Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,506)

Search Parameters:
Keywords = tensile shear strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3672 KB  
Article
Direct Experimental Calibration of Hosford–Coulomb and Modified Mohr–Coulomb Damage Criteria in AHSS Using Digital Image Correlation
by Rui Pereira, Nuno Peixinho and Sérgio L. Costa
Metals 2025, 15(11), 1238; https://doi.org/10.3390/met15111238 - 11 Nov 2025
Abstract
This study presents a Digital Image Correlation (DIC)-based experimental framework for the calibration of the Hosford-Coulomb (HC) and Modified-Mohr Coulomb (MMC) damage initiation criteria in an Advanced High Strength Steel (AHSS) DP1000. Three characteristic loading conditions in sheet metal forming—pure shear, uniaxial tension, [...] Read more.
This study presents a Digital Image Correlation (DIC)-based experimental framework for the calibration of the Hosford-Coulomb (HC) and Modified-Mohr Coulomb (MMC) damage initiation criteria in an Advanced High Strength Steel (AHSS) DP1000. Three characteristic loading conditions in sheet metal forming—pure shear, uniaxial tension, and plane strain tension—were reproduced using flat specimens in a universal tensile testing machine, thus eliminating the need for costly and time-consuming tooling systems. An additional notch tension specimen was employed to validate the stress-state sensitivity of the proposed calibration approach. By integrating full-field strain data from DIC with tensile test results, stress–strain relationships were directly obtained without finite element modeling. The results confirm the effectiveness of dogbone, mini shear, and plane strain tension specimens in achieving proportional loading path histories up to fracture initiation, with constant stress state evolution during deformation. Comparison of the HC and MMC damage criteria reveals similar fracture loci, with the HC model exhibiting slightly higher resistance between shear and uniaxial tension conditions. This study discusses the suitability of a fully experimental DIC-based methodology for the calibration of stress-state-dependent damage initiation criteria. The results highlight the ability of the proposed methodology as a simplified and lower time-consuming alternative to traditional numerical assisted frameworks. Full article
(This article belongs to the Special Issue Feature Papers in Metal Failure Analysis)
Show Figures

Figure 1

23 pages, 8298 KB  
Article
Effect of Freeze–Thaw Cycles on Bond Properties at the FRP-Concrete Interface: Experimental Evaluation and Machine Learning Prediction
by Wei Liang, Shiying Liu, Haoran Liu, Guang Yang and Yongming Gao
Buildings 2025, 15(22), 4038; https://doi.org/10.3390/buildings15224038 - 9 Nov 2025
Viewed by 206
Abstract
Fiber-reinforced polymer (FRP)–concrete bonding is widely adopted for structural strengthening, yet its durability is highly vulnerable to freeze–thaw (FT) degradation. This study combines experimental testing with interpretable machine learning (ML) to reveal the degradation mechanism and predict the interfacial behavior of FRP–concrete systems [...] Read more.
Fiber-reinforced polymer (FRP)–concrete bonding is widely adopted for structural strengthening, yet its durability is highly vulnerable to freeze–thaw (FT) degradation. This study combines experimental testing with interpretable machine learning (ML) to reveal the degradation mechanism and predict the interfacial behavior of FRP–concrete systems under FT exposure. Single-lap shear tests showed that all specimens failed through interfacial debonding accompanied by partial concrete peeling. The ultimate bond strength decreased by 6.0–18.5%, and the peak shear stress dropped by 53–80%, indicating a pronounced loss of ductility and adhesion. To extend the analysis, experimental data were integrated with literature datasets, and three ensemble ML algorithms—AdaBoost, Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—were employed to predict key bond–slip parameters including ultimate bond strength, local maximum bond stress, slip values, and interfacial fracture energy. Among them, XGBoost achieved the highest predictive accuracy, with R2 values exceeding 0.94 for most output parameters and consistently low RMSE values. Shapley Additive exPlanations (SHAP) and Partial Dependence Plots (PDPs) further identified adhesive tensile strength, fiber modulus, FRP thickness, and concrete strength as dominant factors and defined their optimal ranges. The findings offer a scientific foundation for evaluating and predicting the long-term bond durability of FRP–concrete systems and support the development of reliable reinforcement strategies for infrastructure in cold and severe environments. Full article
(This article belongs to the Special Issue The Greening of the Reinforced Concrete Industry)
Show Figures

