Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = track geometry cars

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 18434 KB  
Article
A Numerical Simulation Study on Vertical Vibration Response for Rail Squat Detection with a Train in Regular Traffic
by Zhicheng Hu and Albert Lau
Infrastructures 2025, 10(11), 313; https://doi.org/10.3390/infrastructures10110313 - 19 Nov 2025
Viewed by 235
Abstract
Squat is a type of rail defect that frequently poses challenges for railway tracks, as they generate dynamics and accelerate track degradation. Detecting rail squats is resource-intensive, given their relatively small size compared to the railway track. Often, by the time they are [...] Read more.
Squat is a type of rail defect that frequently poses challenges for railway tracks, as they generate dynamics and accelerate track degradation. Detecting rail squats is resource-intensive, given their relatively small size compared to the railway track. Often, by the time they are detected, damage has usually already occurred in other track components. Currently, rail squats are primarily detected using dedicated railway measurement vehicles. There has been a recent trend in research towards utilizing trains in regular traffic to monitor the condition of railway tracks. However, there is a lack of research and general guidelines regarding the optimal placement of accelerometers or sensors on trains for squat detection. In this study, multibody simulation software GENSYS Rel.2209 is employed to simulate a passenger train traversing rail squats under various scenarios, with each scenario characterized by a distinct set of typical feature values for the squats. The results demonstrate that the front wheel set, positioned closest to the defects, exhibits the highest sensitivity to vertical accelerations. Squat length is much more sensitive than depth for detection at typical speeds, and accelerometers on bogies or the car body require speeds below 40 km/h to ensure reliability. The acceleration response mechanism during squat traversal is explored, revealing the effects of varying squat geometries and train speeds. This finding enables a detection method capable of locating squats and estimating their length with over 90% accuracy. Practical recommendations are provided for optimizing squat detection systems, including squat width detection, sensor selection criteria, and suggested train speeds. It offers a pathway to detect squat more efficiently with optimized installation locations of accelerometers on a train. Full article
(This article belongs to the Special Issue Smart Transportation Infrastructure: Optimization and Development)
Show Figures

Figure 1

21 pages, 4100 KB  
Article
Data-Driven Condition Monitoring of Fixed-Turnout Frogs Using Standard Track Recording Car Measurements
by Markus Loidolt, Julia Egger and Andrea Katharina Korenjak
Appl. Sci. 2025, 15(20), 11122; https://doi.org/10.3390/app152011122 - 16 Oct 2025
Viewed by 378
Abstract
Turnouts are critical components of railway infrastructure, ensuring operational flexibility but also representing a significant share of track maintenance costs. The frog, as the most vulnerable part of a turnout, is subject to severe wear and degradation, requiring frequent inspection and maintenance. Traditional [...] Read more.
Turnouts are critical components of railway infrastructure, ensuring operational flexibility but also representing a significant share of track maintenance costs. The frog, as the most vulnerable part of a turnout, is subject to severe wear and degradation, requiring frequent inspection and maintenance. Traditional manual inspection methods are costly, labour-intensive, and susceptible to subjectivity. This study explores a data-driven approach to condition monitoring of fixed-turnout frogs using standard track recording car measurements. By leveraging over 20 years of longitudinal level and rail surface signal data from the Austrian track-recording measurement car, we assess the feasibility of using existing measurement data for predictive maintenance. Six complementary approaches are proposed to evaluate frog condition, including track geometry assessment, ballast condition analysis, rail surface irregularity detection, and axle box acceleration-based monitoring. Results indicate that data-driven monitoring enhances maintenance decision-making by identifying deterioration trends, reducing reliance on manual inspections, and enabling predictive interventions. The integration of standardised measurement data with advanced analytical models offers a cost-effective and scalable solution for turnout maintenance. Full article
Show Figures

