Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = watt six-bar linkage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9247 KB  
Article
Performance Comparison of Multi-Objective Optimizers for Dynamic Balancing of Six-Bar Watt Linkages Using a Fully Cartesian Model
by María T. Orvañanos-Guerrero, Claudia N. Sánchez, Luis Eduardo Robles-Jiménez and Sara Carolina Gómez-Delgado
Appl. Sci. 2025, 15(13), 7543; https://doi.org/10.3390/app15137543 - 4 Jul 2025
Viewed by 598
Abstract
Balancing mechanisms require the minimization of both the Shaking Moment (ShM) and Shaking Force (ShF), a complex multi-criteria challenge often tackled using single-objective algorithms. However, these methods face difficulties in navigating competing objectives. In contrast, multi-objective algorithms [...] Read more.
Balancing mechanisms require the minimization of both the Shaking Moment (ShM) and Shaking Force (ShF), a complex multi-criteria challenge often tackled using single-objective algorithms. However, these methods face difficulties in navigating competing objectives. In contrast, multi-objective algorithms provide a more efficient and adaptable framework, while Fully Cartesian Coordinates (FCC) simplify the balancing equations compared to conventional Cartesian formulations. This study focuses on optimizing the dynamic balance of a six-bar Watt linkage using FCC. A wide set of optimization methods is analyzed and compared, and among them, the S-Metric Selection Evolutionary Multi-objective Optimization Algorithm (SMS-EMOA) demonstrates superior performance. This algorithm achieves the most significant hypervolume value in only 10.44 min of execution. The results indicate that multi-objective algorithms outperform single-objective approaches, offering faster and more diverse optimization solutions. Additionally, this study introduces an analytical method that enables the straightforward identification of removable counterweights, achieving an equally effective balance while minimizing the number of counterweights required. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

14 pages, 4926 KB  
Article
Eight-Bar Elbow Joint Exoskeleton Mechanism
by Giorgio Figliolini, Chiara Lanni, Luciano Tomassi and Jesús Ortiz
Robotics 2024, 13(9), 125; https://doi.org/10.3390/robotics13090125 - 23 Aug 2024
Cited by 2 | Viewed by 2422
Abstract
This paper deals with the design and kinematic analysis of a novel mechanism for the elbow joint of an upper-limb exoskeleton, with the aim of helping operators, in terms of effort and physical resistance, in carrying out heavy operations. In particular, the proposed [...] Read more.
This paper deals with the design and kinematic analysis of a novel mechanism for the elbow joint of an upper-limb exoskeleton, with the aim of helping operators, in terms of effort and physical resistance, in carrying out heavy operations. In particular, the proposed eight-bar elbow joint exoskeleton mechanism consists of a motorized Watt I six-bar linkage and a suitable RP dyad, which connects mechanically the external parts of the human arm with the corresponding forearm by hook and loop velcro, thus helping their closing relative motion for lifting objects during repetitive and heavy operations. This relative motion is not a pure rotation, and thus the upper part of the exoskeleton is fastened to the arm, while the lower part is not rigidly connected to the forearm but through a prismatic pair that allows both rotation and sliding along the forearm axis. Instead, the human arm is sketched by means of a crossed four-bar linkage, which coupler link is considered as attached to the glyph of the prismatic pair, which is fastened to the forearm. Therefore, the kinematic analysis of the whole ten-bar mechanism, which is obtained by joining the Watt I six-bar linkage and the RP dyad to the crossed four-bar linkage, is formulated to investigate the main kinematic performance and for design purposes. The proposed algorithm has given several numerical and graphical results. Finally, a double-parallelogram linkage, as in the particular case of the Watt I six-bar linkage, was considered in combination with the RP dyad and the crossed four-bar linkage by giving a first mechanical design and a 3D-printed prototype. Full article
(This article belongs to the Section Neurorobotics)
Show Figures

Figure 1

16 pages, 5133 KB  
Article
Trajectory Synthesis and Linkage Design of Single-Degree-of-Freedom Finger Rehabilitation Device
by Ping Zhao, Yang Wang, Yating Zhang and Yong Wang
Actuators 2024, 13(7), 256; https://doi.org/10.3390/act13070256 - 6 Jul 2024
Cited by 2 | Viewed by 2211
Abstract
For injured and after-stroke patients who temporarily lose their hand’s grasping abilities, assisting them in regaining their index finger mobility is very important in the rehabilitation process. In this paper, a finger rehabilitation device based on one degree-of-freedom (DOF) linkage mechanism is designed, [...] Read more.
For injured and after-stroke patients who temporarily lose their hand’s grasping abilities, assisting them in regaining their index finger mobility is very important in the rehabilitation process. In this paper, a finger rehabilitation device based on one degree-of-freedom (DOF) linkage mechanism is designed, aiming to lead the index finger through the flexion–extension trajectory during grasping tasks. Two types of one-DOF mechanisms, a four-bar linkage and a Watt-I six-bar linkage, are synthesized for the task trajectory. Various algorithms such as PSO, GA, and GA–BFGS are adopted and compared for the synthesis of these two types of mechanisms, among which the Watt-I six-bar linkage obtained with GA–BFGS shows the optimal performance in accuracy. Clinical biomechanical data are utilized to perform static analyses of the mechanisms, and the feasibility of the Watt-I six-bar linkage models is tested, compared, and demonstrated. Finally, the prototype of the six-bar linkage as well as a wearable exoskeleton finger rehabilitation device are designed to show how they are applied in the finger rehabilitation scenario. Full article
(This article belongs to the Special Issue Actuators in 2024)
Show Figures

Figure 1

23 pages, 9475 KB  
Article
A Dynamic Approach to Low-Cost Design, Development, and Computational Simulation of a 12DoF Quadruped Robot
by Md. Hasibur Rahman, Saadia Binte Alam, Trisha Das Mou, Mohammad Faisal Uddin and Mahady Hasan
Robotics 2023, 12(1), 28; https://doi.org/10.3390/robotics12010028 - 17 Feb 2023
Cited by 9 | Viewed by 7031
Abstract
Robots equipped with legs have significant potential for real-world applications. Many industries, including those concerned with instruction, aid, security, and surveillance, have shown interest in legged robots. However, these robots are typically incredibly complicated and expensive to purchase. Iron Dog Mini is a [...] Read more.
Robots equipped with legs have significant potential for real-world applications. Many industries, including those concerned with instruction, aid, security, and surveillance, have shown interest in legged robots. However, these robots are typically incredibly complicated and expensive to purchase. Iron Dog Mini is a low-cost, easily replicated, and modular quadruped robot built for training, security, and surveillance. To keep the price low and its upkeep simple, we designed our quadruped robot in a modular manner. We provide a comparative study of robotic manufacturing cost between our proposed robot and previously established robots. We were able to create a compact femur and tibia structure with sufficient load-bearing capacity. To improve stability and motion efficiency, we considered the novel Watt six-bar linkage mechanism. Using the SolidWorks modeling software, we analyzed the structural integrity of the robot’s components, considering their respective material properties. Furthermore, our research involved developing URDF data for our quadruped robot based on its CAD model. Its gait trajectory is planned using a 14-point Bezier curve. We demonstrate the operation of the simulation model and briefly discuss the robot’s kinematics. Computational methods are emphasized in this research, coupled with the simulation of kinematic and dynamic performances and analytical/numerical modeling. Full article
(This article belongs to the Special Issue Kinematics and Robot Design V, KaRD2022)
Show Figures

Figure 1

20 pages, 2306 KB  
Article
Six-Bar Linkage Models of a Recumbent Tricycle Mechanism to Increase Power Throughput in FES Cycling
by Nicholas A. Lanese, David H. Myszka, Anthony L. Bazler and Andrew P. Murray
Robotics 2022, 11(1), 26; https://doi.org/10.3390/robotics11010026 - 11 Feb 2022
Cited by 4 | Viewed by 5204
Abstract
This paper presents the kinematic and static analysis of two mechanisms to improve power throughput for persons with tetra- or paraplegia pedaling a performance tricycle via FES. FES, or functional electrical stimulation, activates muscles by passing small electrical currents through the muscle creating [...] Read more.
This paper presents the kinematic and static analysis of two mechanisms to improve power throughput for persons with tetra- or paraplegia pedaling a performance tricycle via FES. FES, or functional electrical stimulation, activates muscles by passing small electrical currents through the muscle creating a contraction. The use of FES can build muscle in patients, relieve soreness, and promote cardiovascular health. Compared to an able-bodied rider, a cyclist stimulated via FES produces an order of magnitude less power creating some notable pedaling difficulties especially pertaining to inactive zones. An inactive zone occurs when the leg position is unable to produce enough power to propel the tricycle via muscle stimulation. An inactive zone is typically present when one leg is fully bent and the other leg is fully extended. Altering the motion of a cyclist’s legs relative to the crank position can potentially reduce inactive zones and increase power throughput. Some recently marketed bicycles showcase pedal mechanisms utilizing alternate leg motions. This work considers performance tricycle designs based on the Stephenson III and Watt II six-bar mechanisms where the legs define two of the system’s links. The architecture based on the Stephenson III is referred to throughout as the CDT due to the legs’ push acting to coupler-drive the four-bar component of the system. The architecture based on the Watt II is referred to throughout as the CRT due to the legs’ push acting to drive the rocker link of the four-bar component of the system. The unmodified or traditional recumbent tricycle (TRT) provides a benchmarks by which the designs proposed herein may be evaluated. Using knee and hip torques and angular velocities consistent with a previous study, this numerical study using a quasi-static power model of the CRT suggests a roughly 50% increase and the CDT suggests roughly a doubling in average crank power, respectively, for a typical FES cyclist. Full article
(This article belongs to the Special Issue Kinematics and Robot Design IV, KaRD2021)
Show Figures

Figure 1

Back to TopTop