Figure 1

26 pages, 4253 KB  
Article
Enhancing Shear Performance of Concrete Beams Using Layered Rubberized and Steel Fiber-Reinforced Composites
by Abdulaziz S. Alsaif and Abdulrahman S. Albidah
Materials 2025, 18(22), 5076; https://doi.org/10.3390/ma18225076 - 7 Nov 2025
Viewed by 207
Abstract
Recycling rubber and steel fibers from end-of-life tires for use in structural concrete presents a sustainable pathway to improve resource efficiency and reduce environmental impact. This study assesses the shear performance of reinforced concrete beams in which shredded tire rubber substitutes 20 vol.% [...] Read more.
Recycling rubber and steel fibers from end-of-life tires for use in structural concrete presents a sustainable pathway to improve resource efficiency and reduce environmental impact. This study assesses the shear performance of reinforced concrete beams in which shredded tire rubber substitutes 20 vol.% of both fine and coarse natural aggregates. The effect of including recycled tire steel fibers (RSF) and industrial steel fibers (ISF), each at a dosage of 20 kg/m3, is also examined. The experimental program involved testing twenty-four cylindrical specimens and seven reinforced concrete beams to evaluate the mechanical and structural behavior of the proposed mixtures. A novel layered concrete configuration is also evaluated, in which rubberized (RU) concrete or steel fiber reinforced rubberized (RUSF) concrete is placed in the tensile zone, and plain (P) concrete is placed in the compressive zone. The results indicate that rubber incorporation alone reduces shear strength by 30.9% compared to P concrete. However, the inclusion of steel fibers not only compensates for this reduction but significantly improves strength and ductility. Beams fully cast with RUSF concrete exhibit a 31.9% increase in shear strength compared to P concrete. In contrast, layered beams with RUSF concrete in the bottom and P concrete in the top show a comparable performance. These findings highlight the potential of integrating steel fiber reinforced rubberized concrete and functional layering to enable the use of substantial quantities of recycled tire materials without compromising structural performance, offering a promising solution for eco-efficient construction. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 17322 KB  
Article
Effect of Annealing Process on Microstructure and Properties of Tin Bronze/Steel Bimetallic
by Zhangyong Yu and Chen Chen
Crystals 2025, 15(11), 961; https://doi.org/10.3390/cryst15110961 - 7 Nov 2025
Viewed by 207
Abstract
Tin bronze/steel bimetallic is a widely utilized industrial material in the field of sliding bearing applications. Arc cladding technology represents an emerging method for fabricating tin bronze/steel bimetallic materials; however, research on their microstructure and mechanical properties remains limited. This study investigates the [...] Read more.
Tin bronze/steel bimetallic is a widely utilized industrial material in the field of sliding bearing applications. Arc cladding technology represents an emerging method for fabricating tin bronze/steel bimetallic materials; however, research on their microstructure and mechanical properties remains limited. This study investigates the microstructural characteristics and mechanical behavior of tin bronze/steel bimetallic materials produced via the arc cladding process, with particular emphasis on the effects of annealing treatment on these properties. The tin bronze layer consists of a fine-grained zone, a columnar dendritic zone, and a freely dendritic zone. The tin bronze/steel bimetallic material exhibits high mechanical strength and strong interfacial bonding. Nevertheless, during three-point bending tests, cracks are observed in the tin bronze layer. When annealed at temperatures ranging from 300 °C to 700 °C, the tensile strength, shear strength, and hardness of the material decrease, while the elongation increases significantly. Moreover, no cracking occurs during three-point bending tests. Upon reaching an annealing temperature of 800 °C, the overall mechanical performance deteriorates rapidly. An annealing temperature of 300 °C is identified as an optimal parameter for achieving favorable mechanical properties. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

