Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = transient absorption spectra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 10226 KB  
Article
Exploring the Photophysical Properties of Some Dextran-Iron Oxide Nanoparticle Composites
by Ion Lungu, Tamara Potlog, Anton Airinei, Radu Tigoianu and Carmen Gherasim
Molecules 2025, 30(11), 2290; https://doi.org/10.3390/molecules30112290 - 23 May 2025
Cited by 2 | Viewed by 1058
Abstract
In this study, we report the synthesis and characterization of Fe3O4 nanoparticles coated with dextran. The structural and optical properties of the Dx:Fe3O4 synthesized composites were investigated by Fourier Transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and [...] Read more.
In this study, we report the synthesis and characterization of Fe3O4 nanoparticles coated with dextran. The structural and optical properties of the Dx:Fe3O4 synthesized composites were investigated by Fourier Transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and UV–Vis absorption spectroscopy. For the first time in this paper, the photophysics of Dx:Fe3O4 composites in water is studied using fluorescence and phosphorescence molecular spectrometry. An analysis of the absorption spectra of the Dx:Fe3O4 composite reveals the broad absorption bands with maxima at wavelengths of 227 nm, 264 nm, and 340 nm. Dx:Fe3O4 composite nanoparticles in water exhibit strong fluorescence with a quantum yield of 0.24% in contrast to 0.07% for dextran. Phosphorescence spectra confirm the formation of new emission bands within the Dx:Fe3O4 solution evidenced by the maxima shift for both dextran and Dx:Fe3O4 composites. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials, 2nd Edition)
Show Figures

Figure 1

16 pages, 1267 KB  
Article
Effect of Drying Method on Selected Physical and Functional Properties of Powdered Black Soldier Fly Larvae
by Radosław Bogusz, Małgorzata Nowacka, Ewa Gondek, Murat Delman and Karolina Szulc
Appl. Sci. 2025, 15(8), 4097; https://doi.org/10.3390/app15084097 - 8 Apr 2025
Cited by 1 | Viewed by 1602
Abstract
This research aimed to assay the impact of convective drying (CD) or infrared–convective (IR–CD) drying methods on the physical and techno-functional properties, FTIR spectra, and mathematical modeling of adsorption kinetics of black soldier fly larvae powders. By using convective drying, insect powder exhibited [...] Read more.
This research aimed to assay the impact of convective drying (CD) or infrared–convective (IR–CD) drying methods on the physical and techno-functional properties, FTIR spectra, and mathematical modeling of adsorption kinetics of black soldier fly larvae powders. By using convective drying, insect powder exhibited higher water content and water activity but lower hygroscopicity than powder dried with the infrared–convective method. After drying with the convective method, the powder exhibited a significantly lower loose and tapped bulk density and oil holding capacity (OHC). Furthermore, this powder was lighter and more yellow. The FTIR spectrum of the CD-dried powder showed lower absorption at key wavenumbers for the protein (1625 and 1350–1200 cm−1), indicating lower denaturation and less ability to bind water and water vapor. The mathematical modeling of the water vapor adsorption kinetics of insect powders via the second Fick’s law for transient diffusion showed that this equation is suitable for adjusting the experimental data based on the high coefficient of determination (0.997–0.999) and the low root mean square (2.50–3.34%). This study revealed that the drying method influences insect powder properties, and the IR–CD method seems better in terms of obtaining better techno-functional properties. Full article
Show Figures

Figure 1

27 pages, 14431 KB  
Article
Transient-Absorption Pump-Probe Spectra as Information-Rich Observables: Case Study of Fulvene
by Zhaofa Li, Jiawei Peng, Yifei Zhu, Chao Xu, Maxim F. Gelin, Feng Long Gu and Zhenggang Lan
Molecules 2025, 30(7), 1439; https://doi.org/10.3390/molecules30071439 - 24 Mar 2025
Cited by 1 | Viewed by 1733
Abstract
Conical intersections (CIs) are the most efficient channels of photodeactivation and energy transfer, while femtosecond spectroscopy is the main experimental tool delivering information on molecular CI-driven photoinduced processes. In this work, we undertake a comprehensive ab initio investigation of the CI-mediated internal conversion [...] Read more.
Conical intersections (CIs) are the most efficient channels of photodeactivation and energy transfer, while femtosecond spectroscopy is the main experimental tool delivering information on molecular CI-driven photoinduced processes. In this work, we undertake a comprehensive ab initio investigation of the CI-mediated internal conversion in fulvene by simulating evolutions of electronic populations, bond lengths and angles, and time-resolved transient absorption (TA) pump-probe (PP) spectra. TA PP spectra are evaluated on the fly by combining the symmetrical quasiclassical/Meyer–Miller–Stock–Thoss (SQC/MMST) dynamics and the doorway-window representation of spectroscopic signals. We show that the simulated time-resolved TA PP spectra reveal not only the population dynamics but also the key nuclear motions as well as mode–mode couplings. We also demonstrate that TA PP signals are not only experimental observables: They can also be considered as information-rich purely theoretical observables, which deliver more information on the CI-driven dynamics than conventional electronic populations. This information can be extracted by the appropriate theoretical analyses of time-resolved TA PP signals. Full article
Show Figures

