Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = vegetable aroma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3201 KB  
Article
Synergistic Strategy Against the Effects of Climate Change Using Non-Positioned Vegetation Training Systems and the Application of Kaolin in a Vineyard in a Semi-Arid Climate: Agronomic and Oenological Effects
by Fernando Sánchez-Suárez, Rafael Martínez-García, Nieves López de Lerma and Rafael A. Peinado
Agronomy 2025, 15(12), 2730; https://doi.org/10.3390/agronomy15122730 - 27 Nov 2025
Viewed by 76
Abstract
Climate change poses a major challenge for Mediterranean viticulture by accelerating ripening and reducing grape yield and quality. This study evaluated the synergistic effect of two adaptation strategies—non-positioned vegetation training (Sprawl) and foliar kaolin application—on the agronomic and oenological performance of Syrah cv. [...] Read more.
Climate change poses a major challenge for Mediterranean viticulture by accelerating ripening and reducing grape yield and quality. This study evaluated the synergistic effect of two adaptation strategies—non-positioned vegetation training (Sprawl) and foliar kaolin application—on the agronomic and oenological performance of Syrah cv. under semi-arid conditions over two consecutive seasons. Agronomic traits, bunch microclimate, and volatile composition of wines were determined. The combination of Sprawl and kaolin reduced bunch temperature by up to 2 °C, improved vine balance, and maintained optimal acidity and colour intensity. Wines from this treatment exhibited higher concentrations of esters and terpenes, generating more pronounced fruity, floral, and citrus aromas. Multivariate analysis of aroma series revealed clear differences between treatments and vintages, with 2025 showing stronger aromatic distinctions. Heatmap clustering confirmed that vintage was the main differentiating factor, followed by training system. These findings highlight the potential of integrating simple canopy management with reflective particle films to improve grape and wine quality under future Mediterranean conditions. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

17 pages, 2290 KB  
Article
Comparative Analysis of Amino Acid, Sugar, Acid and Volatile Compounds in 4-CPA-Treated and Oscillator-Pollinated Cherry Tomato Fruits During Ripe Stage
by Zhimiao Li, Sihui Guan, Meiying Ruan, Zhuping Yao, Chenxu Liu, Hongjian Wan, Qingjing Ye, Yuan Cheng and Rongqing Wang
Foods 2025, 14(22), 3914; https://doi.org/10.3390/foods14223914 - 15 Nov 2025
Viewed by 412
Abstract
4-Chlorophenoxyacetic acid (4-CPA) is an auxin-type plant growth regulator widely used in fruit and vegetable production. However, its influence on the nutritional and sensory qualities of horticultural crops remains insufficiently characterized. This study investigated the influence of 4-CPA application and oscillator-mediated pollination on [...] Read more.
4-Chlorophenoxyacetic acid (4-CPA) is an auxin-type plant growth regulator widely used in fruit and vegetable production. However, its influence on the nutritional and sensory qualities of horticultural crops remains insufficiently characterized. This study investigated the influence of 4-CPA application and oscillator-mediated pollination on the metabolic composition of fully ripe fruits of Solanum lycopersicum var. cerasiforme cv. ‘Zheyingfen No. 1’. Two concentrations of 4-CPA (16 mg/L and 8 mg/L) were applied during flowering, and their effects on amino acids, soluble sugars, organic acids, and volatile compounds (VOCs) were comparatively analyzed. The results indicated that treatment with 8 mg/L 4-CPA treatment significantly increased the total amino acid content in ripe fruits compared with the control and the 16 mg/L treatment. Among the 17 amino acids identified, the contents of umami-related amino acids, including glutamic acid (Glu) and aspartic acid (Asp), were markedly enhanced. In particular, Glu content in the C8 treatment was the highest and accounted for more than 50% of the total amino acid content. The accumulation of sugars was not significantly affected by 4-CPA treatment, while the C8 treatment resulted in the lowest level of total organic acids, which are crucial for flavor development at the ripening stage. A 29.35% increase in VOCs was observed” for conciseness in 4-CPA-treated fruits compared with the control. Analysis of relative odor activity values (rOAVs) showed that although 4-CPA treatment reduced the number of aroma-active compounds, it promoted the accumulation of β-ionone, thereby shifting the tomato fruit aroma profile toward floral, woody, sweet, and fruity notes. In summary, 4-CPA treatment regulated the nutritional and flavor quality of ripe cherry tomato fruits by increasing the content of Glu and other amino acids, enhancing the diversity of VOCs, and promoting the formation of key aroma-active substances such as β-ionone. Full article
Show Figures