22 pages, 4729 KB  
Article
Unidirectional Ligament Orientation Enables Enhanced Out-of-Plane Mechanical Properties in Anisotropic Nanoporous Gold
by Yuhang Zhang, Xiuming Liu, Yiqun Hu, Suhang Ding and Feixiang Tang
Nanomaterials 2025, 15(21), 1675; https://doi.org/10.3390/nano15211675 - 4 Nov 2025
Viewed by 310
Abstract
Nanoporous gold (NPG), characterized by a bicontinuous network of nanoscale solid ligaments and pore channels, exhibits exceptional physical and chemical properties. However, the limited strength and stiffness of traditional isotropic NPG (INPG) have constrained its engineering applications. To effectively enhance the mechanical properties [...] Read more.
Nanoporous gold (NPG), characterized by a bicontinuous network of nanoscale solid ligaments and pore channels, exhibits exceptional physical and chemical properties. However, the limited strength and stiffness of traditional isotropic NPG (INPG) have constrained its engineering applications. To effectively enhance the mechanical properties of NPG, this work proposes an innovative anisotropic NPG (ANPG) architecture featuring unidirectional ligament orientation. By controlling spinodal decomposition parameters, ANPG models with preferentially aligned ligaments and INPG with random ligament orientation are constructed, spanning relative densities from 0.30 to 0.50. The ligament length and diameter of ANPG along the out-of-plane direction are twice those along other directions. Molecular dynamics simulations of tensile tests show that ANPG exhibits superior out-of-plane Young’s modulus and yield strength but reduced fracture strain compared to INPG. Crucially, ANPG maintains toughness comparable to INPG at relative densities below 0.4, offering an optimal strength-toughness balance for practical applications. Scaling law analysis demonstrates INPG follows classical bending-dominated Gibson-Ashby behavior, while ANPG exhibits a hybrid deformation mechanism with significant ligament stretching contribution. Atomic-scale analysis reveals that both structures develop dislocation-mediated plasticity initially, but ANPG transitions to localized ligament necking and fractures more rapidly, explaining its reduced ductility. Strain localization quantification, measured by atomic shear strain standard deviation, confirms the intensifier deformation concentration in ANPG at large plastic strain. These findings suggest anisotropic design as a powerful strategy for developing high-performance NPG for actuators, sensors, and catalytic systems where simultaneous mechanical robustness and functional performance are required. Full article
(This article belongs to the Special Issue Advances in Nanoindentation and Nanomechanics)
Show Figures

Figure 1

27 pages, 13809 KB  
Article
Full Orthotropic Mechanical Characterization of Pinus radiata Plywood Through Tensile, Compression and Shear Testing with Miniaturized Specimens
by Moisés Sandoval, Masoud Javadi, Paula Soto-Zúñiga, Juan Pablo Cárdenas-Ramírez, Michael Arnett, Angelo Oñate, Rodrigo Cancino, Erick I. Saavedra Flores and Víctor Tuninetti
Forests 2025, 16(11), 1676; https://doi.org/10.3390/f16111676 - 3 Nov 2025
Viewed by 324
Abstract
This study introduces and validates a miniaturized testing methodology for the complete orthotropic characterization of structural plywood, including out-of-plane directions that are typically difficult to access. Novel small-scale geometries were developed for tension and shear configurations, with compliance corrections applied to ensure accurate [...] Read more.
This study introduces and validates a miniaturized testing methodology for the complete orthotropic characterization of structural plywood, including out-of-plane directions that are typically difficult to access. Novel small-scale geometries were developed for tension and shear configurations, with compliance corrections applied to ensure accurate stress–strain responses. The method proved reliable and sensitive to mechanical differences arising from veneer architecture, adhesive type, and interfacial bonding. Two sets of 18 mm structural plywood panels—manufactured with distinct adhesive systems, one bio-based (F1) and one phenol-formaldehyde (F2)—were systematically tested under tensile, compressive, and shear loading in ten orthogonal configurations (Tx, Ty, Tz, Cx, Cy, Cz, τxy, τyx, τxz, τyz), following standards NCh 3617, EN 789, and ASTM B831. Tensile moduli were approximately twice the corresponding compressive values, while out-of-plane moduli reached only 6–11% of in-plane values. F1 exhibited higher stiffness in both tension and compression, particularly in transverse directions, due to thicker perpendicular veneers enhancing bending restraint and shear coupling. In contrast, F2 achieved greater peak shear strength owing to its more uniform veneer structure, which improved stress distribution and delayed interlaminar failure. Observed asymmetry between tension and compression reflected microstructural mechanisms such as fiber alignment and cell-wall buckling. The miniature-specimen data provide reliable input for constitutive calibration and finite-element modeling, while revealing clear links between veneer-thickness distribution, shear-transfer efficiency, and macroscopic performance. The proposed framework enables efficient, reproducible orthotropic characterization for optimized, lightweight, and carbon-efficient timber systems. Full article
Show Figures