Figure 1

9 pages, 1881 KB  
Article
Unveiling the Triplet-State Interaction Mechanism Between 4-Carboxybenzophenone and 2-Naphthalene Sulfonate—A Laser Flash Photolysis Study
by Piotr Filipiak, Katarzyna Grzyb, Monika Borkowska and Tomasz Pedzinski
Photochem 2025, 5(1), 4; https://doi.org/10.3390/photochem5010004 - 24 Jan 2025
Viewed by 1371
Abstract
This communication aims to comprehensively elucidate the intricate mechanism governing the interaction between the excited triplet state of 4-Carboxybenzophenone (CB*) and the anionic form of 2-Naphthalene Sulfonate (NpSO3), employing the 337 nm Nanosecond Laser Flash Photolysis technique for this investigation. [...] Read more.
This communication aims to comprehensively elucidate the intricate mechanism governing the interaction between the excited triplet state of 4-Carboxybenzophenone (CB*) and the anionic form of 2-Naphthalene Sulfonate (NpSO3), employing the 337 nm Nanosecond Laser Flash Photolysis technique for this investigation. When the CB is selectively excited by a 337 nm laser, two primary processes become possible: (i) energy transfer from 3CB* to NpSO3 and (ii) electron transfer from NpSO3 to 3CB*. The dynamics of these interactions are explored through experimental observations of transient absorption spectra and the analysis of respective kinetic traces. The primary process dominating in the 3(CB...NpSO3)* system is identified as triplet energy transfer from excited 3CB* to 3(NpSO3), as demonstrated by characteristic spectral features observed at 410–420 nm. Comparisons are made with a similar system studied by Yamaji and co-workers, 3(BP•−...NpO)*, revealing differences in the priority of primary process occurrences. These findings contribute to a deeper understanding of the intricate interactions between excited molecules and ground-state donors, aiding in the comprehension of mechanisms governing these reactions. Full article
Show Figures

Figure 1

17 pages, 2772 KB  
Article
Factors Affecting the Population of Excited Charge Transfer States in Adenine/Guanine Dinucleotides: A Joint Computational and Transient Absorption Study
by Vasilis Petropoulos, Lara Martinez-Fernandez, Lorenzo Uboldi, Margherita Maiuri, Giulio Cerullo, Evangelos Balanikas and Dimitra Markovitsi
Biomolecules 2024, 14(12), 1548; https://doi.org/10.3390/biom14121548 - 3 Dec 2024
Cited by 1 | Viewed by 1534
Abstract
There is compelling evidence that the absorption of low-energy UV radiation directly by DNA in solution generates guanine radicals with quantum yields that are strongly dependent on the secondary structure. Key players in this unexpected phenomenon are the photo-induced charge transfer (CT [...] Read more.
There is compelling evidence that the absorption of low-energy UV radiation directly by DNA in solution generates guanine radicals with quantum yields that are strongly dependent on the secondary structure. Key players in this unexpected phenomenon are the photo-induced charge transfer (CT) states, in which an electric charge has been transferred from one nucleobase to another. The present work examines the factors affecting the population of these states during electronic relaxation. It focuses on two dinucleotides with opposite orientation: 5′-dApdG-3′ (AG) and 5′-dGpdA-3′ (GA). Quantum chemistry calculations determine their ground state geometry and the associated Franck–Condon states, map their relaxation pathways leading to excited state minima, and compute their absorption spectra. It has been shown that the most stable conformer is anti-syn for AG and anti-anti for GA. The ground state geometry governs both the excited states populated upon UV photon absorption and the type of excited state minima reached during their relaxation. Their fingerprints are detected in the transient absorption spectra recorded with excitation at 266 nm and a time resolution of 30 fs. Our measurements reveal that in the large majority of dinucleotides, chromophore coupling is already operative in the ground state and that the charge transfer process occurs within ~120 fs. The competition among various relaxation pathways affects the quantum yields of the CT state formation in each dinucleotide, which are estimated to be 0.18 and 0.32 for AG and GA, respectively. Full article
(This article belongs to the Special Issue Molecular Mechanisms in DNA and RNA Damage and Repair)
Show Figures