Figure 1

18 pages, 6074 KB  
Article
The Influence of Seasonal Effects on Railway Vertical Track Modulus
by Antonio Merheb, Joseph Palese, Christopher M. Hartsough, Allan Zarembski and Liedi Bernucci
Infrastructures 2024, 9(8), 120; https://doi.org/10.3390/infrastructures9080120 - 23 Jul 2024
Cited by 2 | Viewed by 1887
Abstract
Adequate vertical track support is essential for safe and efficient railway operations. Insufficient support leads to distorted track geometry, increased dynamic loads, component stress, poor ride quality, rolling stock damage, and derailment risks. Current inspection practices focus on assessing the condition of the [...] Read more.
Adequate vertical track support is essential for safe and efficient railway operations. Insufficient support leads to distorted track geometry, increased dynamic loads, component stress, poor ride quality, rolling stock damage, and derailment risks. Current inspection practices focus on assessing the condition of the track components and geometry, rather than the root causes of degradation. To improve this condition, this study presents the use of a methodology that utilizes an autonomous vertical track deflection measurement system mounted on a loaded rail car (36 tonnes/axle) to support track maintenance decisions in a heavy haul railroad located in southeast Brazil. The system continuously measured substructure stiffness along the railway line. Over one year, data were collected from over 8000 km of track. The study highlighted seasonal effects on track degradation over time, identifying areas with significant deflections and high deflection rates, which contribute to issues such as differential settlement and reduced lifespan of track components. Additionally, the study revealed seasonal effects, with deflections peaking during wet weather and decreasing during dry cycles. A method to classify weak track areas was developed, facilitating monitoring and enabling more effective maintenance planning, contributing to the reduction of overall track maintenance costs and enhancing safety and operational efficiency. Full article
Show Figures

Figure 1

19 pages, 11934 KB  
Article
The Characteristics of Long-Wave Irregularities in High-Speed Railway Vertical Curves and Method for Mitigation
by Laiwei Jiang, Yangtenglong Li, Yuyuan Zhao and Minyi Cen
Sensors 2024, 24(13), 4403; https://doi.org/10.3390/s24134403 - 7 Jul 2024
Cited by 3 | Viewed by 1577
Abstract
Track geometry measurements (TGMs) are a critical methodology for assessing the quality of track regularities and, thus, are essential for ensuring the safety and comfort of high-speed railway (HSR) operations. TGMs also serve as foundational datasets for engineering departments to devise daily maintenance [...] Read more.
Track geometry measurements (TGMs) are a critical methodology for assessing the quality of track regularities and, thus, are essential for ensuring the safety and comfort of high-speed railway (HSR) operations. TGMs also serve as foundational datasets for engineering departments to devise daily maintenance and repair strategies. During routine maintenance, S-shaped long-wave irregularities (SLIs) were found to be present in the vertical direction from track geometry cars (TGCs) at the beginning and end of a vertical curve (VC). In this paper, we conduct a comprehensive analysis and comparison of the characteristics of these SLIs and design a long-wave filter for simulating inertial measurement systems (IMSs). This simulation experiment conclusively demonstrates that SLIs are not attributed to track geometric deformation from the design reference. Instead, imperfections in the longitudinal profile’s design are what cause abrupt changes in the vehicle’s acceleration, resulting in the measurement output of SLIs. Expanding upon this foundation, an additional investigation concerning the quantitative relationship between SLIs and longitudinal profiles is pursued. Finally, a method that involves the addition of a third-degree parabolic transition curve (TDPTC) or a full-wave sinusoidal transition curve (FSTC) is proposed for a smooth transition between the slope and the circular curve, designed to eliminate the abrupt changes in vertical acceleration and to mitigate SLIs. The correctness and effectiveness of this method are validated through filtering simulation experiments. These experiments indicate that the proposed method not only eliminates abrupt changes in vertical acceleration, but also significantly mitigates SLIs. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

19 pages, 6919 KB  
Article
Speed Reduction Capabilities of Two-Geometry Roundabouts
by Saša Ahac, Maja Ahac, Igor Majstorović and Silvio Bašić
Appl. Sci. 2023, 13(21), 11816; https://doi.org/10.3390/app132111816 - 29 Oct 2023
Cited by 6 | Viewed by 1695
Abstract
Several types of modern roundabouts are alternatives to standard ones. They are either in use or at the development stage today. One such intersection is the two-geometry roundabout. Its circulatory roadway has an elliptical outer edge and a circular inner edge that is [...] Read more.
Several types of modern roundabouts are alternatives to standard ones. They are either in use or at the development stage today. One such intersection is the two-geometry roundabout. Its circulatory roadway has an elliptical outer edge and a circular inner edge that is defined by a circular central island resulting in variable circulatory roadway width. The investigation presented in this paper aims to determine the influence of this variable width on the design of other geometric elements and its impact on roundabouts’ speed reduction capabilities. There is not enough experimental data collected to make a comparison to other roundabout types, so this investigation is based on computer simulations and speed estimations. The investigation is conducted on 40 four-legged single-lane roundabout schemes. These were designed in the Autodesk AutoCAD 2021 software through computer simulations of vehicle movement and the resulting swept paths of a tractor with a semi-trailer generated by the Autodesk Vehicle Tracking 2020 software. The results show that truck aprons must be included in the design of two-geometry roundabouts with a major axis between 18 and 25 m to achieve appropriate circulatory roadway widths, personal car path deflection, and the resulting relative speed and speed consistency. Full article
Show Figures