Figure 1

21 pages, 64275 KB  
Article
Characterization on Mode-I/II Interlaminar Strength and Fracture Toughness of Co-Cured Fiber–Metal Laminates
by Mingjie Wang, Hongyi Hao, Qinghao Liu, Xinyue Miao, Ziye Lai, Tianqi Yuan, Guohua Zhu and Zhen Wang
Polymers 2025, 17(21), 2937; https://doi.org/10.3390/polym17212937 - 2 Nov 2025
Viewed by 459
Abstract
This study systematically evaluates the mode-I (opening) and mode-II (shearing) interlaminar strength and fracture toughness of four co-cured fiber–metal laminates (FMLs): AL–CF (aluminum–carbon fiber fabric), AL–GF (aluminum–glass fiber fabric), AL–HC (aluminum–carbon/glass hybrid fabric), and AL–HG (aluminum–glass/carbon hybrid fabric). Epoxy adhesive films were interleaved [...] Read more.
This study systematically evaluates the mode-I (opening) and mode-II (shearing) interlaminar strength and fracture toughness of four co-cured fiber–metal laminates (FMLs): AL–CF (aluminum–carbon fiber fabric), AL–GF (aluminum–glass fiber fabric), AL–HC (aluminum–carbon/glass hybrid fabric), and AL–HG (aluminum–glass/carbon hybrid fabric). Epoxy adhesive films were interleaved between metal and composite plies to enhance interfacial bonding. Mode-I interlaminar tensile strength (ILTS) and mode-II interlaminar shear strength (ILSS) were measured using curved beam and short beam tests, respectively, while mode-I and mode-II fracture toughness (GIc and GIIc) were obtained from double cantilever beam (DCB) and end-notched flexure (ENF) tests. Across laminates, interlaminar tensile strength (ILTS) values lie in a narrow band of 31.6–31.8 MPa and interlaminar shear strength (ILSS) values in 41.0–41.9 MPa. The mode-I initiation (GIc,init) and propagation (GIc, prop) toughnesses are 0.44–0.56 kJ/m2 and 0.54–0.64 kJ/m2, respectively, and the mode-II toughness (GIIc) is 0.65–0.79 kJ/m2. Scanning electron microscopy reveals that interlaminar failure localizes predominantly at the metal–adhesive interface, displaying river-line features under mode-I and hackle patterns under mode-II, whereas the adhesive–composite interface remains intact. Collectively, the results indicate that, under the present processing and test conditions, interlaminar strength and toughness are governed by the metal–adhesive interface rather than the composite reinforcement type, providing a consistent strength–toughness baseline for model calibration and interfacial design. Full article
Show Figures

