Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = tower-footing ground resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 13668 KB  
Article
Reliability of High-Frequency Earth Meters in Measuring Tower-Footing Resistance: Simulations and Experimental Validation
by Renan Segantini, Rafael Alipio and José O. S. Paulino
Energies 2025, 18(8), 1959; https://doi.org/10.3390/en18081959 - 11 Apr 2025
Cited by 1 | Viewed by 1542
Abstract
This paper presents a comprehensive assessment of the accuracy of high-frequency (HF) earth meters in measuring the tower-footing ground resistance of transmission line structures, combining simulation and experimental results. The findings demonstrate that HF earth meters reliably estimate the harmonic grounding impedance ( [...] Read more.
This paper presents a comprehensive assessment of the accuracy of high-frequency (HF) earth meters in measuring the tower-footing ground resistance of transmission line structures, combining simulation and experimental results. The findings demonstrate that HF earth meters reliably estimate the harmonic grounding impedance (R25kHz) at their operating frequency, typically 25 kHz, for a wide range of soil resistivities and typical span lengths. For the analyzed tower geometries, the simulations indicate that accurate measurements are obtained for adjacent span lengths of approximately 300 m and 400 m, corresponding to configurations with one and two shield wires, respectively. Acceptable errors below 10% are observed for span lengths exceeding 200 m and 300 m under the same conditions. While the measured R25kHz does not directly represent the resistance at the industrial frequency, it provides a meaningful measure of the grounding system’s impedance, enabling condition monitoring and the evaluation of seasonal or event-related impacts, such as damage after outages. Furthermore, the industrial frequency resistance can be estimated through an inversion process using an electromagnetic model and knowing the geometry of the grounding electrodes. Overall, the results suggest that HF earth meters, when correctly applied with the fall-of-potential method, offer a reliable means to assess the grounding response of high-voltage transmission line structures in most practical scenarios. Full article
Show Figures

Figure 1

19 pages, 4556 KB  
Article
Influence of Lightning Current Parameters and Earthing System Designs on Tower Footing Impedance of 500 kV Lines
by Nur Alia Farina Mohamad Nasir, Mohd Zainal Abidin Ab Kadir, Miszaina Osman, Muhamad Safwan Abd Rahman, Ungku Anisa Ungku Amirulddin, Mohd Solehin Mohd Nasir, Nur Hazirah Zaini and Nik Hakimi Nik Ali
Energies 2021, 14(16), 4736; https://doi.org/10.3390/en14164736 - 4 Aug 2021
Cited by 3 | Viewed by 4200
Abstract
This paper presents an optimum earthing system design for improving the lightning performance of a 500 kV transmission line for its sustainable operation. The study includes an interpretation of the soil profile and compares the results between default and new earthing arrangements for [...] Read more.
This paper presents an optimum earthing system design for improving the lightning performance of a 500 kV transmission line for its sustainable operation. The study includes an interpretation of the soil profile and compares the results between default and new earthing arrangements for improving tower footing resistance and tower footing impedance. An evaluation of the tower footing resistance (TFR) and impedance (Ri) before and after earthing improvement was carried out. Moreover, the effects of TFR and Ri, also known as low and high-frequency earthing, respectively, based on a specification of TFR and soil resistivity (SR) ranges at various sites were also considered. The analysis was carried out using the SESCAD tool of Current Distribution Electromagnetic Field Grounding and Soil Structure Analysis software (CDEGS) and PSCAD/EMTDC software for low and high frequency earthing, respectively. From the analysis, the results showed that the new earthing arrangement reduced the TFR by 74.11% for Tower T40, 75.71% for Tower T41 and 80.83% for Tower T42. For Ri, the results also demonstrated that the values were significantly decreased below the TFR during a high frequency operation due to the soil ionisation phenomenon that took place during the lightning. All these improvements are now being investigated and studied in all 500 kV networks in Malaysia, where lightning is considered as a major threat in relation to power outages. Full article
Show Figures

Graphical abstract

14 pages, 4637 KB  
Article
Effect of Earthing Enhancing Compound (EEC) on Improving Tower Footing Resistance of a 500 kV Tower in a Rocky Area
by Nur Alia Farina Mohd Nasir, Mohd Zainal Abidin Ab Kadir, Miszaina Osman, Muhamad Safwan Abd Rahman, Ungku Anisa Ungku Amirulddin, Mohd Solehin Mohd Nasir, Nur Hazirah Zaini and Nik Hakimi Nik Ali
Appl. Sci. 2021, 11(12), 5623; https://doi.org/10.3390/app11125623 - 18 Jun 2021
Cited by 4 | Viewed by 5067
Abstract
This paper presents a comparative analysis of different earthing designs’ performances, with particular interest on the use of earthing enhancing compound (EEC) for a selected earthing design of 500 kV transmission towers in a rocky soil, using the SESCAD tool of the Current [...] Read more.
This paper presents a comparative analysis of different earthing designs’ performances, with particular interest on the use of earthing enhancing compound (EEC) for a selected earthing design of 500 kV transmission towers in a rocky soil, using the SESCAD tool of the Current distribution, electromagnetic field grounding and soil structure analysis (CDEGS) software. The simulation included the interpretation of soil profile and comparison between designs A, B and C, which are currently used for the 500 kV tower footing resistance (TFR) improvement. Results showed each design had reduced the TFR by 66%, 54.7% and 63.2% for the towers T42, T48 and T50, respectively. In some cases, further improvement of TFR is required, especially in the rocky area where the soil resistivity (SR) value is of more than 500 Ω⋅m. In this case, EEC was used in Design C, encasing both the vertical and horizontal electrodes, and it reduced the TFR further by 16% to 20%. The characteristics of the soil and earthing arrangement design play an important role in achieving a low TFR value, which is directly proportional to the backflashover occurrence and thus to the transmission line performance. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

Back to TopTop