Graphical abstract

8 pages, 4783 KB  
Article
Fabrication and Self-Assembly Behavior of BPEF and BBPEF Composite Langmuir–Blodgett Films with Photovoltaic Conversion Properties
by Feifei Wang, Lei Ge, Lin Li, Tianyue Zhao and Tifeng Jiao
Nanomaterials 2024, 14(18), 1514; https://doi.org/10.3390/nano14181514 - 18 Sep 2024
Viewed by 1433
Abstract
The LB films prepared through the Langmuir–Blodgett (LB) technique are of significant importance for the fabrication of functional films such as optoelectronic materials and sensors. In this study, 9,9-bis (4-(2-hydroxy-ethoxy) phenyl) fluorene (BPEF) and 9,9-bis [3-phenyl-4-(β-hydroxy-ethoxy) phenyl] fluorene (BBPEF) were combined with saffron [...] Read more.
The LB films prepared through the Langmuir–Blodgett (LB) technique are of significant importance for the fabrication of functional films such as optoelectronic materials and sensors. In this study, 9,9-bis (4-(2-hydroxy-ethoxy) phenyl) fluorene (BPEF) and 9,9-bis [3-phenyl-4-(β-hydroxy-ethoxy) phenyl] fluorene (BBPEF) were combined with saffron T (ST), methylene blue (MB) and Rhodamine B (RhB) dyes by LB technique to prepare ordered composite films. The nanostructures and morphologies of the composite films were analyzed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). It was found that the films exhibited distinct aggregation morphologies. The UV-VIS absorption spectra showed that the concentration of dye molecules had a significant effect on the spectral characteristics. The contact Angle test shows that the prepared composite films are hydrophobic. The photovoltaic conversion performance of LB composite films was studied by transient photocurrent response experiments. It was found that BPEF/dye and BBPEF/dye composite films exhibited significant responses in photocurrent. In particular, BPEF/RhB and BBPEF/RhB composite films demonstrated excellent photoresponsive performance. This study used LB technology in combination with BPEF and BBPEF to demonstrate enhanced photocurrent and stable performance of LB film, which provided ideas for expanding the application range of materials. Full article
Show Figures

Figure 1

28 pages, 16270 KB  
Review
Exploring the Dynamics of Charge Transfer in Photocatalysis: Applications of Femtosecond Transient Absorption Spectroscopy
by Na Li, Yanlong Ma and Wanjun Sun
Molecules 2024, 29(17), 3995; https://doi.org/10.3390/molecules29173995 - 23 Aug 2024
Cited by 13 | Viewed by 5325
Abstract
Artificial photocatalytic energy conversion is a very interesting strategy to solve energy crises and environmental problems by directly collecting solar energy, but low photocatalytic conversion efficiency is a bottleneck that restricts the practical application of photocatalytic reactions. The key issue is that the [...] Read more.
Artificial photocatalytic energy conversion is a very interesting strategy to solve energy crises and environmental problems by directly collecting solar energy, but low photocatalytic conversion efficiency is a bottleneck that restricts the practical application of photocatalytic reactions. The key issue is that the photo-generated charge separation process spans a huge spatio-temporal scale from femtoseconds to seconds, and involves complex physical processes from microscopic atoms to macroscopic materials. Femtosecond transient absorption (fs-TA) spectroscopy is a powerful tool for studying electron transfer paths in photogenerated carrier dynamics of photocatalysts. By extracting the attenuation characteristics of the spectra, the quenching path and lifetimes of carriers can be simulated on femtosecond and picosecond time scales. This paper introduces the principle of transient absorption, typical dynamic processes and the application of femtosecond transient absorption spectroscopy in photocatalysis, and summarizes the bottlenecks faced by ultrafast spectroscopy in photocatalytic applications, as well as future research directions and solutions. This will provide inspiration for understanding the charge transfer mechanism of photocatalytic processes. Full article
(This article belongs to the Special Issue Design and Mechanisms of Photo(electro)catalysts for Water Splitting)
Show Figures