Figure 1

14 pages, 5309 KB  
Article
Bimodal Microstructure and Strengthening Mechanisms of a Mg-RE Alloy Processed by Asymmetric Upsetting–Extrusion
by Nanjiang Chen, Bingchun Jiang, Yuze Xi, Lei Jing, Liwei Lu and Yiquan Li
Materials 2025, 18(21), 5001; https://doi.org/10.3390/ma18215001 - 1 Nov 2025
Viewed by 440
Abstract
This study successfully produced a magnesium alloy bar featuring a bimodal microstructure with high strength via an asymmetric upsetting–extrusion process. The evolution of microstructure, texture, and mechanical properties was systematically investigated using finite element simulation, room-temperature tensile tests, optical microscopy, scanning electron microscopy, [...] Read more.
This study successfully produced a magnesium alloy bar featuring a bimodal microstructure with high strength via an asymmetric upsetting–extrusion process. The evolution of microstructure, texture, and mechanical properties was systematically investigated using finite element simulation, room-temperature tensile tests, optical microscopy, scanning electron microscopy, and electron backscatter diffraction. Results demonstrate that the bimodal structure forms under the combined effects of shear deformation in the upsetting stage and low-speed, high-ratio deformation in the extrusion stage. This structure consists of coarse deformed grains containing high-density dislocations surrounded by fine dynamically recrystallized grains. A strong <10-10>//ED basal fiber texture also developed, which effectively suppresses basal slip. Continuous dynamic recrystallization was the primary grain refinement mechanism. The 370 °C extruded alloy achieved a high tensile strength of 457.9 MPa, but its elongation was limited to 3.96%. This combination of strength and ductility is attributed to the synergistic influence of the bimodal microstructure, strong basal texture, and high dislocation density. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 19254 KB  
Article
Hybrid Al6060/TiB2/Microsilica Composites Produced by Ultrasonically Assisted Stir Casting and Radial-Shear Rolling: Microstructural Evolution and Strength–Ductility Balance
by Maxat Abishkenov, Ilgar Tavshanov, Nikita Lutchenko, Kairosh Nogayev, Zhassulan Ashkeyev and Siman Kulidan
Eng 2025, 6(11), 298; https://doi.org/10.3390/eng6110298 - 1 Nov 2025
Viewed by 156
Abstract
We report a scalable route to hybrid aluminum matrix composites (AMCs) based on Al6060 (as-fabricated condition) reinforced with 2 wt.% TiB2 and 1 wt.% microsilica, fabricated by ultrasonically assisted stir casting (UASC) followed by radial-shear rolling (RSR). Premixing and preheating of powders [...] Read more.
We report a scalable route to hybrid aluminum matrix composites (AMCs) based on Al6060 (as-fabricated condition) reinforced with 2 wt.% TiB2 and 1 wt.% microsilica, fabricated by ultrasonically assisted stir casting (UASC) followed by radial-shear rolling (RSR). Premixing and preheating of powders combined with acoustic cavitation/streaming during UASC ensured uniform, non-sedimentary particle dispersion and low-defect cast billets. X-ray diffraction of the as-cast composite shows fcc-Al with weak TiB2 reflections and no reaction products; microsilica remains amorphous. Electron microscopy and EBSD after RSR reveal full erasure of cast dendrites, fine equiaxed grains, weakened texture, and a high fraction of high-angle boundaries due to the concurrent action of particle-stimulated nucleation (micron-scale TiB2) and Zener pinning/Orowan strengthening (50–350 nm microsilica). Mechanical testing shows that, in the cast state—comparing cast monolithic Al6060 to the cast hybrid-reinforced composite—yield strength (YS) increases from 61.7 to 77.2 MPa and ultimate tensile strength (UTS) from 103.4 to 130.7 MPa, without loss of ductility. After RSR to Ø16 mm (cumulated true strain ≈ 0.893), the hybrid attains YS 101.2 MPa, UTS 150.6 MPa, and elongation ≈ 22.0%, i.e., comparable strength to rolled Al6060 (UTS 145.1 MPa) while restoring/raising ductility by ~9.7 percentage points. Microhardness follows the same trend, increasing from 50.2 HV0.2 to 73.1 HV0.2 when comparing the base cast condition with the rolled hybrid. The route from UASC to RSR thus achieves a favorable mechanical strength–ductility balance using an economical, eco-friendly oxide/boride hybrid reinforcement, making it attractive for formable AMC bar and rod products. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