Graphical abstract

25 pages, 369 KB  
Article
Impact of Incubation Conditions and Addition of Red Beet and Leek Powders as Natural Nitrate Sources on the Physicochemical and Sensory Properties of Cooked Sausages
by Ivica Kos, Jelka Pleadin, Martina Stvorić, Milijana Mirić, Ivan Širić, Tina Lešić, Maja Lazarus, Tatjana Orct, Kristina Kljak, Tamara Stamenić, Marina Ravlić, Miroslav Jůzl and Ivan Vnučec
Processes 2025, 13(11), 3490; https://doi.org/10.3390/pr13113490 - 30 Oct 2025
Viewed by 355
Abstract
Nitrite remains a central component in industrial cured meat processing for its role in providing colour stability, oxidative protection, and microbial safety. However, synthetic nitrite is associated with the formation of nitrosamines, leading to increased health concerns and negative consumer perception of synthetic [...] Read more.
Nitrite remains a central component in industrial cured meat processing for its role in providing colour stability, oxidative protection, and microbial safety. However, synthetic nitrite is associated with the formation of nitrosamines, leading to increased health concerns and negative consumer perception of synthetic additives, thereby increasing demand for healthier meat products produced with natural nitrite sources. This study employed a two-stage design to assess microbial nitrate curing in cooked sausages and its extension to vegetable powders. In Stage 1, sodium nitrate (100 mg/kg) combined with Staphylococcus carnosus was incubated at 30 or 40 °C for 90 or 180 min. Incubation at 30 °C yielded residual nitrite concentrations of 18–29 mg/kg, corresponding to 35–40% of those in nitrite controls, and resulted in equivalent colour (CIE ΔE* < 2) and oxidative stability (0.07–0.09 mg MDA/kg versus 0.08 mg MDA/kg in the control). In Stage 2, application of red beet (2%) and leek (1%) powders supplying 100 mg/kg NO3 produced adequate curing but induced substantial compositional and sensory deviations, including higher redness (CIE a* ≈ 23 versus 15), fourfold higher lipid oxidation (0.35–0.42 mg MDA/kg), and intensified vegetable aroma and sweetness. These findings demonstrate that microbial nitrate reduction at 30 °C effectively reproduces the technological performance of direct nitrite addition, whereas vegetable-based nitrate curing introduces significant colour, oxidative, and sensory differentiation, highlighting both potential and limitations of microbial nitrate curing. Full article
15 pages, 279 KB  
Article
The Effect of Storage Time on the Quality of Low-Sugar Apple Jams with Steviol Glycosides
by Marlena Pielak and Ewa Czarniecka-Skubina
Foods 2025, 14(21), 3678; https://doi.org/10.3390/foods14213678 - 28 Oct 2025
Viewed by 603
Abstract
This study investigated the effect of storage time on the quality of low-sugar apple jams partially substituted with steviol glycosides (SGs). Apple jams were prepared with 0%, 10%, 20%, 30%, and 40% sugar replacement using highly purified SGs (95.1%). The jams were evaluated [...] Read more.
This study investigated the effect of storage time on the quality of low-sugar apple jams partially substituted with steviol glycosides (SGs). Apple jams were prepared with 0%, 10%, 20%, 30%, and 40% sugar replacement using highly purified SGs (95.1%). The jams were evaluated immediately after production and after 3 and 6 months of storage at 22 °C in the dark. Physicochemical analyses included dry matter, total soluble solids, vitamin C, total ash, pH, titratable acidity, malic acid, and color parameters (L*, a*, b*). Sensory and microbiological assessments were also carried out. During storage, the dry matter content significantly decreased from 41.4% (control) to 35.6% (40% SGs), while titratable acidity increased from 10.69° to 16.73° (p < 0.05), and pH values remained stable (3.15–3.29). Vitamin C content decreased significantly (from 0.56 mg/100 g to 