Graphical abstract

21 pages, 13609 KB  
Article
Aggregation of Albumins under Reductive Radical Stress
by Karolina Radomska, Liwia Lebelt and Marian Wolszczak
Int. J. Mol. Sci. 2024, 25(16), 9009; https://doi.org/10.3390/ijms25169009 - 19 Aug 2024
Cited by 2 | Viewed by 1645
Abstract
The reactions of radicals with human serum albumin (HSA) under reductive stress conditions were studied using pulse radiolysis and photochemical methods. It was proved that irradiation of HSA solutions under reductive stress conditions results in the formation of stable protein aggregates. HSA aggregates [...] Read more.
The reactions of radicals with human serum albumin (HSA) under reductive stress conditions were studied using pulse radiolysis and photochemical methods. It was proved that irradiation of HSA solutions under reductive stress conditions results in the formation of stable protein aggregates. HSA aggregates induced by ionizing radiation are characterized by unique emission, different from the UV emission of non-irradiated solutions. The comparison of transient absorption spectra and the reactivity of hydrated electrons (eaq) with amino acids or HSA suggests that electron attachment to disulfide bonds is responsible for the transient spectrum recorded in the case of albumin solutions. The reactions of eaq and CO2 with HSA lead to the formation of the same products. Recombination of sulfur-centered radicals plays a crucial role in the generation of HSA nanoparticles, which are stabilized by intermolecular disulfide bonds. The process of creating disulfide bridges under the influence of ionizing radiation is a promising method for the synthesis of biocompatible protein nanostructures for medical applications. Our Raman spectroscopy studies indicate strong modification of disulfide bonds and confirm the aggregation of albumins as well. Low-temperature measurements indicate the possibility of electron tunneling through the HSA protein structure to specific CyS-SCy bridges. The current study showed that the efficiency of HSA aggregation depends on two main factors: dose rate (number of pulses per unit time in the case of pulse radiolysis) and the temperature of the irradiated solution. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

15 pages, 4117 KB  
Article
A Study of Interstellar Medium in the Line of Sight of Transient Neutron Star Low-Mass X-ray Binary, MXB 1659-298, by Timing and Spectral Analysis
by Rabindra Mahato, Parag Bhattacharya and Monmoyuri Baruah
Galaxies 2024, 12(4), 41; https://doi.org/10.3390/galaxies12040041 - 31 Jul 2024
Viewed by 1597
Abstract
This work is dedicated to the study of interstellar medium (ISM) along the line of sight (LOS) of the transient low-mass X-ray binary, MXB 1659-298, capitalizing the high resolving power of XMM-Newton in the soft energy range. We emphasized the analysis of reflection [...] Read more.
This work is dedicated to the study of interstellar medium (ISM) along the line of sight (LOS) of the transient low-mass X-ray binary, MXB 1659-298, capitalizing the high resolving power of XMM-Newton in the soft energy range. We emphasized the analysis of reflection grating spectrometer (RGS) data in the energy range 0.5–2.15 keV, suitable for the study of ISM. The paper includes an explanation of why, in the soft X-ray energy range, only two observations (out of seven) were deemed eligible for analysis. Three absorption lines associated with highly ionized Fe XX (1s22p2-2p2 (3p) 4d), Si XIV (1s2-1s2p), and Mg XI (1s2-1s6p) were identified in the observations, with IDs of 8620701(2001) and 748391601(2015). These new absorption lines and the absorption edge due to the neutral oxygen K edge seen in the spectra validate the multiphase structure of ISM. The predominance of interstellar medium over the ionized absorber is established along the direction of the source. The equivalent hydrogen column density measured is nearly equal to the galactic HI value derived previously. The small value of the ionic column density of Fe, Si, and Mg in the site of the high-temperature region resembles previous findings. Full article
Show Figures