Figure 1

12 pages, 16629 KB  
Article
Fingerprints of the Automotive Radar Scattering of Passenger Cars and Vans
by Philip Aust, Florian Hau, Jürgen Dickmann and Matthias A. Hein
Appl. Sci. 2023, 13(18), 10290; https://doi.org/10.3390/app131810290 - 14 Sep 2023
Cited by 2 | Viewed by 2172
Abstract
The radar scattering characteristics of extended objects are an important parameter for perception and tracking algorithms in automated driving tasks. Therefore, high-fidelity sensor models are required to simulate and evaluate typical driving scenarios in virtual testing applications. While the general analysis of typical [...] Read more.
The radar scattering characteristics of extended objects are an important parameter for perception and tracking algorithms in automated driving tasks. Therefore, high-fidelity sensor models are required to simulate and evaluate typical driving scenarios in virtual testing applications. While the general analysis of typical scattering centers of passenger cars is well studied, there are only a few publicly available reports that analyze specific features of the scattering characteristics of different vehicle types. Hence, this work presents detection distributions derived from systematic measurements for six different vehicle types, conducted with a commercial automotive radar on a proving ground. In particular, the contribution of underbody reflections to the respective radar signatures is analyzed, which are caused by multipath propagation via the road surface. The measurements reveal distinctive differences between the scattering characteristics of different vehicles, which are attributed to the respective underbody geometry. Full article
Show Figures

Figure 1

29 pages, 6132 KB  
Article
Investigation of the Causes of Railway Track Gauge Narrowing
by Péter Bocz, Nándor Liegner, Ákos Vinkó and Szabolcs Fischer
Vehicles 2023, 5(3), 949-977; https://doi.org/10.3390/vehicles5030052 - 10 Aug 2023
Cited by 10 | Viewed by 5210
Abstract
On behalf of MÁV Hungarian State Railways Ltd., the authors carried out a research and development (R&D) project on behalf of the Budapest University of Technology and Economics, Department of Highway and Railway Engineering, on the subject of “Research and investigation of the [...] Read more.
On behalf of MÁV Hungarian State Railways Ltd., the authors carried out a research and development (R&D) project on behalf of the Budapest University of Technology and Economics, Department of Highway and Railway Engineering, on the subject of “Research and investigation of the causes of gauge narrowing by finite-element modeling in running track and turnout, and under operational and laboratory conditions”. The main objective of the research was to investigate the causes of localized defects of gauge narrowing in railway tracks based on machine and manual track measurements, laboratory measurements, and theoretical considerations. The measures proposed as a consequence of identifying the causes could significantly contribute to reducing the number and extent of local defects in the future. Furthermore, the research aims to develop new theories in less scientifically mature areas and provide procedures and instructions that professional engineers and practitioners can easily apply. The main areas of research, which are not exhaustive, are as follows: (i) the evaluation of the measurement results provided by track geometry measuring and recording cars; (ii) on-site investigations in the railway track in terms of gauge and rail profile measurements; and, based on these, (iii) the selection of concrete sleepers, which were removed from the track and subjected to more detailed geometrical investigations in the laboratory, together with the components of the rail reinforcement; (iv) the track–vehicle connection, tight running in straight and curved track sections under track confinement; (v) modeling of the stability and deflection of the rail when the rail fastenings lose part of their supporting function; and (vi) finite element modeling of the concrete sleepers under operating conditions such as slow deformation of the concrete, temperature variation effects, and lateral support on the ballast. In the already-narrowed track section, the tight vehicle running is not the cause of the track gauge narrowing but a consequence, so it is not investigated in this paper. Full article
(This article belongs to the Special Issue Railway Vehicles and Infrastructure)
Show Figures