21 pages, 5241 KB  
Article
A Rigid–Flexible Coupling Gripper with High Grasping Adaptability
by Yigen Wu, Xuejia Huang, Yubo Hu, Bingnan Guo, Zikang Wu, Yuhang Chen, Xueqi Hu and Ruyi Du
Actuators 2025, 14(11), 529; https://doi.org/10.3390/act14110529 - 31 Oct 2025
Viewed by 305
Abstract
Nowadays, grippers are extensively employed to interact with dynamic and variable objects. Therefore, enhancing the adaptability of grippers is crucial for improving production efficiency and product quality. To address the trade-off between load capacity and interaction safety in rigid and soft grippers, this [...] Read more.
Nowadays, grippers are extensively employed to interact with dynamic and variable objects. Therefore, enhancing the adaptability of grippers is crucial for improving production efficiency and product quality. To address the trade-off between load capacity and interaction safety in rigid and soft grippers, this paper proposes a rigid–flexible coupling gripper with high grasping adaptability based on an underactuated structure. We conduct static analysis on the underactuated mechanism, followed by dimensional optimization using a genetic algorithm. After optimization, the grasping force error at each knuckle is reduced to 2 N, and the total grasping force reaches 38 N. The soft actuators, integrated with a rigid framework, not only increase the contact area during grasping but also mitigate the excessive concentration of contact forces, significantly improving the compliance of the gripper. Additionally, to tackle the issue of weak interfacial bonding strength caused by rigidity mismatch between rigid components and soft materials, this paper proposes a novel method of applying embedded microstructures to enhance the interfacial toughness of rigid–flexible coupling. The elastic deformation of these microstructures ensures strong interfacial connection strength both under tensile and shear stresses. Lastly, a robotic grasping platform is developed to carry out diverse grasping experiments. Experimental results show that the underactuated linkage mechanism and the flexible structure can collaboratively adjust grasping strategies when handling objects of various types, enabling stable manipulation while preventing object damage. This design effectively expands the operational applicability of the gripper. Full article
(This article belongs to the Special Issue Soft Robotics: Actuation, Control, and Application)
Show Figures

Figure 1

15 pages, 17825 KB  
Article
Study on Tensile Mechanical Behavior and Crack Propagation Mechanism of Yellow Sandstone Containing Randomly Distributed Fissures
by Zhimin Sun and Yaoyao Meng
Processes 2025, 13(11), 3462; https://doi.org/10.3390/pr13113462 - 28 Oct 2025
Viewed by 315
Abstract
To address the complexity of tensile mechanical behavior in fissured rock masses, this study conducted Brazilian splitting tests and numerical simulations on yellow sandstone containing randomly distributed fissures. Based on secondary development of the ABAQUS platform, a numerical model considering the spatial distribution [...] Read more.
To address the complexity of tensile mechanical behavior in fissured rock masses, this study conducted Brazilian splitting tests and numerical simulations on yellow sandstone containing randomly distributed fissures. Based on secondary development of the ABAQUS platform, a numerical model considering the spatial distribution of mineral components was established. A random fissure network was generated using the Weibull distribution, and crack propagation was characterized by employing cohesive elements. The influence mechanisms of the fissure inclination angle (θ = 0°~90°) and fissure ratio (R = 3~15%) on Brazilian tensile strength, failure mode, and crack propagation were systematically analyzed. The research demonstrates the following: (1) Brazilian tensile strength exhibits an overall decreasing trend with an increasing fissure ratio, while the effect of the fissure inclination angle is non-monotonic: at a low fissure ratio (R = 3%), Brazilian tensile strength shows a “decrease–increase–decrease” characteristic; at a medium to high fissure ratio (R ≥ 9%), Brazilian tensile strength continuously increases with an increasing fissure inclination angle. (2) The fissure ratio dominates the deviation of the failure path (deviation intensifies when θ ≤ 67.5° and is minimal at θ = 90°). At the mesoscale, the proportion of tensile cracks increases with an increasing R, while the contribution of shear cracks significantly enhances with an increasing θ (sharply increasing after θ > 45°). (3) Crack propagation is controlled by the spatial interaction of initial cracks. Under the combined action of a high inclination angle (θ = 90°) and high fissure ratio (R = 15%), a tensile–shear composite failure pattern forms, characterized by dual-source crack initiation and central coalescence. This study provides a mesoscale mechanical basis for the stability assessment of engineering structures in fissured rock masses. Full article
Show Figures

