal-radiation regions. Full article
24 pages, 2091 KB  
Systematic Review
A Conceptual Framework for Biophilic Architectural Design in Cold Climates: A Meta-Synthesis Analysis
by Bekir Huseyin Tekin and Mehmet Arif Aktog
Buildings 2025, 15(21), 3825; https://doi.org/10.3390/buildings15213825 - 23 Oct 2025
Viewed by 353
Abstract
Biophilic design has traditionally evolved from temperate-zone contexts, where access to nature is more readily available, and has rarely addressed the challenges of extreme climatic conditions. The potential of biophilic design to enhance health and well-being in cold environments, where exposure to nature [...] Read more.
Biophilic design has traditionally evolved from temperate-zone contexts, where access to nature is more readily available, and has rarely addressed the challenges of extreme climatic conditions. The potential of biophilic design to enhance health and well-being in cold environments, where exposure to nature must adapt to low temperatures, limited solar radiation, and pronounced photoperiod variation, remains underexplored. This study conducts a systematic meta-synthesis of biophilic architectural design strategies in Arctic and Sub-Arctic regions, adopting the SALSA (Search, Appraisal, Synthesis, and Analysis) framework in alignment with PRISMA guidelines to ensure methodological transparency and reproducibility. Nine peer-reviewed studies published between 2019 and 2024 were analyzed using qualitative coding and synthesis in NVivo. The findings identify thermal comfort, daylight, and circadian regulation as the most influential biophilic parameters, while greenery and water features, common in temperate frameworks, were limited due to environmental constraints. Key interventions include adaptive envelopes, optimized window design, intermediate buffer zones, and materials that balance insulation with sensory enrichment. The study proposes an “Interventions–Parameters–Outcomes” framework that illustrates the interrelationships among biophilic strategies, health-related outcomes, and climatic adaptation. While all studies originated from northern Canada, the conceptual framework provides a transferable foundation for future empirical validation and comparative research across diverse cold-climate regions, contributing to the advancement of climate-responsive, human-centered design in extreme environments. Full article
Show Figures

Figure 1

29 pages, 7146 KB  
Article
Spatial Usage Rate Model and Foot Vote Method for Thermal Comfort and Crowd Behaviour Analysis in Severe Cold Climate City Design
by Siqi Liu and Hong Jin
Buildings 2025, 15(21), 3812; https://doi.org/10.3390/buildings15213812 - 22 Oct 2025
Viewed by 288
Abstract
Understanding the thermal environment of outdoor public spaces is critical for climate-responsive architectural design, evidence-based urban science, and data-driven smart city planning. Thermal comfort shapes both individual decision-making and collective behavioural patterns, offering valuable insights for designing spaces that support year-round vitality. This [...] Read more.
Understanding the thermal environment of outdoor public spaces is critical for climate-responsive architectural design, evidence-based urban science, and data-driven smart city planning. Thermal comfort shapes both individual decision-making and collective behavioural patterns, offering valuable insights for designing spaces that support year-round vitality. This study investigates the relationship between thermal conditions and crowd behaviour in severe cold regions by combining behavioural mapping with on-site environmental measurements. Results show that in high-temperature conditions, spatial distribution is primarily influenced by sunlight and shade, whereas at low temperatures, sunlight has minimal effect on space use. Attendance, duration of stay, and activity intensity follow quadratic relationships with the Universal Thermal Climate Index (UTCI), with optimal values at 29 °C, 26 °C, and 27 °C, respectively. Walking speed is inversely correlated with UTCI, with the fastest speeds observed under cold discomfort, reflecting rapid departure from space. Sitting behaviour peaks at 21 °C UTCI and declines to nearly zero when UTCI is below 10 °C. A comparative analysis between Harbin and other regions reveals significant deviations from temperate zone patterns and greater similarity to subtropical behavioural responses. A key contribution of this study is the introduction of the spatial usage rate model and the foot vote method, two novel, observation-based tools that allow for the objective estimation of thermal comfort without relying solely on subjective surveys. These methods offer architects, planners, and smart city practitioners a powerful evidence-based framework to evaluate and optimise outdoor thermal performance, ultimately enhancing usability, adaptability, and public engagement in cold-climate cities. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 1222 KB  
Article
Soil Respiration Variability Due to Litter and Micro-Environment During the Cold-Temperature Season in a Temperate Monsoon Deciduous Forest
by Jaeseok Lee
Forests 2025, 16(10), 1608; https://doi.org/10.3390/f16101608 - 20 Oct 2025
Viewed by 253
Abstract
In cool temperate regions, soil respiration (Rs) data collected during the cold season is limited due to freezing and snow. This leads to a lack of understanding of Rs characteristics during the cold season and for ecosystems with long winters, it can significantly [...] Read more.
In cool temperate regions, soil respiration (Rs) data collected during the cold season is limited due to freezing and snow. This leads to a lack of understanding of Rs characteristics during the cold season and for ecosystems with long winters, it can significantly impact the annual carbon flux estimation. In this study, Rs data were collected from temperate deciduous forests to understand the characteristics of Rs values in the cold temperature season. To reflect spatial variation in Rs, five points were selected with different levels of litter layer development, ranging from Chamber 1 (almost no litter) to Chamber 5 (thick litter). Rs, air temperature (Ta) and rainfall, soil temperature (Ts) and soil moisture content (SMC) were collected every 30 min at each measurement point. As the litter layer developed, Ts tended to increase, but SMC tended to decrease, revealing that the degree of litter layer development had a clear effect on Ts and SMC. Rs showed a relatively high exponential correlation with Ts. However, the Rs−SMC functional relationship exhibited no correlation. Therefore, while the Ts-Rs functional equation can be used in the Rs calculator during the cold season, the SMC-Rs function would be suitable for use. Also, these deferent litter layers, TS, and SMC affected the Rs. The total Rs during the measurement period was various from 0.60 t C ha−1 for a thin litter layer to 1.88 t C ha−1 for a thick layer. This range of values may be appropriate for estimating Rs during the cold season in temperate regions. Also, the average across all plots was 6.05, ranging from 4.93 in no litter to 8.23 in thick litter layer. Full article
Show Figures