Figure 1

20 pages, 17947 KB  
Article
Mechanical Design and Numerical Analysis of a New Front Wing for a Formula One Vehicle
by Aldo Saul Laguna-Canales, Guillermo Urriolagoitia-Sosa, Beatriz Romero-Ángeles, Miguel Martinez-Mondragon, Miguel Angel García-Laguna, Martin Ivan Correa-Corona, Daniel Maya-Anaya and Guillermo Manuel Urriolagoitia-Calderón
Fluids 2023, 8(7), 210; https://doi.org/10.3390/fluids8070210 - 18 Jul 2023
Cited by 2 | Viewed by 4795
Abstract
In motorsports, the correct design of every device that constitutes a vehicle is a significant task for engineers because the car’s efficiency on the track depends on making it competitive. However, the physical integrity of the pilot is also at stake, since a [...] Read more.
In motorsports, the correct design of every device that constitutes a vehicle is a significant task for engineers because the car’s efficiency on the track depends on making it competitive. However, the physical integrity of the pilot is also at stake, since a bad vehicle design can cause serious mishaps. To achieve the correct development of a front wing for a single-seater vehicle, it is necessary to adequately simulate the forces that are generated on a car to evaluate its performance, which depends on the aerodynamic forces of the front wing that are present due to its geometry. This work provided a new design and evaluation through the numerical analysis of three new front wings for single-seater vehicles that comply with the regulations issued by the International Automobile Federation (FIA) for the 2022 season. Additionally, a 3D-printed front wing prototype was developed to be evaluated in an experimental study to corroborate the results obtained through computer simulations. A wind tunnel experiment test was performed to validate the numerically simulated data. Also, we developed a numerical simulation and characterization of three front wings already used in Formula One from a previous season (the end of the 2021 season). This work defined how these devices perform, and in the same way, it identified how their evolution over time has provided them with substantial benefits and greater efficiency. All the numerical simulations were carried out by applying the Finite Volume Method, allowing us to obtain the values of the aerodynamic forces that act on the front wing. Also, it was possible to establish a comparison between the three newly designed proposals from the most aerodynamic advantages to produce a prototype and perform an experimental test. The results of the experimental test showed similarity to those of the numerical analyses, making it clear that the methodology followed during the development of the work was correct. In addition, the mechanical designs carried out to develop the front wing can be considered ideal, because the results showed that the front wing could be competitive, and applying it caused a downforce to be favored that prevented the car from being thrown off the track. Additionally, the results indicate this is an effective proposal for use in a single-seater vehicle and that the design methodology delivers optimal results. Full article
(This article belongs to the Topic Computational Fluid Dynamics (CFD) and Its Applications)
Show Figures

Figure 1

20 pages, 3173 KB  
Article
Development and Operation of Track Condition Monitoring System Using In-Service Train
by Hitoshi Tsunashima, Hironori Ono, Tetsuya Takata and Seigo Ogata
Appl. Sci. 2023, 13(6), 3835; https://doi.org/10.3390/app13063835 - 17 Mar 2023
Cited by 14 | Viewed by 5535
Abstract
Railway tracks must be managed appropriately because their conditions significantly affect railway safety. Safety is ensured through inspections by track maintenance staff and maintenance based on measurements using dedicated track geometry cars. However, maintaining regional railway tracks using conventional methods is becoming difficult [...] Read more.
Railway tracks must be managed appropriately because their conditions significantly affect railway safety. Safety is ensured through inspections by track maintenance staff and maintenance based on measurements using dedicated track geometry cars. However, maintaining regional railway tracks using conventional methods is becoming difficult because of their poor financial condition and lack of manpower. Therefore, a track condition diagnostic system is developed, wherein onboard sensing devices are installed on in-service vehicles, and the vibration acceleration of the car body is measured to monitor the condition of the track. In this study, we conduct long-term measurements using the system and evaluate changes in the track conditions over time using car-body vibration data. Filed test results showed that sections with degraded tracks were identified using car-body vibration data. The track degradation trend can be constructed using the results obtained. Furthermore, this study demonstrated that the track maintenance effect could be confirmed. A method for improving train position using the yaw angular velocity is proposed. The track irregularity position can be shown more clearly by monitoring the track condition using position-corrected data using the proposed method. It is also shown that the time-frequency analysis of measured car-body vertical acceleration is effective for evaluating the track condition more clearly. Full article
(This article belongs to the Special Issue Vibration-Based Structural Health Monitoring in Engineering)
Show Figures