Figure 1

14 pages, 6050 KB  
Article
On Combined Tensile-Shear Performance of Laser-Welded Dissimilar Overlap Joints Made of Austenitic Stainless Steel and Low-Carbon Steel
by Patricia Santos, Mihaela Iordachescu, Maricely De Abreu, Andrés Valiente and Elena Scutelnicu
J. Manuf. Mater. Process. 2025, 9(11), 351; https://doi.org/10.3390/jmmp9110351 - 27 Oct 2025
Viewed by 378
Abstract
This paper addresses the mechanical characterization of dissimilar overlap joints made by autogenous laser welding between thin sheets of low-carbon steel (CS) and austenitic stainless steel (SS) with an optimized welding technology able to produce sound overlap joints. This involved applying the laser [...] Read more.
This paper addresses the mechanical characterization of dissimilar overlap joints made by autogenous laser welding between thin sheets of low-carbon steel (CS) and austenitic stainless steel (SS) with an optimized welding technology able to produce sound overlap joints. This involved applying the laser beam from the CS-side to reduce the SS overheating. The research is focused on the analysis of combined tensile-shear behavior of the weld and of the heat-affected zones. During testing, the applied tensile-shear load rotates the weld connecting the CS and SS plates. The rotation angle transmitted to the free ends of the plates, together with relevant strain fields, were measured by using a digital image correlation system, VIC-2D. Thus, it was found that the weld acts as a non-linear hinge which experiences a sudden loss of stiffness when strain concentrations develop from the weld ligament edges towards the loaded sides of the plates. The welded joint fails by yielding localization and necking in the CS plate, far from the weld. This mode of failure is a consequence of the weld and heat-affected zone strength mismatches of 1.09 and 1.33, respectively. These values are consistent with the hardness profile and the documented microstructural heterogeneities. Full article
(This article belongs to the Special Issue Progress in Laser Materials Processing)
Show Figures

Figure 1

11 pages, 4988 KB  
Article
Study on the Fracture Characteristics and Mechanisms of Iron Ore Under Dynamic Loading
by Yilin Tian, Peng Xu, Hua Li, Junjie Li, Shiqing Zhou, Yanting Chen, Xuyang Chang and Zhibo Lin
Processes 2025, 13(11), 3436; https://doi.org/10.3390/pr13113436 - 26 Oct 2025
Viewed by 280
Abstract
The dynamic fracture process of iron ore under blast loading is an important manifestation of ore fragmentation. To investigate the dynamic fracturing process of iron ore, Hopkinson bar experiments were conducted under different impact loads. The results indicate that under low strain rates, [...] Read more.
The dynamic fracture process of iron ore under blast loading is an important manifestation of ore fragmentation. To investigate the dynamic fracturing process of iron ore, Hopkinson bar experiments were conducted under different impact loads. The results indicate that under low strain rates, the dynamic stress–strain curve of iron ore exhibits compaction, elastic, and failure stages. However, as the strain rate increases, the compaction stage becomes less distinct, while the elastic modulus decreases and the failure strength increases, indicating the material toughness was enhanced at high strain rate. Moreover, under high strain rates, a significant increase in shear strain promotes the formation of tensile–shear cracks in the ore. In addition, based on the fragmentation of iron ore at different impact pressure, there exists a certain impact pressure, at which the proportion of large fragments decreases only slightly, while the amount of small fragments increases markedly. These findings provide important insights for optimizing fragmentation and improving blasting effectiveness. Full article
Show Figures