0.19 mg/100 g; 33–66% degradation). The color of jams became lighter with increasing SG substitution (L* increased from 17.19 to 24.73; ΔE up to 9.66) and slightly darkened after storage (ΔL ≈ −1.0). Microbiological analysis confirmed complete safety, with total colony counts < 10 CFU/g and no presence of Listeria monocytogenes or coagulase-positive Staphylococcus. Sensory evaluation by a trained panel (10 assessors, aged 34–56 years, with similar training in fruit and vegetable preserve evaluation) showed that jams with 10–30% SG substitution maintained desirable apple aroma and sweetness, whereas higher SG levels enhanced metallic odor (0.12–0.95 c.u.) and bitterness (0.2–1.9 c.u.) while slightly reducing apple flavor intensity (p < 0.05). Despite these differences, all jams remained acceptable after 6 months of storage. Overall, replacing up to 40% of sucrose with steviol glycosides provided microbiological stability, controlled color changes, and acceptable sensory quality, supporting the production of low-sugar jams in line with clean-label and sustainability trends in modern food technology. Full article
(This article belongs to the Special Issue Storage and Shelf-Life Assessment of Food Products: 2nd Edition)
16 pages, 3788 KB  
Article
Analysis of Physicochemical Characteristics, Flavor, and Microbial Community of Sichuan Industrial Paocai Fermented by Traditional Technology
by Shuang Xian, Hongchen Li, Xinyi Wang, Xiangchao He, Yanlan Li, Xinyan Liu, Guanghui Shen and Anjun Chen
Foods 2025, 14(18), 3232; https://doi.org/10.3390/foods14183232 - 17 Sep 2025
Cited by 1 | Viewed by 761
Abstract
Sichuan Paocai is a representative traditional fermented vegetable in China, which is deeply embedded in local geographical and cultural heritage. However, regional differences in product characteristics remain poorly understood. In this study, the physicochemical properties, volatile compounds, and microbial communities of Paocai from [...] Read more.
Sichuan Paocai is a representative traditional fermented vegetable in China, which is deeply embedded in local geographical and cultural heritage. However, regional differences in product characteristics remain poorly understood. In this study, the physicochemical properties, volatile compounds, and microbial communities of Paocai from seven production regions in Sichuan (named FB, AB, BZ, CD, DZ, MY, and YS) were systematically investigated. Parameters including pH, salinity, nitrite, organic acids, and color were determined, while volatile profiles were analyzed using an electronic nose and comprehensive two-dimensional gas chromatography–mass spectrometry. A total of 294 volatile compounds were identified, with alcohols, esters, and isothiocyanates emerging as the major contributors to flavor differentiation. UMAP and OPLS-DA analyses revealed distinct regional clustering, which was consistent with electronic nose profiling, and 111 volatile compounds were identified as key aroma markers. Microbial diversity was assessed using 16S rRNA gene sequencing, demonstrating that Lactobacillus, Lentilactobacillus, Pediococcus, and Weissella were the dominant taxa, although the richness varied significantly across regions. An LEfSe analysis further identified region-specific biomarkers, including Pediococcus, Lactococcus, and Leuconostoc in FB; Lactobacillus in AB; Pediococcus ethanolidurans in BZ; Levilactobacillus in DZ; Lentilactobacillus in MY; and a more diverse microbiota in MS. A correlation analysis highlighted the pivotal roles of distinct microbial groups in shaping and transforming flavor compounds across different regions. Overall, these findings provide scientific guidance for the development of high-quality, region-specific products and contribute to the protection, branding, and market competitiveness of geographically indicated foods. Full article
Show Figures

Figure 1

14 pages, 257 KB  
Article
Effects of Berry, Cluster Thinning and No-Sulfites Addition on the Sensory Quality of ‘Monastrell’ Organic Wines
by Jorge Piernas, Santiago García-Martínez, Pedro J. Zapata, Ángel A. Carbonell-Barrachina, Luis Noguera-Artiaga and María J. Giménez
Horticulturae 2025, 11(9), 1105; https://doi.org/10.3390/horticulturae11091105 - 12 Sep 2025
Viewed by 661
Abstract
This study investigated the impact of berry and cluster thinning on the organoleptic and chemical quality of red wines produced with no-sulfites-added production, using ‘Monastrell’ grapes cultivated under organic viticulture. The experiment was conducted in a commercial vineyard in Murcia (Spain), applying three [...] Read more.
This study investigated the impact of berry and cluster thinning on the organoleptic and chemical quality of red wines produced with no-sulfites-added production, using ‘Monastrell’ grapes cultivated under organic viticulture. The experiment was conducted in a commercial vineyard in Murcia (Spain), applying three treatments: control, bunch reduction (BR), and berry thinning (BT). Grapes were vinified under identical conditions, and the resulting wines were analyzed after three months and five years of storage. Physicochemical parameters, volatile organic compounds (VOCs), and sensory profiles were evaluated. Thinning treatments significantly increased alcohol content, reducing sugars, polyphenol index, and the concentration of key aromatic compounds. Sensory analysis revealed that wines from thinned grapes exhibited more intense toasted, vegetal, and fruity notes, and presented greater color stability and fewer defects over time. Notably, only the control wine developed Brettanomyces-related off-flavors after five years. Consumer preference tests confirmed higher acceptance of BR and BT wines, based particularly on color, fruity aroma, and aftertaste. These findings suggested that thinning practices, especially bunch thinning, offer a cost-effective strategy to improve wine quality and stability in no-sulfites-added winemaking, reducing the risk of spoilage and enhancing consumer satisfaction. Full article
(This article belongs to the Special Issue Fruits Quality and Sensory Analysis—2nd Edition)
18 pages, 1633 KB  
Article
Discrimination Between Commercial Tomato Juices from Non-Concentrate and Concentrate Based on Their Volatile Profiles
by Yoko Iijima, Katsutoshi Saisho and Taiki Maeoka
Foods 2025, 14(17), 2993; https://doi.org/10.3390/foods14172993 - 27 Aug 2025
Viewed by 812
Abstract
Commercial fruit juices are categorized into juice not from concentrate (JNFC) and juice from concentrate (JFC). Tomato juice is one of the most popular vegetable juices, and its aroma is an important factor in evaluating its quality. However, differences in the aroma characteristics [...] Read more.
Commercial fruit juices are categorized into juice not from concentrate (JNFC) and juice from concentrate (JFC). Tomato juice is one of the most popular vegetable juices, and its aroma is an important factor in evaluating its quality. However, differences in the aroma characteristics of JNFC and JFC tomato juices have not been clearly identified. This study aimed to investigate the volatile organic compounds (VOCs) involved in distinguishing between JNFC and JFC using commercially available tomato juices. Furthermore, the effect of concentration on the VOC composition was evaluated using different procedures. Twenty-three commercial tomato juices were prepared for analysis of VOCs using headspace solid phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC-MS). Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to discriminate the samples into JNFC and JFC groups. JNFC contained 43 VOCs, which was more than twice that contained in JFC, and the quantitative variation was larger in JNFC than in JFC. In particular, the JNFC group contained significantly more alcohol and phenol compounds. On the other hand, the JFC group contained more formyl pyrrole and Strecker aldehydes. Additional GC-MS/olfactometry (GC-MS/O) and odor active value analyses indicated that (Z)-3-hexenol and 3-methylbutanal were the best VOCs to distinguish between the JNFC and JFC groups. Furthermore, different concentration procedures, including heating concentration (HC), decompression concentration (DC), and freeze drying (FD), were performed, and the corresponding VOCs were compared. HC and DC reduced the levels of most of the compounds to the levels seen in commercial JFC. These results indicate that the concentration procedure is an important processing stage, in addition to the break process, that determines the quality of tomato juice. Full article
Show Figures

Figure 1

19 pages, 6125 KB  
Article
Deterioration in the Quality of ‘Xuxiang’ Kiwifruit Pulp Caused by Frozen Storage: An Integrated Analysis Based on Phenotype, Color, Antioxidant Activity, and Flavor Compounds
by Chenxu Zhao, Junpeng Niu, Wei Wang, Yebo Wang, Linlin Cheng, Yonghong Meng, Yurong Guo and Shujie Song
Foods 2025, 14(13), 2322; https://doi.org/10.3390/foods14132322 - 30 Jun 2025
Cited by 3 | Viewed by 1049
Abstract
Kiwifruit has attracted much attention in fruit and vegetable processing due to its high nutritional and economic value. However, there is a lack of systematic research on the effects of long-term frozen storage on the pulp quality of kiwifruit. Using kiwifruit pulp stored [...] Read more.
Kiwifruit has attracted much attention in fruit and vegetable processing due to its high nutritional and economic value. However, there is a lack of systematic research on the effects of long-term frozen storage on the pulp quality of kiwifruit. Using kiwifruit pulp stored at −20 °C for 0, 3, 6, 9, and 12 months as the research materials, the dynamic changes in the phenotype, color, antioxidant activity, and flavor compounds were comprehensively evaluated. The results showed that frozen storage caused a significant decline in the quality of the fruit pulp. Specifically, the contents of chlorophyll and carotenoids decreased and the color deteriorated (color difference increased); the turbidity and centrifugal sedimentation rates increased, and pH and viscosity changed in different stages. Additionally, antioxidant compounds, such as vitamin C and total phenols, were significantly reduced with the extension of storage duration, and the 2,2-diphenyl-1-picrylhydrazyl (DPPH)/2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging ability was decreased. The content of volatile aroma compounds diminished, leading to a notable shift in the flavor profile. Correlation analysis revealed that changes in volatile substances were significantly correlated with physical, chemical, and antioxidant indicators (p < 0.05). These correlations can serve as a key basis for assessing quality deterioration. This study systematically elucidated, for the first time, the mechanism of quality deterioration in kiwifruit pulp during frozen storage, thereby providing theoretical support for enterprises to optimize pulp grading strategies and the timing of by-product development. Hence, it is recommended that the duration of freezing should be limited to less than 9 months for kiwifruit pulp. Moreover, it is essential to consider varietal differences and new pretreatment technologies to further enhance the industrial utilization and economic value of frozen pulp. Full article
Show Figures

Figure 1

22 pages, 2415 KB  
Article
From Tradition to Innovation: The Role of Sea Fennel in Shaping Kimchi’s Microbial, Chemical, and Sensory Profiles
by Maryem Kraouia, Maoloni Antonietta, Federica Cardinali, Vesna Milanović, Cristiana Garofalo, Andrea Osimani, Antonio Raffo, Valentina Melini, Nicoletta Nardo, Irene Baiamonte, Lucia Aquilanti and Giorgia Rampanti
Molecules 2025, 30(13), 2731; https://doi.org/10.3390/molecules30132731 - 25 Jun 2025
Viewed by 1681
Abstract
Kimchi, a traditional fermented product made primarily with Chinese cabbage, develops its characteristic flavor through microbial activity and a variety of ingredients. This study explores the incorporation of sea fennel (Crithmum maritimum L.), a halophytic plant rich in bioactive compounds and known [...] Read more.
Kimchi, a traditional fermented product made primarily with Chinese cabbage, develops its characteristic flavor through microbial activity and a variety of ingredients. This study explores the incorporation of sea fennel (Crithmum maritimum L.), a halophytic plant rich in bioactive compounds and known for its distinctive aroma, into kimchi. Two fermentation methods were compared: spontaneous fermentation and fermentation using a defined starter culture of four lactic acid bacteria strains. Fermentation was conducted at 4 °C for 26 days, with samples monitored for up to 150 days. Parameters analyzed included pH, titratable acidity, microbial counts, organic acid concentrations, volatile organic compounds (VOCs), and sensory attributes. In the early stages, notable differences in acidity, microbial populations, and VOCs were observed between the two methods, but these differences diminished over time. Sensory analysis indicated similar overall characteristics for both prototypes, although the sea fennel’s aroma and fibrous texture remained perceptible at day 150. VOCs analysis revealed that the fermentation time significantly affected the composition of key aroma compounds, contributing to the final sensory profile. Sea fennel played a key role in shaping the VOC profile and imparting a distinctive aromatic quality. Both fermentation methods led to similar enhancements in flavor and product quality. These findings support the use of sea fennel as an aromatic ingredient in fermented vegetables and highlight the importance of fermentation optimization. Full article
Show Figures

Figure 1

16 pages, 940 KB  
Article
Effects of Seedling Substrate and Hydroponic Versus Aquaponic Nutrient Solution on Growth, Nutrient Uptake, and Eco-Physiological Response of Lemon Basil (Ocimum × citriodorum)
by Linda Signorini, Giuseppe Carlo Modarelli, Prospero Di Pierro, Antonio Luca Langellotti, Chiara Cirillo, Stefania De Pascale and Paolo Masi
Plants 2025, 14(13), 1929; https://doi.org/10.3390/plants14131929 - 23 Jun 2025
Viewed by 1529
Abstract
Lemon basil (Ocimum × citriodorum) is a highly valued aromatic plant renowned for its distinct citrus aroma. This study aimed to evaluate sustainable substrates and cultivation systems for its production. Two complementary and sequential experiments were conducted: an initial experiment designed [...] Read more.
Lemon basil (Ocimum × citriodorum) is a highly valued aromatic plant renowned for its distinct citrus aroma. This study aimed to evaluate sustainable substrates and cultivation systems for its production. Two complementary and sequential experiments were conducted: an initial experiment designed to compare coconut fiber mixed in varying proportions with perlite to rock wool, evaluating their effectiveness during germination and early growth (experiment 1), and a subsequent experiment aimed at assessing plant performance in a decoupled aquaponic system relative to hydroponics utilizing the best-performing coconut fiber-perlite mixture from the first phase along with rock wool as substrates (experiment 2). The substrate with 70% coconut fiber and 30% perlite (F70:P30) significantly improved seed germination, leaf number, and total leaf area of seedlings. The decoupled aquaponic cultivation system resulted in a 52.5% increase in flavonoid content, accompanied by higher calcium and magnesium uptake in stems and roots compared to hydroponics. These findings clearly underscore the potential of coconut fiber substrates mixed with perlite as sustainable alternatives to rock wool, reducing environmental impact, disposal costs, and health risks. Similarly, aquaponic cultivation emerges as a valuable strategy for sustainable lemon basil (Ocimum × citriodorum) production, offering comparable yields to hydroponics while improving plant nutritional and phytochemical quality through beneficial plant-microbe interactions. These results provide practical evidence supporting the adoption of environmentally friendly substrates and cultivation practices, thus contributing significantly toward sustainable intensive vegetable production systems. Full article
Show Figures

Figure 1

21 pages, 6208 KB  
Article
Genome Wide Identification of Terpenoid Metabolism Pathway Genes in Chili and Screening of Key Regulatory Genes for Fruit Terpenoid Aroma Components
by Mengxian Yang, Kun Wu, Genying Fu, Shuang Yu, Renquan Huang, Zhiwei Wang, Xu Lu, Huizhen Fu, Qin Deng and Shanhan Cheng
Horticulturae 2025, 11(6), 586; https://doi.org/10.3390/horticulturae11060586 - 25 May 2025
Viewed by 915
Abstract
Aroma is an important processing and consumption quality trait of fruits and vegetables, and terpenes produced from the terpenoid metabolic pathway are a critical component of chili fruit flavor. This pathway involves the participation of at least eighteen enzymes, such as AACT, HMGS, [...] Read more.
Aroma is an important processing and consumption quality trait of fruits and vegetables, and terpenes produced from the terpenoid metabolic pathway are a critical component of chili fruit flavor. This pathway involves the participation of at least eighteen enzymes, such as AACT, HMGS, HMGR, MVK, PMK, MVD, FPPS, GGPPS, DXS, DXR, MCT, CMK, MECPS, HDS, HDR, GPPS, IDI, and TPS. In this study, the genome wide information, expression characteristics, and relationship with terpenoids of terpenoid pathway genes are analyzed in C. annuum. The results showed that C. annuum has sixty-seven genes related to terpene metabolic pathways. Non-targeted metabolomics studies found that the content of aromatic terpenoids α-calacorene, α-cubene, and cis-β-farnesene increased with fruit development in HDL fruits, while linalool and nerolidol were much higher in GLD608. Correlation analyses between qRT-PCR and metabolome data showed that the expression levels of CaHMGS-3, CaMVD-1, CaCMK-1, and CaGGPPS-2 were positively correlated with the content of linalool, a flavor monoterpene alcohol. CaMECPS-1 was positively correlated with cis-β-farnesene, and there was also a significant positive regulatory relationship between CaTPS-5 and nerolidol relationship. In conclusion, the present study provides genetic resources for further studies on the gene regulatory mechanisms of flavor synthesis and terpenoid metabolic pathways in chili. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

14 pages, 2474 KB  
Article
Effects of Different Proportions of Cattle Manure and Mushroom Residue on Yield and Quality of Cucumber Fruit
by Ruochen Wang, Ziyi Wang, Zhaomei Liu, Tingting Zhang and Shuxia Chen
Plants 2025, 14(9), 1371; https://doi.org/10.3390/plants14091371 - 30 Apr 2025
Cited by 1 | Viewed by 990
Abstract
Large-scale agricultural and animal husbandry production in Shaanxi Province of China has led to significant environmental pollution, due to the incineration of vast amounts of agricultural waste annually. As the land area used for vegetable cultivation expands and farming practices evolve, the demand [...] Read more.
Large-scale agricultural and animal husbandry production in Shaanxi Province of China has led to significant environmental pollution, due to the incineration of vast amounts of agricultural waste annually. As the land area used for vegetable cultivation expands and farming practices evolve, the demand for organic substrates continues to grow. To optimize cost savings and enhance efficiency, this study investigated the effects of different organic substrate compositions on cucumber (Cucumis sativus) yield and quality, using ‘Jinyou 35’ cucumber as the experimental model. The results demonstrated that the blended organic substrates derived from agricultural waste met key physicochemical requirements for cucumber cultivation across both seedling establishment and fruit development stages. Compared with the control, the T4 treatment (mushroom residue/cattle manure = 1:1) increased the cucumber yield and its content of total sugar, vitamin C, and fatty acids. Furthermore, the T6 treatment (mushroom residue/cattle manure = 3:1) produced the highest total aroma and the lowest soluble protein content compared to the other treatments, and the level of C6 aldehydes in the cucumber fruits was significantly higher (p < 0.05) in this treatment group than in the control group. The findings suggest that properly formulated organic substrate blends can serve as effective growing media for cucumber cultivation, while simultaneously mitigating environmental pollution. This study provides a theoretical foundation for the sustainable utilization of agricultural waste-derived organic substrates in vegetable production. Full article
(This article belongs to the Special Issue Fruit Development and Ripening)
Show Figures

Figure 1

13 pages, 680 KB  
Article
Consumer Acceptance and Perceived Sensory Characteristics of Commercial Vegan Mayonnaise
by Juyoun Lee and Kyunghee Kim
Foods 2025, 14(9), 1542; https://doi.org/10.3390/foods14091542 - 28 Apr 2025
Viewed by 2152
Abstract
This study aims to investigate the sensory characteristics of commercially available vegan mayonnaise using the Check-All-That-Apply (CATA) methodology and to determine the acceptability factors influencing consumer purchase intention. Six mayonnaise samples were evaluated by 112 consumers: one conventional mayonnaise and five commercially available [...] Read more.
This study aims to investigate the sensory characteristics of commercially available vegan mayonnaise using the Check-All-That-Apply (CATA) methodology and to determine the acceptability factors influencing consumer purchase intention. Six mayonnaise samples were evaluated by 112 consumers: one conventional mayonnaise and five commercially available vegan mayonnaises (labeled OGM, VVM, EBM, VM, SM, and OVM). Except for fatty flavor, rancid odor, artificial flavor, mouthcoating, melting, and mouthfeel, 15 characteristics (yellowness, glossiness, slimness, thickness, smoothness, beany odor, lemon aroma, nutty flavor, sourness, saltiness, sweetness, savory flavor, off-flavor, goes well with vegetables, and spreads well on crackers) were significantly different among 6 samples (p < 0.001). Across all evaluation attributes, OGM and VM had the highest acceptance, with no significant differences between the two samples except for overall taste. The VM was the only vegan mayonnaise that produced results similar to those of OGM, which is regular mayonnaise. The results of the study suggest that vegan mayonnaise can be a substitute for regular mayonnaise. We hope that this research will provide data that can be used as a basis for developing vegan mayonnaise products that meet the needs of consumers and food companies. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

31 pages, 1074 KB  
Review
Dietary Fibres in Processed Meat: A Review on Nutritional Enhancement, Technological Effects, Sensory Implications and Consumer Perception
by Marius-Mihai Ciobanu, Diana-Remina Manoliu, Mihai Cătălin Ciobotaru, Elena-Iuliana Flocea and Paul-Corneliu Boișteanu
Foods 2025, 14(9), 1459; https://doi.org/10.3390/foods14091459 - 23 Apr 2025
Cited by 8 | Viewed by 3916
Abstract
Meat is an essential source of nutrients in the human diet and a component of global food security. In the context of a growing demand for functional and healthy foods, the addition of non-meat ingredients, such as dietary fibres, is a promising strategy [...] Read more.
Meat is an essential source of nutrients in the human diet and a component of global food security. In the context of a growing demand for functional and healthy foods, the addition of non-meat ingredients, such as dietary fibres, is a promising strategy for improving the quality of meat products. This review aimed to identify and synthesise the available recent literature regarding the impact of fibre-rich ingredients on the properties of meat products, investigating how various plant sources (such as cereals, vegetables, legumes, and fruits) can be used in various forms of meat products, such as meat pastes, emulsified products, and minced and restructured meat products. Analyses of technological parameters revealed improvements in water-holding capacity, cooking losses, and an increased production yield. The addition of fibre has demonstrated a favourable effect on low-fat products, stabilising the emulsion and improving its physical texture properties. The chemical analysis highlighted an increase in dietary fibre and mineral content, as well as a decrease in fat content depending on the type and level of fibre added. Sensory changes included aspects related to the colour, aroma, texture, and overall acceptability of the products. The optimisation of the type and level of fibre is essential to obtain meat products with improved characteristics. Full article
(This article belongs to the Collection Food Additives)
Show Figures

Figure 1

18 pages, 1854 KB  
Article
Water Stress Effects on Biomass Allocation and Secondary Metabolism in CBD-Dominant Cannabis sativa L.
by Maddalena Cappello Fusaro, Irene Lucchetta and Stefano Bona
Plants 2025, 14(8), 1267; https://doi.org/10.3390/plants14081267 - 21 Apr 2025
Cited by 3 | Viewed by 1619
Abstract
Water availability is a key factor affecting both morphological development and secondary metabolite production in Cannabis sativa L. This study evaluated the effects of water stress applied during the vegetative and flowering stages on plant performance, cannabinoid concentration, and terpene composition in two [...] Read more.
Water availability is a key factor affecting both morphological development and secondary metabolite production in Cannabis sativa L. This study evaluated the effects of water stress applied during the vegetative and flowering stages on plant performance, cannabinoid concentration, and terpene composition in two Chemotype III (cannabidiol-dominant) varieties. Plants were subjected to moderate and severe water stress, and responses were assessed through biomass measurements, GC-MS analyses, and multivariate statistics. Water stress significantly influenced biomass allocation, with increased dry biomass but reduced harvest index, particularly under flowering-stage stress. Cannabidiol (CBD) content declined with increasing stress, while tetrahydrocannabinol (THC) levels increased under vegetative stress, indicating a stress-induced shift in cannabinoid biosynthesis. Cannabinol (CBN) levels also increased, suggesting enhanced THC degradation. Terpene composition was predominantly genotype-driven. PCA-MANOVA showed significant effects of variety, stress level, and their interaction, yet only minor volatiles were modulated by stress, while the most abundant terpenes remained stable across treatments, preserving the varietal aroma profile. These results underline the importance of genetic background and irrigation timing in determining cannabis yield and quality. Optimized water management is essential to ensure phytochemical consistency and sustainable production, especially in high-value medicinal and aromatic applications. Full article
(This article belongs to the Special Issue Cannabis sativa: Advances in Biology and Cultivation—2nd Edition)
Show Figures

Figure 1

Back to TopTop