Figure 1

20 pages, 6455 KB  
Article
The Role of Intraligand Charge Transfer Processes in Iridium(III) Complexes with Morpholine-Decorated 4′-Phenyl-2,2′:6′,2″-terpyridine
by Joanna Palion-Gazda, Aleksandra Kwiecień, Katarzyna Choroba, Mateusz Penkala, Anna Kryczka and Barbara Machura
Molecules 2024, 29(13), 3074; https://doi.org/10.3390/molecules29133074 - 27 Jun 2024
Cited by 5 | Viewed by 1947
Abstract
To investigate the impact of the electron-donating morpholinyl (morph) group on the ground- and excited-state properties of two different types of Ir(III) complexes, [IrCl3(R-C6H4-terpy-κ3N)] and [Ir(R-C6H4-terpy-κ3N)2](PF6 [...] Read more.
To investigate the impact of the electron-donating morpholinyl (morph) group on the ground- and excited-state properties of two different types of Ir(III) complexes, [IrCl3(R-C6H4-terpy-κ3N)] and [Ir(R-C6H4-terpy-κ3N)2](PF6)3, the compounds [IrCl3(morph-C6H4-terpy-κ3N)] (1A), 4[Ir(morph-C6H4-terpy-κ3N)2](PF6)3 (2A), [IrCl3(Ph-terpy-κ3N)] (1B) and [Ir(Ph-terpy-κ3N)2](PF6)3 (2B) were obtained. Their photophysical properties were comprehensively investigated with the aid of static and time-resolved spectroscopic methods accompanied by theoretical DFT/TD-DFT calculations. In the case of bis-terpyridyl iridium(III) complexes, the attachment of the morpholinyl group induced dramatic changes in the absorption and emission characteristics, manifested by the appearance of a new, very strong visible absorption tailing up to 600 nm, and a significant bathochromic shift in the emission of 2A relative to the model chromophore. The emission features of 2A and 2B were found to originate from the triplet excited states of different natures: intraligand charge transfer (3ILCT) for 2A and intraligand with a small admixture of metal-to-ligand charge transfer (3IL–3MLCT) for 2B. The optical properties of the mono-terpyridyl iridium(III) complexes were less significantly impacted by the morpholinyl substituent. Based on UV–Vis absorption spectra, emission wavelengths and lifetimes in different environments, transient absorption studies, and theoretical calculations, it was demonstrated that the visible absorption and emission features of 1A are governed by singlet and triplet excited states of a mixed MLLCT-ILCT nature, with a dominant contribution of the first component, that is, metal-ligand-to-ligand charge transfer (MLLCT). The involvement of ILCT transitions was reflected by an enhancement of the molar extinction coefficients of the absorption bands of 1A in the range of 350–550 nm, and a small red shift in its emission relative to the model chromophore. Full article
(This article belongs to the Special Issue Photochemical Studies of Metal Complexes)
Show Figures

Graphical abstract

19 pages, 12218 KB  
Article
Excited-State Dynamics of Carbazole and tert-Butyl-Carbazole in Thin Films
by Konstantin Moritz Knötig, Domenic Gust, Kawon Oum and Thomas Lenzer
Photochem 2024, 4(2), 179-197; https://doi.org/10.3390/photochem4020011 - 9 Apr 2024
Cited by 3 | Viewed by 2125
Abstract
Thin films of carbazole (Cz) derivatives are frequently used in organic electronics, such as organic light-emitting diodes (OLEDs). Because of the proximity of the Cz units, the excited-state relaxation in such films is complicated, as intermolecular pathways, such as singlet–singlet annihilation (SSA), kinetically [...] Read more.
Thin films of carbazole (Cz) derivatives are frequently used in organic electronics, such as organic light-emitting diodes (OLEDs). Because of the proximity of the Cz units, the excited-state relaxation in such films is complicated, as intermolecular pathways, such as singlet–singlet annihilation (SSA), kinetically compete with the emission. Here, we provide an investigation of two benchmark systems employing neat carbazole and 3,6-di-tert-butylcarbazole (t-Bu-Cz) films and also their thin film blends with poly(methyl methacrylate) (PMMA). These are investigated by a combination of atomic force microscopy (AFM), femtosecond and nanosecond transient absorption spectroscopy (fs-TA and ns-TA) and time-resolved fluorescence. Excitonic J-aggregate-type features are observed in the steady-state absorption and emission spectra of the neat films. The S1 state shows a broad excited-state absorption (ESA) spanning the entire UV–Vis–NIR range. At high S1 exciton number densities of about 4 × 1018 cm−3, bimolecular diffusive S1–S1 annihilation is found to be the dominant SSA process in the neat films with a rate constant in the range of 1–2 × 10−8 cm3 s−1. SSA produces highly vibrationally excited molecules in the electronic ground state (S0*), which cool down slowly by heat transfer to the quartz substrate. The results provide relevant photophysical insight for a better microscopic understanding of carbazole relaxation in thin-film environments. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry II)
Show Figures