Figure 1

21 pages, 6101 KB  
Article
The Mechanism of Microstructure Refinement and the Synergistic Strength–Ductility Enhancement in Al–Zn–Mg–Cu Alloys Processed by Continuous Rheo-Extrusion
by Ziren Wang, Jiazhi An, Mei Xu, Haixia Zhang, Guoli Wei, Chengliang Yang, Zhenpeng Wei, Wenzheng Shen and Wanwu Ding
Metals 2025, 15(11), 1167; https://doi.org/10.3390/met15111167 - 23 Oct 2025
Viewed by 302
Abstract
Al–Zn–Mg–Cu alloys are well known for their outstanding strength, toughness, and corrosion resistance, arising from the balanced addition of Mg, Zn, and Cu. However, conventional casting methods often lead to grain boundary segregation and the formation of coarse Fe-rich phases, which severely limit [...] Read more.
Al–Zn–Mg–Cu alloys are well known for their outstanding strength, toughness, and corrosion resistance, arising from the balanced addition of Mg, Zn, and Cu. However, conventional casting methods often lead to grain boundary segregation and the formation of coarse Fe-rich phases, which severely limit subsequent heat treatment and plastic processing. To overcome these drawbacks, this study systematically investigates the effects of the Continuous Rheo-Extrusion (CRE) process on the microstructure and mechanical performance of Al–Zn–Mg–Cu alloys using XRD, EBSD, SEM, and TEM analyses. The CRE process refines the average grain size from 53.5 μm to 16.1 μm and raises the fraction of high-angle grain boundaries to 88.8%. Moreover, coarse Fe-rich phases are fragmented to below 5 μm, while the elemental distribution of Zn, Mg, and Cu becomes more homogeneous, effectively reducing grain boundary segregation. The Al2Cu precipitates are refined from 106.3 nm to 11.7 nm, corresponding to an 88.9% size reduction. These microstructural optimizations yield a remarkable increase in tensile strength (from 204.7 ± 23.7 MPa to 338.0 ± 9.3 MPa) and elongation (from 11.4 ± 2.4% to 13.8 ± 1.3%). Quantitative analysis confirms that dislocation and precipitation strengthening are the dominant contributors to this improvement. Overall, the CRE process enhances microstructural uniformity through the synergistic effects of shear deformation, continuous dynamic recrystallization (CDRX), and dynamic precipitation, thereby providing a solid theoretical and practical foundation for short-process fabrication of high-strength, high-ductility Al–Zn–Mg–Cu alloys. Full article
Show Figures

Figure 1

16 pages, 3381 KB  
Article
Strut-and-Tie Modeling of Intraply Hybrid Composite-Strengthened Deep RC Beams
by Ferit Cakir and Muhammed Alperen Ozdemir
Buildings 2025, 15(21), 3810; https://doi.org/10.3390/buildings15213810 - 22 Oct 2025
Viewed by 288
Abstract
This study presents a strut-and-tie modeling (STM) framework for reinforced concrete (RC) deep beams strengthened with intraply hybrid composites (IRCs), integrating comprehensive experimental data from beams with three different span lengths (1.0 m, 1.5 m, and 2.0 m). Although the use of fiber-reinforced [...] Read more.
This study presents a strut-and-tie modeling (STM) framework for reinforced concrete (RC) deep beams strengthened with intraply hybrid composites (IRCs), integrating comprehensive experimental data from beams with three different span lengths (1.0 m, 1.5 m, and 2.0 m). Although the use of fiber-reinforced polymers (FRPs) for shear strengthening of RC members is well established, limited attention has been given to the development of STM formulations specifically adapted for hybrid composite systems. In this research, three distinct IRC configurations—Aramid–Carbon (AC), Glass–Aramid (GA), and Carbon–Glass (CG)—were applied as U-shaped jackets to RC beams without internal transverse reinforcement and tested under four-point bending. All experimental data were derived from the authors’ previous studies, ensuring methodological consistency and providing a robust empirical basis for model calibration. The proposed modified STM incorporates both the axial stiffness and effective strain capacity of IRCs into the tension tie formulation, while also accounting for the enhanced diagonal strut performance arising from composite confinement effects. Parametric evaluations were conducted to investigate the influence of the span-to-depth ratio (a/d), composite configuration, and failure mode on the internal force distribution and STM topology. Comparisons between the STM-predicted shear capacities and experimental results revealed excellent correlation, particularly for deep beams (a/d = 1.0), where IRCs substantially contributed to the shear transfer mechanism through active tensile engagement and confinement. To the best of the authors’ knowledge, this is the first study to formulate and validate a comprehensive STM specifically designed for RC deep beams strengthened with IRCs. The proposed approach provides a unified analytical framework for predicting shear strength and optimizing the design of composite-strengthened RC structures. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop