Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,072)

Search Parameters:
Keywords = tin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 9923 KB  
Article
Analysis of Hydrodynamic Behavior of the Floating Tapered Trash Intercepting Net in Currents
by Gangjie Yu, Zhenzhou Sun, Zhendong Lin, Tiaojian Xu and Mingxiao Xie
Water 2025, 17(22), 3216; https://doi.org/10.3390/w17223216 - 11 Nov 2025
Abstract
Ensuring the structural reliability and interception efficiency of trash-intercepting nets (TINs) is crucial for the security of the water withdrawal engineering of the nuclear power station (NPS). The numerical model of a flexible TIN using the lumped mass method was developed, and its [...] Read more.
Ensuring the structural reliability and interception efficiency of trash-intercepting nets (TINs) is crucial for the security of the water withdrawal engineering of the nuclear power station (NPS). The numerical model of a flexible TIN using the lumped mass method was developed, and its high accuracy in simulating the tension distribution of the net and its deformation was validated through physical model tests. A systematic analysis was performed to investigate the effect of key parameters (i.e., water depth, intercepting rate, and diameter of longitudinal/transversal ropes) on the structural response, including the total anchor force, the main cable tension, the rope tension, and the netting tension. The results show that the tension forces acting on the transversal ropes are dramatically larger than those acting on the longitudinal ropes, and the net experiences the smallest tension force when the diameter of transversal ropes is the same as the diameter of the longitudinal ropes. This study is useful for the safety design of the TIN of the NPS. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

18 pages, 4490 KB  
Article
Influence of Layer Configuration on the Mechanical, Tribological and Corrosion Performance of Ti/TiN Multilayer Coatings
by Zarina Aringozhina, Nurtoleu Magazov, Bauyrzhan Rakhadilov, Yelaman Batanov, Ainur Serikbaikyzy and Arystanbek Kussainov
Coatings 2025, 15(11), 1313; https://doi.org/10.3390/coatings15111313 - 11 Nov 2025
Abstract
This study investigates the influence of multilayer architecture on the mechanical, corrosion, and tribological properties of Ti/TiN coatings deposited on biomedical Ti-6Al-4V alloy. Nine multilayer configurations were prepared by DC/RF magnetron sputtering using metallic Ti and ceramic TiN targets, with a fixed TiN/Ti [...] Read more.
This study investigates the influence of multilayer architecture on the mechanical, corrosion, and tribological properties of Ti/TiN coatings deposited on biomedical Ti-6Al-4V alloy. Nine multilayer configurations were prepared by DC/RF magnetron sputtering using metallic Ti and ceramic TiN targets, with a fixed TiN/Ti ratio of 3:1 and varying total numbers of layers (3, 5, and 7) and deposition times (30, 60, and 120 min). A strict application of the 10% indentation depth rule was implemented to eliminate substrate effects, which revealed significantly higher intrinsic hardness values (540–740 HV) and indentation moduli (124–143 GPa) compared to the substrate (353 HV; 114 GPa). In contrast, conventional higher-load testing underestimated coating performance due to substrate dominance. Among the investigated architectures, the Ti/TiN-7 configuration exhibited the best balance of properties, combining high hardness (~690 HV), modulus (~137 GPa), improved corrosion resistance (Ecorr up to −0.13 V, Icorr reduced by an order of magnitude), and stable abrasive wear behavior. These findings demonstrate that both bilayer number and deposition time critically determine the mechanical and functional response of Ti/TiN multilayers. The results provide practical guidelines for the reliable characterization and design of multilayer coatings for biomedical and aerospace applications. Full article
(This article belongs to the Section Tribology)
Show Figures

Figure 1

20 pages, 1740 KB  
Review
The Pathogenesis, Potential Biomarkers and Novel Therapeutic Strategies for Tubulointerstitial Nephritis in Systemic Lupus Erythematosus—A Narrative Review
by Chang-Youh Tsai, Tsai-Hung Wu, Shuo-Ming Ou, Hui-Ting Lee, Chieh-Yu Shen, Cheng-Hsun Lu, Wan-Hao Tsai and Chia-Li Yu
Int. J. Mol. Sci. 2025, 26(22), 10903; https://doi.org/10.3390/ijms262210903 - 10 Nov 2025
Abstract
Kidney diseases in patients with SLE include glomerulonephritis (GN), tubulointerstitial nephritis (TIN) and vasculitis alone or in combination. Immune complex (IC) deposition with complement activation in renal glomeruli causes lupus GN. However, IC deposition can also occur in the tubular basement membrane, renal [...] Read more.
Kidney diseases in patients with SLE include glomerulonephritis (GN), tubulointerstitial nephritis (TIN) and vasculitis alone or in combination. Immune complex (IC) deposition with complement activation in renal glomeruli causes lupus GN. However, IC deposition can also occur in the tubular basement membrane, renal interstitium, peritubular capillaries and arteries/arterioles to elicit inflammatory responses. TIN is usually associated with more severe GN with inflammation induced by IC. Immunopathologically, the aberrant presentation of T cell subpopulations, Th1, Th2, Th9, Th17, Treg and follicular T helper cells (Tfh), is closely implicated in TIN in SLE. In addition, M1/M2 macrophages and more specific dendritic cells (DCs) contribute to the inflammatory reactions of SLE-TIN. TIN may also present alone (isolated TIN) in apparently normal glomeruli or class I GN. It is intriguing that lupus nephritis constitutes two different pathological predilections, i.e., GN and tubulointerstitial inflammation. Alternatively, these two types may represent a continuous spectrum of inflammatory renal damages. In the present review, we will discuss in detail the pathology/immunopathogenesis, likely specific biomarkers/predictors and novel therapeutic designs for SLE-tubulointerstitial inflammation. In addition, we also raise several plausible investigation methods in SLE-tubulointerstitial inflammation that may help further elucidate this setting of perplexing renal diseases with rheumatic characteristics. Full article
(This article belongs to the Special Issue Dialogue Between Inflammation and Immunity: From Mechanism to Therapy)
Show Figures

Figure 1

18 pages, 875 KB  
Article
Ultrasound-Assisted Extraction: Unlocking the Antibacterial Potential of Coptis chinensis Franch. Against ESBL-Producing Enterobacterales
by Ching Ching Hui, Fred Wang Fat Lee, Wesley Chin Ho Lung, Kai Chung Fan, Ivan Tak Fai Wong, Gilman Kit Hang Siu, Yeuk Lung Chow, Ping Lung Chan, Siu-Mui Ng, Ling Shi, Sai Wang Seto, Franklin Wang Ngai Chow and Emily Wan Ting Tam
Molecules 2025, 30(22), 4331; https://doi.org/10.3390/molecules30224331 - 7 Nov 2025
Viewed by 220
Abstract
The global rise of multidrug-resistant Extended Spectrum β-Lactamase Producing-Enterobacterales (ESBL-PE) poses a critical threat to public health, driving the urgent need for alternative therapeutic approaches. This study evaluates the antimicrobial properties of 20 Chinese medicinal herbs against 14 ESBL-PE strains from seven [...] Read more.
The global rise of multidrug-resistant Extended Spectrum β-Lactamase Producing-Enterobacterales (ESBL-PE) poses a critical threat to public health, driving the urgent need for alternative therapeutic approaches. This study evaluates the antimicrobial properties of 20 Chinese medicinal herbs against 14 ESBL-PE strains from seven bacterial species, utilizing three extraction methods: traditional water decoction, 80% ethanol maceration, and 50% ethanol with ultrasound-assisted extraction (UAE). Among the herbs tested, Coptis chinensis Franch. demonstrated the most potent anti-ESBL-PE activity, effectively inhibiting multiple strains, including Escherichia coli, Klebsiella pneumoniae, Hafnia alvei, Citrobacter freundii and Proteus hauseri. C. chinensis extracts obtained via UAE exhibited superior antibacterial activity to the other two extraction methods, attributed to enhanced extraction efficiency and improved bioactive compound yields. Specifically, UAE increased the extraction yield of alkaloids in C. chinensis by 80.9%, compared to the ethanol maceration method, and the increase in berberine, the key antimicrobial compound, was 75.4%. Berberine demonstrated significant antibacterial effects against ESBL-PE strains, while other phytochemicals in C. chinensis extracts have an additional effect with berberine, further amplifying the overall antimicrobial activity. These findings highlight that the UAE is a promising method for enhancing the therapeutic potential of C. chinensis and other Chinese medicinal herbs against multidrug-resistant bacteria. Full article
Show Figures

Figure 1

17 pages, 17322 KB  
Article
Effect of Annealing Process on Microstructure and Properties of Tin Bronze/Steel Bimetallic
by Zhangyong Yu and Chen Chen
Crystals 2025, 15(11), 961; https://doi.org/10.3390/cryst15110961 - 7 Nov 2025
Viewed by 179
Abstract
Tin bronze/steel bimetallic is a widely utilized industrial material in the field of sliding bearing applications. Arc cladding technology represents an emerging method for fabricating tin bronze/steel bimetallic materials; however, research on their microstructure and mechanical properties remains limited. This study investigates the [...] Read more.
Tin bronze/steel bimetallic is a widely utilized industrial material in the field of sliding bearing applications. Arc cladding technology represents an emerging method for fabricating tin bronze/steel bimetallic materials; however, research on their microstructure and mechanical properties remains limited. This study investigates the microstructural characteristics and mechanical behavior of tin bronze/steel bimetallic materials produced via the arc cladding process, with particular emphasis on the effects of annealing treatment on these properties. The tin bronze layer consists of a fine-grained zone, a columnar dendritic zone, and a freely dendritic zone. The tin bronze/steel bimetallic material exhibits high mechanical strength and strong interfacial bonding. Nevertheless, during three-point bending tests, cracks are observed in the tin bronze layer. When annealed at temperatures ranging from 300 °C to 700 °C, the tensile strength, shear strength, and hardness of the material decrease, while the elongation increases significantly. Moreover, no cracking occurs during three-point bending tests. Upon reaching an annealing temperature of 800 °C, the overall mechanical performance deteriorates rapidly. An annealing temperature of 300 °C is identified as an optimal parameter for achieving favorable mechanical properties. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

23 pages, 4766 KB  
Article
Synergistic Integration of Graphene Nanoparticles in Colloidal TiO2 for Grätzel Cells (DSSC)
by Luigi Madeo, Anastasia Macario, Peppino Sapia and Pierantonio De Luca
J. Compos. Sci. 2025, 9(11), 612; https://doi.org/10.3390/jcs9110612 - 6 Nov 2025
Viewed by 132
Abstract
This study presents the development and characterization of Grätzel cells (DSSCs), part of third-generation photovoltaic technologies, fabricated with and without the addition of graphene nanoparticles. A TiO2 paste was prepared by combining colloidal solutions of Polyethylene Glycol (PEG) and Titanium Tetrachloride (TiCl [...] Read more.
This study presents the development and characterization of Grätzel cells (DSSCs), part of third-generation photovoltaic technologies, fabricated with and without the addition of graphene nanoparticles. A TiO2 paste was prepared by combining colloidal solutions of Polyethylene Glycol (PEG) and Titanium Tetrachloride (TiCl4), and then deposited on FTO (Fluorine-doped Tin Oxide) glass substrates via spin coating and sensitized with N719 dye. Each cell was assembled using two FTO electrodes, a photoanode (TiO2/N719) and a platinum-coated counter electrode, separated by a liquid iodide/triiodide-based electrolyte to complete the redox cycle. The core objective was to optimize the graphene nanoparticle concentration within the TiO2 matrix to improve photovoltaic performance. Samples with 0.1%, 0.2%, and 0.5% graphene were tested under simulated illumination (AM 1.5G), evaluating photocurrent, efficiency, and Fill Factor (FF). Optical analysis included desorption of N719 using NaOH to quantify intrinsic light absorption. Graphene’s high transparency and charge transport properties positively affected light harvesting. Results showed that graphene dosage is critical; 0.1% yielded the best efficiency, while excess concentrations diminished electronic and optical behavior. Controlled integration of graphene nanoparticles enhances DSSC performance and supports the development of more efficient and sustainable solar cells. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

23 pages, 6717 KB  
Article
Crystalline Nanoparticles and Their Impact on Electromagnetic Radiation Absorption in Advanced Clay Building Materials
by Jelena Brdarić Kosanović, Berislav Marković, Ivana Miličević, Anamarija Stanković and Dalibor Tatar
Crystals 2025, 15(11), 959; https://doi.org/10.3390/cryst15110959 - 6 Nov 2025
Viewed by 213
Abstract
Given the increasing human exposure to electromagnetic radiation of various frequen-cies, mostly in the microwave range, awareness of potential health problems caused by this radiation has begun to grow. New building materials are being developed and tested to prevent or limit the penetration [...] Read more.
Given the increasing human exposure to electromagnetic radiation of various frequen-cies, mostly in the microwave range, awareness of potential health problems caused by this radiation has begun to grow. New building materials are being developed and tested to prevent or limit the penetration of microwave radiation, especially those frequencies that are used in mobile telephony. In contrast with the majority of the available literature on the investigation of concrete (cement) materials, in this paper, clay composite materials with the addition of nanoparticles of antimony(III)–tin(IV) oxide, zinc ferrite, iron(III) oxide, and two crystal modifications of titanium dioxide (rutile and anatase) were prepared in order to examine their effect on the absorption of electro-magnetic radiation. Nanomaterials are characterized by different physical and chemical methods. Specific surface area (B.E.T.), thermal properties (TGA/DSC), phase composition (PXRD), morphology (SEM), and chemical and mineralogical composition (EDX, and ED–XRF,) were determined. Thermal conductivity of clay composites was tested, and these materials showed a positive effect on the thermal conductivity (λ) of the composite: a reduction of 10–33%. The reflection and transmission coefficients of microwave radiation in the frequency range used in mobile telephony (1.5–4.0 GHz) were determined. From these data, the absolute value of radiation absorption in the materials was calculated. The results showed that the addition of the tested nanomaterials in a mass fraction of 3 to 5 wt.% significantly increases the absorption (reduces the penetration) of microwave radiation. Two nanomaterials, Sb2O3·SnO2 and TiO2 (rutile), have proven to be particularly effective: the reduction in transmission is 30–50%. The results of the test were correlated with the crystal structures of the examined nanomaterials. The inclusion of titanium dioxide and antimony-doped tin oxide into the clay led to a significant enhancement in microwave electromagnetic radiation absorption, which can be attributed to their interaction with the dielectric and conductive phases present in clay-based building materials. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 9035 KB  
Article
Nanostructured Ge-Based Glass Coatings for Sustainable Greenhouse Production: Balancing Light Transmission, Energy Harvesting, and Crop Performance
by Božidar Benko, Krešimir Salamon, Ivana Periša, Sanja Fabek Uher, Sanja Radman, Nevena Opačić and Maja Mičetić
Agronomy 2025, 15(11), 2559; https://doi.org/10.3390/agronomy15112559 - 5 Nov 2025
Viewed by 423
Abstract
Greenhouse horticulture is an energy-intensive production system that requires innovative solutions to reduce energy demand without compromising crop yield or quality. Functional greenhouse covers are particularly promising, as they regulate solar radiation while integrating energy-harvesting technologies. In this study, six nanostructured glass coatings [...] Read more.
Greenhouse horticulture is an energy-intensive production system that requires innovative solutions to reduce energy demand without compromising crop yield or quality. Functional greenhouse covers are particularly promising, as they regulate solar radiation while integrating energy-harvesting technologies. In this study, six nanostructured glass coatings incorporating semiconductor-based quantum dots (QDs) and quantum wires (QWs) of Ge and TiN are developed using magnetron sputtering—an industrially scalable technique widely applied in smart window and energy-efficient glass manufacturing. The coatings’ optical properties are characterized in the laboratory, and their agronomic performance is evaluated in greenhouse trials with lamb’s lettuce (Valerianella locusta) and radish (Raphanus sativus). Plant growth, yield, and leaf color (CIELAB parameters) are analyzed in relation to spectral transmission and the daily light integral (DLI). Although uncoated horticultural glass achieves the highest yields, several Ge-QD coatings provide favorable compromises by selectively absorbing non-photosynthetically active radiation (non-PAR) while maintaining acceptable crop performance. These results demonstrate that nanostructured coatings can simultaneously sustain crop growth and enable solar energy conversion, offering a practical pathway toward energy-efficient and climate-smart greenhouse systems. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

18 pages, 7443 KB  
Article
Generating Accurate Activity Patterns for Cattle Farm Management Using MCMC Simulation of Multiple-Sensor Data System
by Yukie Hashimoto, Thi Thi Zin, Pyke Tin, Ikuo Kobayashi and Hiromitsu Hama
Sensors 2025, 25(21), 6781; https://doi.org/10.3390/s25216781 - 5 Nov 2025
Viewed by 347
Abstract
This paper presents a novel Markov Chain Monte Carlo (MCMC) simulation model for analyzing multi-sensor data to enhance cattle farm management. As Precision Livestock Farming (PLF) systems become more widespread, leveraging data from technologies like 3D acceleration, pneumatic, and proximity sensors is crucial [...] Read more.
This paper presents a novel Markov Chain Monte Carlo (MCMC) simulation model for analyzing multi-sensor data to enhance cattle farm management. As Precision Livestock Farming (PLF) systems become more widespread, leveraging data from technologies like 3D acceleration, pneumatic, and proximity sensors is crucial for deriving actionable insights into animal behavior. Our research addresses this need by demonstrating how MCMC can be used to accurately model and predict complex cattle activity patterns. We investigate the direct impact of these insights on optimizing key farm management areas, including feed allocation, early disease detection, and labor scheduling. Using a combination of controlled monthly experiments and the analysis of uncontrolled, real-world data, we validate our proposed approach. The results confirm that our MCMC simulation effectively processes diverse sensor inputs to generate reliable and detailed behavioral patterns. We find that this data-driven methodology provides significant advantages for developing informed management strategies, leading to improvements in the overall efficiency, productivity, and profitability of cattle operations. This work underscores the potential of using advanced statistical models like MCMC to transform multi-sensor data into tangible improvements for modern agriculture. Full article
(This article belongs to the Special Issue Sensors and Data-Driven Precision Agriculture—Second Edition)
Show Figures

Figure 1

8 pages, 1453 KB  
Short Note
8,8′-Dichloro-2,2,2′,2′-tetraethyl-4,4′-bibenzo[1,3,6,2]dioxazastannocinylidene
by Irina N. Meshcheryakova, Ilya A. Yakushev, Anton V. Cherkasov, Maxim V. Arsenyev, Anastasiya V. Klimashevskaya, Dmitriy S. Kolevatov and Alexandr V. Piskunov
Molbank 2025, 2025(4), M2083; https://doi.org/10.3390/M2083 - 4 Nov 2025
Viewed by 158
Abstract
Upon the reaction of glyoxal-bis(2-hydroxy-5-chlorophenyl)imine LH2 with diethyltin dichloride in the presence of a base (Et3N) in DMSO, the 1D-coordination polymer 1 was obtained, in which formally the L’(SnEt2)2 fragment acts as a monomeric unit. It was [...] Read more.
Upon the reaction of glyoxal-bis(2-hydroxy-5-chlorophenyl)imine LH2 with diethyltin dichloride in the presence of a base (Et3N) in DMSO, the 1D-coordination polymer 1 was obtained, in which formally the L’(SnEt2)2 fragment acts as a monomeric unit. It was found that during the reaction, the initial ligand L undergoes transformation in the tin atom’s coordination sphere. This transformation results in the formation of a new ditopic 1,4-bis((5-chloro-2-oxidophenyl)imino)but-2-ene-2,3-bis(olate) ligand L’. The structure of the resulting complex 1 was examined by single-crystal X-ray diffraction analysis, elemental analysis, IR, and UV spectroscopy. Full article
Show Figures

Figure 1

13 pages, 4355 KB  
Article
Re-Discovery of a Unique Pewter Flask from Sacred Well of Santa Cristina in Paulilatino (Sardinia, Italy)
by Anna Depalmas, Roberta Iannaccone and Antonio Brunetti
Heritage 2025, 8(11), 461; https://doi.org/10.3390/heritage8110461 - 4 Nov 2025
Viewed by 227
Abstract
This study reports the discovery, contextualization, and archaeometric analysis of a unique metal pilgrim flask recovered from the sacred well of Santa Cristina (Paulilatino, Sardinia, Italy), a major sanctuary complex of the Nuragic period. Misidentified for several decades following its 20th-century excavation, the [...] Read more.
This study reports the discovery, contextualization, and archaeometric analysis of a unique metal pilgrim flask recovered from the sacred well of Santa Cristina (Paulilatino, Sardinia, Italy), a major sanctuary complex of the Nuragic period. Misidentified for several decades following its 20th-century excavation, the object has now been reinterpreted as a nearly intact, full-scale pilgrim flask manufactured from pewter—a material previously unrecorded in Sardinian protohistoric contexts. Typological comparison with related artefacts from the Levant, Cyprus, and Etruria reveals close formal and morphological affinities with Sardinian ceramic flasks and, in particular, with miniature bronze flasks documented in Nuragic and Villanovan assemblages. The morphological congruence suggests that the Santa Cristina vessel may have functioned as a prototype or symbolic referent for these miniature exemplars. The associated presence of eastern Mediterranean-style figurines and other imported materials further underscores the sanctuary’s involvement in elite ritual practices and participation in long-distance exchange networks. From a technological perspective, selected areas of the vessel were investigated using non-destructive Energy-Dispersive X-Ray Fluorescence (EDXRF) analysis, supported by Monte Carlo simulation of the in situ measurements, and External Reflectance Fourier-Transform Infrared (ER-FTIR) spectroscopy. The combined results indicate a pewter alloy characterized by elevated tin and lead contents, confirming the object’s exceptional technological status within the Sardinian protohistoric metallurgical repertoire. Full article
(This article belongs to the Section Archaeological Heritage)
Show Figures

Graphical abstract

15 pages, 2177 KB  
Article
Platinum Nanoparticles Supported on Atomic Layer Deposited SnO2 Decorated Multiwalled Carbon Nanotubes as the Electrocatalyst for the Oxygen Reduction Reaction
by Raegan Chambers, Aivar Tarre, Markus Otsus, Jekaterina Kozlova, Kaupo Kukli, Arvo Kikas, Vambola Kisand, Heiki Erikson and Kaido Tammeveski
Catalysts 2025, 15(11), 1052; https://doi.org/10.3390/catal15111052 - 4 Nov 2025
Viewed by 391
Abstract
Tin(IV) oxide (SnO2) was deposited onto acid-washed multiwalled carbon nanotubes (MWCNTs) to be used as a support for platinum nanoparticles (PtNPs). The effect of the SnO2–CNT support on the electrocatalytic activity of the PtNPs for the oxygen reduction reaction [...] Read more.
Tin(IV) oxide (SnO2) was deposited onto acid-washed multiwalled carbon nanotubes (MWCNTs) to be used as a support for platinum nanoparticles (PtNPs). The effect of the SnO2–CNT support on the electrocatalytic activity of the PtNPs for the oxygen reduction reaction (ORR) in 0.1 M HClO4 solution was investigated. The physical characterization of the catalyst confirms the presence of Pt, Sn and C on the catalyst as well as the presence of the PtNPs on SnO2. The synthesized catalyst possesses a specific activity of 0.15 mA cm−2 at 0.9 V, while the commercial Pt/C catalyst showed a specific activity of 0.05 mA cm−2. Accelerated durability testing (ADT) was performed on both catalysts, with the synthesized PtNP/SnO2–CNT catalyst retaining over 50% of its initial electrochemically active surface area (ECSA). Thus, the results obtained in this study confirm the positive influence of SnO2-decorated CNTs on the overall electrocatalytic activity of PtNPs and their stability toward the ORR. Full article
(This article belongs to the Special Issue Catalysis by Metals and Metal Oxides)
Show Figures

Figure 1

11 pages, 1279 KB  
Article
Indium Tin Oxide-Based Voltammetric Biosensor for the Detection of Antibodies Against the SARS-CoV-2 Virus Spike Protein
by Greta Zvirzdine, Maryia Drobysh, Almira Ramanaviciene, Vilma Ratautaite, Sarunas Zukauskas, Migle Stanciauskaite, Ieva Plikusiene and Arunas Ramanavicius
Sensors 2025, 25(21), 6737; https://doi.org/10.3390/s25216737 - 4 Nov 2025
Viewed by 318
Abstract
This study aims to propose a plausible application of a novel electrochemical biosensing system for detecting antibodies against SARS-CoV-2 (anti-rS) in serum samples. The uniqueness of this study lies in the biosensor utilizing recombinant spike glycoprotein (SCoV2-rS) immobilized on an indium tin oxide [...] Read more.
This study aims to propose a plausible application of a novel electrochemical biosensing system for detecting antibodies against SARS-CoV-2 (anti-rS) in serum samples. The uniqueness of this study lies in the biosensor utilizing recombinant spike glycoprotein (SCoV2-rS) immobilized on an indium tin oxide (ITO) electrode modified with (3-aminopropyl)triethoxysilane (APTES). The electrochemical performance was evaluated using square wave voltammetry (SWV), demonstrating a linear relationship between the current density and anti-rS concentration. The limit of detection (LOD) was found to be 113 ng/mL (0.75 nM), and the limit of quantitation (LOQ) was equal to 338 ng/mL (2.25 nM). The reported electrochemical biosensor offers a straightforward and efficient method for evaluating the immune status of individuals who have recovered from COVID-19 and been vaccinated against this virus without the need for any redox probe. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2025)
Show Figures

Figure 1

17 pages, 4088 KB  
Article
Promotional Effect of Semiconductor-Supported Plasmonic Copper Nanoparticles in Visible-Light-Driven Photocatalytic Oxidative Homocoupling of Alkynes
by Nan Deng, Yaqi Wu, Yi Sun and Peng Liu
Catalysts 2025, 15(11), 1045; https://doi.org/10.3390/catal15111045 - 3 Nov 2025
Viewed by 386
Abstract
Enhancing the oxidation resistance of copper nanoparticles (CuNPs) is a crucial objective in plasmonic photocatalytic reactions. In this study, a series of Cu/X catalysts was synthesized using semiconductor nanomaterials (X = TiO2, ZnO, BN, TiN, SiC, and C3N4 [...] Read more.
Enhancing the oxidation resistance of copper nanoparticles (CuNPs) is a crucial objective in plasmonic photocatalytic reactions. In this study, a series of Cu/X catalysts was synthesized using semiconductor nanomaterials (X = TiO2, ZnO, BN, TiN, SiC, and C3N4) as supports for CuNPs. These catalysts were systematically evaluated in visible-light-driven photocatalytic oxidative homocoupling of phenylacetylene (OHA). Comprehensive characterization revealed distinct metal-support interactions and nanostructure evolution during repeated catalytic cycles. The photocatalytic performance, copper leaching, and structural stability of the catalysts were compared. Cu/TiO2 achieved the highest 1,3-diyne yield (up to 93%) in the first two cycles. In contrast, Cu/ZnO showed minimal copper leaching and excellent recyclability, retaining high activity over three consecutive cycles without the need for reduction pretreatment. Comparative studies revealed that the combination of localized surface plasmon resonance (LSPR) and efficient electron transfer within the Cu0-Cu2O-CuO composite was a key factor in enhancing the photocatalytic activity and stability. These findings provide new insights into the rational design of durable CuNP-based photocatalysts for visible-light-driven organic transformations. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Graphical abstract

17 pages, 4686 KB  
Article
Influence of SnCl2 and SnC2O4 Precursors on the Corrosion Protection of SnO2 Coatings on 304 Stainless Steel in 3% NaCl Solution
by Ana Karen Acero-Gutiérrez, Jesús Gilberto Godínez-Salcedo, Ricardo Cuenca-Álvarez, Ana Lilia Pérez-Flores, Margarita García-Hernández and Ángel de Jesús Morales-Ramírez
Coatings 2025, 15(11), 1277; https://doi.org/10.3390/coatings15111277 - 3 Nov 2025
Viewed by 295
Abstract
This work prepared SnO2 coatings on 304 stainless steel via the sol–gel and dip-coating techniques, using tin (II) chloride (SnCl2) and tin (II) oxalate (SnC2O4) as precursors. The crystal structure analyzed by X-ray Diffraction (XRD) confirmed [...] Read more.
This work prepared SnO2 coatings on 304 stainless steel via the sol–gel and dip-coating techniques, using tin (II) chloride (SnCl2) and tin (II) oxalate (SnC2O4) as precursors. The crystal structure analyzed by X-ray Diffraction (XRD) confirmed the cassiterite-type SnO2 in both cases. The corrosion resistance in a 3 wt.% NaCl solution was evaluated by polarization resistance (Rp) and anodic potentiodynamic polarization. Coatings derived from the SnC2O4 precursor demonstrated exceptional performance, reducing the corrosion rate by up to three orders of magnitude (from 0.0973 mpy for uncoated steel to 0.00015 mpy), corresponding to a protection efficiency of 99.8%. In contrast, coatings from the SnCl2 precursor increased the corrosion rate. X-ray Photoelectron Spectroscopy (XPS) analysis confirmed that this detrimental effect was due to the presence of chlorine (5.54 wt.%), which acted as an initiation site for pitting corrosion. Atomic force microscopy (AFM) and XRD of the effective SnC2O4-derived coatings revealed a homogeneous surface with low roughness and a textured cassiterite structure. The primary limitation of this work is that the sol–gel synthesis route using SnCl2 is unsuitable for corrosion protection in chloride environments due to the incorporation of aggressive chlorine ions, whereas the chlorine-free SnC2O4 precursor yields highly protective SnO2 coatings. Full article
(This article belongs to the Special Issue Anti-Corrosion Coatings: New Ideas to Make Them More Effective)
Show Figures

Figure 1

Back to TopTop