Graphical abstract

11 pages, 1636 KB  
Article
Comparative Investigation of Ultrafast Excited-State Electron Transfer in Both Polyfluorene-Graphene Carboxylate and Polyfluorene-DCB Interfaces
by Amani A. Alsam
Molecules 2024, 29(3), 634; https://doi.org/10.3390/molecules29030634 - 29 Jan 2024
Cited by 2 | Viewed by 1606
Abstract
The Photophysical properties, such as fluorescence quenching, and photoexcitation dynamics of bimolecular non-covalent systems consisting of cationic poly[(9,9-di(3,3′-N,N′-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and anionic graphene carboxylate (GC) have been discovered for the first time via steady-state and time-resolved femtosecond transient absorption (TA) [...] Read more.
The Photophysical properties, such as fluorescence quenching, and photoexcitation dynamics of bimolecular non-covalent systems consisting of cationic poly[(9,9-di(3,3′-N,N′-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and anionic graphene carboxylate (GC) have been discovered for the first time via steady-state and time-resolved femtosecond transient absorption (TA) spectroscopy with broadband capabilities. The steady-state fluorescence of PFN is quenched with high efficiency by the GC acceptor. Fluorescence lifetime measurements reveal that the quenching mechanism of PFN by GC is static. Here, the quenching mechanisms are well proven via the TA spectra of PFN/GC systems. For PFN/GC systems, the photo electron transfer (PET) and charge recombination (CR) processes are ultrafast (within a few tens of ps) compared to static interactions, whereas for PFN/1,4-dicyanobenzene DCB systems, the PET takes place in a few hundreds of ps (217.50 ps), suggesting a diffusion-controlled PET process. In the latter case, the PFN+•–DCB−• radical ion pairs as the result of the PET from the PFN to DCB are clearly resolved, and they are long-lived. The slow CR process (in 30 ns time scales) suggests that PFN+• and DCB−• may already form separated radical ion pairs through the charge separation (CS) process, which recombine back to the initial state with a characteristic time constant of 30 ns. The advantage of the present positively charged polyfluorene used in this work is the control over the electrostatic interactions and electron transfers in non-covalent polyfluorene/quencher systems in DMSO solution. Full article
(This article belongs to the Special Issue Ultrafast Dynamics in Chemical Processes)
Show Figures

Graphical abstract

17 pages, 2920 KB  
Article
The Rhodamine–Perylene Compact Electron Donor–Acceptor Dyad: Spin-Orbit Charge-Transfer Intersystem Crossing and the Energy Balance of the Triplet Excited States
by Muhammad Imran, Dongyi Liu, Kaiyue Ye, Xue Zhang and Jianzhang Zhao
Photochem 2024, 4(1), 40-56; https://doi.org/10.3390/photochem4010004 - 29 Jan 2024
Cited by 2 | Viewed by 2662
Abstract
We prepared a rhodamine (RB)–perylene (Pery) compact electron donor/acceptor dyad (RB–Pery) to study the spin-orbit charge-transfer intersystem crossing (SOCT–ISC). The UV–vis absorption spectrum indicates a negligible electronic interaction between the donor and acceptor at ground state. However, the fluorescence of both [...] Read more.
We prepared a rhodamine (RB)–perylene (Pery) compact electron donor/acceptor dyad (RB–Pery) to study the spin-orbit charge-transfer intersystem crossing (SOCT–ISC). The UV–vis absorption spectrum indicates a negligible electronic interaction between the donor and acceptor at ground state. However, the fluorescence of both the RB and Pery units are quenched in the dyad, which is attributed to the photoinduced electron transfer, supported by the electrochemical studies. Nanosecond transient absorption (ns-TA) spectra show delocalized triplet states, i.e., there is an excited-state equilibrium between Pery and the RB triplet states. The triplet state lifetime was determined as 109.8 μs. With intermolecular triplet–triplet energy transfer, monitored using ns-TA spectra, the triplet-state energy balance between RB and Pery in RB–Pery was confirmed. The proposed cascade photophysical processes of the dyad are 1RB*-Pery→RB–Pery+•→[3RB*-Pery↔RB-3Pery*]. Moreover, long-lived rhodamine radical cation (in milliseconds) was detected in both deaerated/aerated non-polar or low-polarity solvents (i.e., p-xylene, toluene). The potential energy curve of the dyad against the variation in the dihedral angle between the two units indicates large torsional freedom (53°~128°) in RB–Pery, which leads to inefficient SOCT–ISC; consequently, low singlet-oxygen quantum yields (ΦΔ = 2~8%) were observed. Full article
Show Figures

Graphical abstract

11 pages, 2461 KB  
Article
The Effect of Organic Spacer Cations with Different Chain Lengths on Quasi-Two-Dimensional Perovskite Properties
by Lei Zhang, Mingze Xia, Yuan Zhang, Li Song, Xiwei Guo, Yong Zhang, Yulei Wang and Yuanqin Xia
Inorganics 2024, 12(1), 12; https://doi.org/10.3390/inorganics12010012 - 27 Dec 2023
Cited by 8 | Viewed by 3601
Abstract
In the past 20 years, perovskite-related research has attracted wide attention. The related research into two-dimensional/quasi-two-dimensional perovskite has propelled the research of perovskite materials to a new height. To improve the properties of quasi-2D perovskite, improve the stability of materials, and achieve specific [...] Read more.
In the past 20 years, perovskite-related research has attracted wide attention. The related research into two-dimensional/quasi-two-dimensional perovskite has propelled the research of perovskite materials to a new height. To improve the properties of quasi-2D perovskite, improve the stability of materials, and achieve specific functions, using different types, volumes, and lengths of organic spacers is an essential method. In this paper, quasi-2D perovskites with EDA (ethylene diammonium), PDA (1,3-propanediammonium), and BDA (1,4-butanediammonium) (m = 2–4) as organic spacers were prepared, and the effects of different organic spacers on the 2D perovskite were investigated. The results show that the length of the organic spacer significantly impacts the perovskite’s properties. A shorter organic spacer can effectively reduce the quantum confinement and dielectric confinement in perovskite. It should be noted that if the organic spacer is too short, the stability of the quasi-2D perovskite will be greatly reduced. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials)
Show Figures

Graphical abstract

13 pages, 3969 KB  
Article
Impact of Surface Trap States on Electron and Energy Transfer in CdSe Quantum Dots Studied by Femtosecond Transient Absorption Spectroscopy
by Hongbin Dou, Chunze Yuan, Ruixue Zhu, Lin Li, Jihao Zhang and Tsu-Chien Weng
Nanomaterials 2024, 14(1), 34; https://doi.org/10.3390/nano14010034 - 22 Dec 2023
Cited by 6 | Viewed by 3739
Abstract
The presence of surface trap states (STSs) is one of the key factors to affect the electronic and optical properties of quantum dots (QDs), however, the exact mechanism of how STSs influence QDs remains unclear. Herein, we demonstrated the impact of STSs on [...] Read more.
The presence of surface trap states (STSs) is one of the key factors to affect the electronic and optical properties of quantum dots (QDs), however, the exact mechanism of how STSs influence QDs remains unclear. Herein, we demonstrated the impact of STSs on electron transfer in CdSe QDs and triplet-triplet energy transfer (TTET) from CdSe to surface acceptor using femtosecond transient absorption spectroscopy. Three types of colloidal CdSe QDs, each containing various degrees of STSs as evidenced by photoluminescence and X-ray photoelectron spectroscopy, were employed. Time-resolved emission and transient absorption spectra revealed that STSs can suppress band-edge emission effectively, resulting in a remarkable decrease in the lifetime of photoelectrons in QDs from 17.1 ns to 4.9 ns. Moreover, the investigation of TTET process revealed that STSs can suppress the generation of triplet exciton and effectively inhibit band-edge emission, leading to a significant decrease in TTET from CdSe QDs to the surface acceptor. This work presented evidence for STSs influence in shaping the optoelectronic properties of QDs, making it a valuable point of reference for understanding and manipulating STSs in diverse QDs-based optoelectronic applications involving electron and energy transfer. Full article
Show Figures

Figure 1

Back to TopTop