Figure 1

23 pages, 4246 KB  
Article
Metro Track Geometry Defect Identification Model Based on Car-Body Vibration Data and Differentiable Architecture Search
by Zhipeng Wang, Rengkui Liu, Yi Gao and Yuanjie Tang
Appl. Sci. 2023, 13(6), 3457; https://doi.org/10.3390/app13063457 - 8 Mar 2023
Cited by 3 | Viewed by 3292
Abstract
Efficient and low-cost modes for detecting metro track geometry defects (TGDs) are essential for condition-prediction-based preventive maintenance, which can help improve the safety of metro operations and reduce the maintenance cost of metro tracks. Compared with the traditional TGD detection method that utilizes [...] Read more.
Efficient and low-cost modes for detecting metro track geometry defects (TGDs) are essential for condition-prediction-based preventive maintenance, which can help improve the safety of metro operations and reduce the maintenance cost of metro tracks. Compared with the traditional TGD detection method that utilizes the track geometry car, the method that uses a portable detector to acquire the car-body vibration data (CVD) can be used on an ordinary in-service train without occupying the metro schedule line, thereby improving efficiency and reducing the cost. A convolutional neural network-based identification model for TGD, built on a differentiable architecture search, is proposed in this study to employ only the CVD acquired by a portable detector for integrated identification of the type and severity level of TGDs. Second, the random oversampling method is introduced, and a strategy for applying this method is proposed to improve the poor training effect of the model caused by the natural class-imbalance problem arising from the TGD dataset. Subsequently, a comprehensive performance-evaluation metric (track geometry defect F-score) is designed by considering the actual management needs of the metro infrastructure. Finally, a case study is conducted using actual field data collected from Beijing Subway to validate the proposed model. Full article
Show Figures

Figure 1

13 pages, 4453 KB  
Article
Correlation Analysis between Rail Track Geometry and Car-Body Vibration Based on Fractal Theory
by Xiao-Zhou Liu, Zai-Wei Li, Jun Wu, Cheng-Jie Song and Jun-Hua Xiao
Fractal Fract. 2022, 6(12), 727; https://doi.org/10.3390/fractalfract6120727 - 9 Dec 2022
Cited by 7 | Viewed by 3186
Abstract
The effect of track geometry on vehicle vibration is a major concern in high-speed rail (HSR) operation from the perspectives of ride comfort and safety. However, how to quantitatively characterize the relation between them remains a problem to be solved in track quality [...] Read more.
The effect of track geometry on vehicle vibration is a major concern in high-speed rail (HSR) operation from the perspectives of ride comfort and safety. However, how to quantitatively characterize the relation between them remains a problem to be solved in track quality assessment. By using fractal analysis, this paper studies the detailed correlation between track surface and alignment irregularities and car body vertical and lateral acceleration in various wavelength ranges. The time-frequency features of the track irregularity and car-body acceleration are first analyzed based on empirical mode decomposition (EMD). Then, the fractal features of the inspection data are determined by calculating the Hurst exponent of their intrinsic mode functions (IMFs). Finally, the fractal dimensions of the track irregularity and car-body acceleration are obtained, and the correlation between their fractal dimensions with respect to different IMFs is revealed using regression analysis. The results show that the fractal dimension is only related to the roughness of the IMF waveforms of the track irregularity and car-body vibration and is irrelevant to the amplitude of the time series of the data; the correlation coefficient of the fractal dimension of the track irregularity and car-body acceleration is greater than 0.7 for wavelengths greater than 30 m, indicating that the relationship between track irregularity and car-body vibration acceleration is more obvious for long wavelengths. The findings of this research could be used for optimizing HSR track maintenance work from the viewpoint of the ride quality of high-speed trains. Full article
(This article belongs to the Special Issue Fractal Analysis and Its Applications in Geophysical Science)
Show Figures

Figure 1

15 pages, 3769 KB  
Article
Visual Navigation and Path Tracking Using Street Geometry Information for Image Alignment and Servoing
by Ayham Shahoud, Dmitriy Shashev and Stanislav Shidlovskiy
Drones 2022, 6(5), 107; https://doi.org/10.3390/drones6050107 - 27 Apr 2022
Cited by 15 | Viewed by 6077
Abstract
Single camera-based navigation systems need information from other sensors or from the work environment to produce reliable and accurate position measurements. Providing such trustable, accurate, and available information in the environment is very important. The work highlights that the availability of well-described streets [...] Read more.
Single camera-based navigation systems need information from other sensors or from the work environment to produce reliable and accurate position measurements. Providing such trustable, accurate, and available information in the environment is very important. The work highlights that the availability of well-described streets in urban environments can be exploited by drones for navigation and path tracking purposes, thus benefitting from such structures is not limited to only automated driving cars. While the drone position is continuously computed using visual odometry, scene matching is used to correct the position drift depending on some landmarks. The drone path is defined by several waypoints, and landmarks centralized by those waypoints are carefully chosen in the street intersections. The known streets’ geometry and dimensions are used to estimate the image scale and orientation which are necessary for images alignment, to compensate for the visual odometry drift, and to pass closer to the landmark center by the visual servoing process. Probabilistic Hough transform is used to detect and extract the street borders. The system is realized in a simulation environment consisting of the Robot Operating System ROS, 3D dynamic simulator Gazebo, and IRIS drone model. The results prove the suggested system efficiency with a 1.4 m position RMS error. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

17 pages, 5155 KB  
Article
Investigating the Benefits of Vector-Based GNSS Receivers for Autonomous Vehicles under Challenging Navigation Environments
by Haidy Y. F. Elghamrawy, Mohamed Tamazin and Aboelmagd Noureldin
Signals 2020, 1(2), 121-137; https://doi.org/10.3390/signals1020007 - 1 Oct 2020
Cited by 4 | Viewed by 4173
Abstract
There is a growing demand for robust and accurate positioning information for various applications, including the self-driving car industry. Such applications rely mainly on the Global Navigation Satellite System (GNSS), including the Global Positioning System (GPS). However, GPS positioning accuracy relies on several [...] Read more.
There is a growing demand for robust and accurate positioning information for various applications, including the self-driving car industry. Such applications rely mainly on the Global Navigation Satellite System (GNSS), including the Global Positioning System (GPS). However, GPS positioning accuracy relies on several factors, such as satellite geometry, receiver architecture, and navigation environment, to name a few. In urban canyons in which there is a significant probability of signal blockage of one or more satellites and/or interference, the positioning accuracy of scalar-based GPS receivers drastically deteriorates. On the other hand, vector-based GPS receivers exhibit some immunity to momentary outages and interference. Therefore, it is becoming necessary to consider vector-based GPS receivers for several applications, especially safety-critical applications, including next-generation navigation technologies for autonomous vehicles. This paper investigates a vector-based receiver’s performance and compares it to its scalar counterpart in signal degraded conditions. The realistic simulation experiments in this paper are conducted on GPS L1 C/A signals generated using the SpirentTM simulation system to create a fully controlled environment to examine and validate the performance. The results show that the vector tracking system outperforms the scalar tracking in terms of position and velocity estimation accuracy in signal-degraded environments. Full article
Show Figures

Figure 1

19 pages, 6757 KB  
Article
Identification of Temperature-Induced Deformation for HSR Slab Track Using Track Geometry Measurement Data
by Zai-Wei Li, Xiao-Zhou Liu and Yue-Lei He
Sensors 2019, 19(24), 5446; https://doi.org/10.3390/s19245446 - 10 Dec 2019
Cited by 30 | Viewed by 4009
Abstract
Slab track is widely used in many newly built high-speed rail (HSR) lines as it offers many advantages over ballasted tracks. However, in actual operation, slab tracks are subjected to operational and environmental factors, and structural damages are frequently reported. One of the [...] Read more.
Slab track is widely used in many newly built high-speed rail (HSR) lines as it offers many advantages over ballasted tracks. However, in actual operation, slab tracks are subjected to operational and environmental factors, and structural damages are frequently reported. One of the most critical problems is temperature-induced slab-warping deformation (SWD) which can jeopardize the safety of train operation. This paper proposes an automatic slab deformation detection method in light of the track geometry measurement data, which are collected by high-speed track geometry car (HSTGC). The characteristic of track vertical irregularity is first analyzed in both time and frequency domain, and the feature of slab-warping phenomenon is observed. To quantify the severity of SWD, a slab-warping index (SWI) is established based on warping-sensitive feature extraction using discrete wavelet transform (DWT). The performance of the proposed algorithm is verified against visual inspection recorded on four sections of China HSR line, which are constructed with the China Railway Track System II (CRTSII) slab track. The results show that among the 24,806 slabs being assessed, over 94% of the slabs with warping deformation can be successfully identified by the proposed detection method. This study is expected to provide guidance for efficiently detecting and locating slab track defects, taking advantage of the massive track inspection data. Full article
Show Figures

Figure 1

3 pages, 287 KB  
Extended Abstract
Value Added Strategy for Unplanned Rail Track Inspections
by Mohd Haniff Bin Osman and Sakdirat Kaewunruen
Proceedings 2018, 2(16), 1141; https://doi.org/10.3390/proceedings2161141 - 17 Sep 2018
Viewed by 1571
Abstract
On-demand (or unplanned) track inspection could be due to a disruption in a track geometry recording car [1–5]. [...] Full article
(This article belongs to the Proceedings of i-RISE 2018)
Show Figures

Figure 1

Back to TopTop