Figure 1

28 pages, 5701 KB  
Article
Temperature and Pressure Observations by Tommaso Temanza from 1751 to 1769 in Venice, Italy
by Dario Camuffo, Antonio della Valle and Francesca Becherini
Climate 2025, 13(10), 217; https://doi.org/10.3390/cli13100217 - 18 Oct 2025
Viewed by 360
Abstract
The study aims to recover, interpret, and analyze the daily meteorological observations made in Venice by Tommaso Temanza from 1751 to 1769. These records are relevant because they provide direct information about the climate of the Little Ice Age. Temanza used a barometer, [...] Read more.
The study aims to recover, interpret, and analyze the daily meteorological observations made in Venice by Tommaso Temanza from 1751 to 1769. These records are relevant because they provide direct information about the climate of the Little Ice Age. Temanza used a barometer, an air thermometer of Amontons’ type, and an additional mercury thermometer, i.e., Réaumur’s thermometer. These early instruments are presented and discussed in this study. The barometer readings needed standard corrections, which were unknown at that time. The scale of the air thermometer was arbitrary, and temperatures were measured in inches of mercury. For the Amontons thermometer, Temanza missed the calibration points and used a particular scale with the zero-point in the middle of the range. He gave two contradictory explanations for this choice, both of which are discussed in this paper. In the 18th century, the use of a singular value to represent the average temperature, called “Temperate”, was promoted by Michieli du Crest in Geneva and Toaldo in Padua. This work reconstructs the unknown scale, using contemporary observations by Giovanni Poleni and Giuseppe Toaldo in Padua (30 km west of Venice) and snowfall reported in the weather notes to determine the temperature point at 0 °C. A discussion is made about the calibration, validation, and conversion of readings from the original to modern units of pressure and temperature, i.e., hPa and °C, respectively. The recovered record of Venice is presented in comparison with Padua, Bologna, and Milan. The paper provides and analyzes the new dataset, and improves knowledge about the climate, history of science, instruments, and observations made in the mid-18th century. Full article
Show Figures

Figure 1

14 pages, 9534 KB  
Article
Failure Analysis of Gear on Rail Transit
by An-Xia Pan, Chao Wen, Haoyu Wang, Ping Tao, Xuedong Liu, Yi Gong and Zhen-Guo Yang
Materials 2025, 18(20), 4773; https://doi.org/10.3390/ma18204773 - 18 Oct 2025
Viewed by 358
Abstract
The gear transmission system is a safety-critical component in rail transit, typically designed for a service life exceeding 20 years. Failure analysis of such systems remains a key focus for railway engineers. This study systematically investigates four representative cases of premature gear failure [...] Read more.
The gear transmission system is a safety-critical component in rail transit, typically designed for a service life exceeding 20 years. Failure analysis of such systems remains a key focus for railway engineers. This study systematically investigates four representative cases of premature gear failure in high-speed trains using a standardized analytical procedure that includes visual inspection, chemical analysis, metallographic examination, scanning electron microscopy, and hardness testing. The results identify four primary root causes: subsurface slag inclusions in raw materials, inadequate heat treatment leading to a non-martensitic layer (∼60 μm) at the tooth root, grinding-induced temper burns (crescent-shaped "black spots") accompanied by a hardness drop of ∼100–150 HV, and insufficient lubrication. The interdependencies between these factors and failure mechanisms, e.g., fatigue cracking, spalling, and thermal scuffing, are analyzed. This work provides an evidence-based framework for improving gear reliability and proposes targeted countermeasures, such as ultrasonic inclusion screening and real-time grinding temperature control, to extend operational lifespans. Full article
Show Figures

Figure 1

22 pages, 15668 KB  
Article
Genome-Wide Characterization of the MDS Gene Family in Gossypium Reveals GhMDS11 as a Key Mediator of Cold Stress Response
by Xuehan Zhu, Ahmad Haris Khan, Yihao Liu, Allah Madad, Faren Zhu, Junwei Wang, Ganggang Zhang, Fei Wang, Zihan Li, Shandang Shi and Hongbin Li
Int. J. Mol. Sci. 2025, 26(20), 10144; https://doi.org/10.3390/ijms262010144 - 18 Oct 2025
Viewed by 268
Abstract
Cotton’s susceptibility to low temperatures makes it a crucial raw resource for the world’s textile industry, yet its cultivation in temperate regions is severely limited. Although plant growth and stress responses depend on receptor-like kinases (RLKs), the functions of the MEDOS (MDS [...] Read more.
Cotton’s susceptibility to low temperatures makes it a crucial raw resource for the world’s textile industry, yet its cultivation in temperate regions is severely limited. Although plant growth and stress responses depend on receptor-like kinases (RLKs), the functions of the MEDOS (MDS) gene family, which includes genes that encode RLK, are still poorly understood in cotton. In this study, we conducted a genome-wide analysis to systematically investigate the distribution of MDS gene family members in four cotton species. Phylogenetic analysis identified five evolutionary clades of the MDS gene family in cotton. The role of promoter cis-acting elements in hormone signaling and abiotic stress responses was suggested by analysis. Collinearity analysis demonstrated that segmental duplication was the primary driver of family expansion. Gene expression profiling showed that GhMDS11 was significantly upregulated under cold stress. Functional validation through silencing GhMDS11 compromised cold tolerance, confirming its role in stress adaptation. Comparative transcriptome study of silenced plants demonstrated substantial enrichment in pathways associated with hormone signal transduction and fatty acid breakdown. It is speculated that the chain of “hormone synthesis → signal transduction → secondary metabolism” completely presents the transcriptional regulation network and functional response of plants after receptor kinase VIGS. Silencing the GhMDS11 gene in cotton initiates regulatory effects through hormone synthesis, which is amplified via a signal transduction cascade, ultimately affecting secondary metabolism. This comprehensive pathway clearly demonstrates the downstream transcriptional reprogramming and functional changes. This work thoroughly examined the evolutionary traits of the MDS family across four cotton species and clarified the functional and molecular processes of GhMDS11 in improving low-temperature tolerance, laying a solid foundation for further clarifying multidimensional regulatory networks and breeding cold-resistant cotton materials. Simultaneously, our findings pave the way for future research to develop molecular markers, which could potentially shorten the breeding cycle and facilitate the targeted enhancement of cold tolerance in cotton. Full article
Show Figures

Figure 1

16 pages, 8731 KB  
Article
Effect of Tempering Temperature on Carbide Evolution and Mechanical Response of Deep Cryogenically Treated Martensitic Stainless Steel
by Muhammad Rizqi Ramadhan Fatih, Hou-Jen Chen, Kun-Ming Lin and Hsin-Chih Lin
Metals 2025, 15(10), 1152; https://doi.org/10.3390/met15101152 - 17 Oct 2025
Viewed by 276
Abstract
Deep cryogenic treatment (DC) is widely applied to martensitic stainless steels to suppress the presence of metastable retained austenite (RA), which may otherwise transform into brittle martensite under deformation and degrade mechanical performance. In this study, a low-carbon 13Cr-2Ni-2Mo martensitic stainless steel was [...] Read more.
Deep cryogenic treatment (DC) is widely applied to martensitic stainless steels to suppress the presence of metastable retained austenite (RA), which may otherwise transform into brittle martensite under deformation and degrade mechanical performance. In this study, a low-carbon 13Cr-2Ni-2Mo martensitic stainless steel was subjected to deep cryogenic treatment for 2 h, followed by tempering at 200–600 °C to investigate carbide evolution and its correlation with mechanical response. At 200 °C, undissolved M23C6 was observed, accompanied by an RA volume fraction of 8.43% which exhibited a hardness of 543.3 ± 5.1 Hv. When tempered at 400 °C, M3C became predominant, corresponding to a hardness of 524.5 ± 5.1 Hv. At 500 °C, the simultaneous precipitation of M3C, M7C3, and M23C6 carbides induced pronounced secondary hardening, which promoted the peak hardness of 559 ± 5.6 Hv. Further tempering at 600 °C resulted in carbide spheroidization M23C6, which resulted in a hardness reduction to 392.2 ± 3.9 Hv while enhancing ductility. These findings reveal that the tempering temperature plays a decisive role in controlling the carbide precipitation sequence and the stability of retained austenite, thereby enabling the design of an optimal strength–ductility balance in deep cryogenically treated martensitic stainless steels. Full article
(This article belongs to the Special Issue Metallic Materials Behaviour Under Applied Load)
Show Figures

Figure 1

21 pages, 3962 KB  
Article
Improving Thermal Performance of Solar Heating Systems
by Sebastian Pater and Krzysztof Kupiec
Appl. Sci. 2025, 15(20), 11118; https://doi.org/10.3390/app152011118 - 16 Oct 2025
Viewed by 357
Abstract
The solar energy reaching the immediate surroundings of a single-family house throughout the year is sufficient to repeatedly and fully cover its heating needs during the heating season in a temperate climate. Nevertheless, modern technology is not yet able to fully solve the [...] Read more.
The solar energy reaching the immediate surroundings of a single-family house throughout the year is sufficient to repeatedly and fully cover its heating needs during the heating season in a temperate climate. Nevertheless, modern technology is not yet able to fully solve the problem of thermal self-sufficiency in single-family houses. It is therefore advisable to seek solutions that improve the thermal efficiency of domestic solar installations. Efficient use of solar radiation heat accumulated during the summer months for heating requires the use of high-volume storage tanks. Another option is to discharge excess heat outside the system during the summer. This publication focuses on the latter solution. A model of the solar heating system for a residential building and pool with a storage tank powered by solar energy has been developed. Simulation calculations were performed, showing that the removal of excess heat is a beneficial solution, especially when this energy can be used to heat water in the pool. The calculations concerned the heating of a single-family house in a temperate climate. Lowering the temperature of the water in the storage tank reduces heat losses from the tank to the environment (ground), while supplying the solar collectors with lower-temperature fluid increases the driving force of the heat transfer process. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

23 pages, 7146 KB  
Article
Creep Performance and Viscoelastic Constitutive Relationship of Structural Acrylic Connected Using Bulk Polymerization Technique
by Zongyi Wang, Yuhao Liu, Bailun Zhang, Yuanqing Wang, Jianxia Xiao, Wei Cheng, Ming Huang and Yulong Song
Buildings 2025, 15(20), 3691; https://doi.org/10.3390/buildings15203691 - 14 Oct 2025
Viewed by 333
Abstract
Acrylic is increasingly being used in structural engineering applications due to its characteristics of light weight, capability of bulk polymerization, and absence of self-destruction risk, compared to tempered glass. However, structural acrylic exhibits creep behavior when subjected to prolonged loading. In order to [...] Read more.
Acrylic is increasingly being used in structural engineering applications due to its characteristics of light weight, capability of bulk polymerization, and absence of self-destruction risk, compared to tempered glass. However, structural acrylic exhibits creep behavior when subjected to prolonged loading. In order to study the creep performance of structural acrylic base material and coupons connected using the bulk polymerization technique, short-term tensile tests and long-term creep tests were conducted, and the effect of annealing temperature controlled in the bulk polymerization process was considered. The results show that annealing temperature significantly affects the quality of bulk polymerization. The Burgers model accurately describes the viscoelastic behavior of acrylic, and the Prony series converted from the parameters in the Burgers model can be directly implemented in Abaqus and accurately simulates the creep behavior of acrylic. The equation proposed in this study, on the basis of the Findley model, is precise enough to predict the creep curves of acrylic base material and connecting coupons. The Time–Stress Superposition Principle is valid when the time is greater than the threshold value. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

14 pages, 4878 KB  
Article
Near-Surface Temperature Prediction Based on Dual-Attention-BiLSTM
by Wentao Xie, Mei Du, Chengbo Li and Guangxin Du
Atmosphere 2025, 16(10), 1175; https://doi.org/10.3390/atmos16101175 - 10 Oct 2025
Viewed by 308
Abstract
Current temperature prediction methods often focus on time-series information while neglecting the contributions of different meteorological factors and the context of varying time steps. Accordingly, this study developed a Dual-Attention-BiLSTM (a bidirectional long short-term memory network with dual attention mechanisms) network model, which [...] Read more.
Current temperature prediction methods often focus on time-series information while neglecting the contributions of different meteorological factors and the context of varying time steps. Accordingly, this study developed a Dual-Attention-BiLSTM (a bidirectional long short-term memory network with dual attention mechanisms) network model, which integrates a bidirectional long short-term memory (BiLSTM) network model with random forest-based feature selection and two self-designed attention mechanisms. A sensitivity analysis was conducted to evaluate the influence of the attention mechanisms. This study focuses on Shijiazhuang City, China, which has a temperate continental monsoon climate with significant seasonal and daily variations. The data were sourced from ERA5-Land, comprising hourly near-surface temperature and related meteorological variables for the year of 2022. The results indicate that integrating the two attention mechanisms significantly improves the model’s prediction performance compared to using BiLSTM alone. The mean absolute error between simulation results ranges from 0.80 °C to 1.08 °C, with a reduction of 0.17 °C to 0.39 °C, and the root mean square error ranges from 1.17 °C to 1.37 °C, with a reduction of 0.12 °C to 0.22 °C. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 9681 KB  
Article
Effects of Pre-Peening on Fatigue Performance of Gas-Nitrided SCM 440 Steel
by Hao Chen, Tai-Cheng Chen, Wen-Han Chen, Hsiao-Hung Hsu and Leu-Wen Tsay
Metals 2025, 15(10), 1118; https://doi.org/10.3390/met15101118 - 9 Oct 2025
Viewed by 327
Abstract
Gas nitriding was implemented in the current work at a constant nitrogen potential (KN) of 2.0 for 8 h to enhance the fatigue properties of SCM 440 steel, and the results were compared with those of the substrate tempered at the [...] Read more.
Gas nitriding was implemented in the current work at a constant nitrogen potential (KN) of 2.0 for 8 h to enhance the fatigue properties of SCM 440 steel, and the results were compared with those of the substrate tempered at the nitriding temperature (475 °C). Fine particle peening (FPP) prior to nitriding imposed a refined structure and induced compressive residual stress (CRS) in the near-surface peened zone. The fine-grained structure provided numerous paths to enhance nitrogen diffusion inwards during nitriding. The compound layer formed on the nitrided SCM 440 steel primarily comprised a mixture of Fe3N and Fe4N; however, the pre-peened and nitrided (SPN) specimens exhibited a higher proportion of Fe3N and a thicker compound layer than the non-peened and nitrided (NPN) counterparts. In addition, FPP prior to nitriding increased both the case depth and the magnitude of the CRS field compared with nitriding alone. The fatigue limits of the substrate (SB), NPN, and SPN samples were approximately 750, 1050, and 1400 MPa, respectively. Gas-nitriding at 475 °C significantly improved the fatigue performance of SCM 440 steel. Moreover, pre-peening prior to nitriding further enhanced fatigue strength and life of the treated SCM 440 steel by introducing a deeper case depth and higher CRS field. Multiple cracks initiation at the outer surface of the SB sample accounted for its lowest fatigue limit among the tested samples. Surface microcracks and pits on the surface of the NPN specimen would be crack initiation sites and harmful to its fatigue resistance. These surface dents were considered to be responsible for fatigue crack initiation in the SPN specimens. Therefore, polishing after nitriding to reduce surface roughness and/or microcracks was expected to further increase the fatigue resistance and the reliability of nitrided SCM 440 steel. Full article
Show Figures

Figure 1

Back to TopTop