Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = western Tibet Plateau

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5197 KB  
Article
Common Calibration of Solar Radiation and Net Longwave Radiation Is the Key to Accurately Estimating Reference Crop Evapotranspiration over the Tibetan Plateau
by Jiandong Liu, Guangsheng Zhou, Jun Du, Mingxing Li, Yanling Song, Shang Chen and Yuhe Ji
Appl. Sci. 2025, 15(23), 12449; https://doi.org/10.3390/app152312449 - 24 Nov 2025
Viewed by 110
Abstract
Reference crop evapotranspiration (ET0) is crucial for water management. Although the FAO56-PM method is widely used to estimate ET0, its input variables of solar radiation (Rs) and net longwave radiation (Rnl) are not [...] Read more.
Reference crop evapotranspiration (ET0) is crucial for water management. Although the FAO56-PM method is widely used to estimate ET0, its input variables of solar radiation (Rs) and net longwave radiation (Rnl) are not readily available. Currently, mere calibration of the formula for Rs is assumed to be effective in improving FAO56-PM’s performance. To test this hypothesis, all input variables for FAO56-PM were measured in Lhasa, Linzhi, and Bange over the Tibetan Plateau (TP) to assess how different calculation methods affect ET0 estimates. Compared to the original FAO56-PM, calibration of both Rs and Rnl formulas yielded the best model performance. Mere calibration of the formula for Rnl notably improved ET0 estimation accuracy, while mere calibration of the formula for Rs reduced its accuracy. The general calibration model was slightly less effective than calibration of both Rs and Rnl formulas but obviously outperformed the original FAO56-PM. This model showed that ET0 increased from east to west, ranging from 569.4 mm/year to 1118.5 mm/year. Trend analysis indicated rapid increases in ET0 in the eastern region and significant decreases in the western region of the TP over recent decades. The findings are useful for the regional application of FAO56-PM to achieve sustainable development in Tibet. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

18 pages, 3778 KB  
Article
The Potential of Basic Education Accessibility Across Administrative Boundaries Using a Multi-Scenario Comparative Analysis: How Can Education Equity in the Qinghai–Tibet Plateau Be Better Achieved?
by Yiran Du, Jinglong Duan and Yi Miao
Land 2025, 14(11), 2279; https://doi.org/10.3390/land14112279 - 18 Nov 2025
Viewed by 312
Abstract
Ensuring equitable access to basic education is a core issue for promoting balanced regional development and sustainable educational outcomes. As a vast and sparsely populated region with relatively slow development, the Qinghai–Tibet Plateau faces particular challenges in ensuring educational accessibility and equity. Using [...] Read more.
Ensuring equitable access to basic education is a core issue for promoting balanced regional development and sustainable educational outcomes. As a vast and sparsely populated region with relatively slow development, the Qinghai–Tibet Plateau faces particular challenges in ensuring educational accessibility and equity. Using a 100 m × 100 m travel time cost raster constructed from OSM road networks and the cost-distance method, together with local spatial autocorrelation, Lorenz curve, and Gini coefficients, as well as the Geodetector method, this study examines the spatial equity and factors influencing the accessibility of primary and secondary schools across 2798 townships at three time points (2016, 2020, and 2024) under three scenarios: Scenario 1 (nearby schooling), Scenario 2 (schooling within the prefecture-level city), and Scenario 3 (schooling within the county). The results show that: (1) Overall accessibility improved from 2016 to 2024, with primary schools being more accessible than secondary schools. Western townships, although initially disadvantaged, experienced the most notable gains. However, accessibility declined markedly when administrative-boundary constraints were imposed, with the greatest losses observed in ultra-high-altitude remote areas such as Ngari and Nagqu. (2) Spatial equity also improved, but when administrative boundaries were imposed, population-weighted inequities became even more pronounced than disparities in accessibility itself. Equity declined most sharply under county-level constraints, with pronounced impacts on both primary and secondary schooling. (3) Spatial variations in accessibility were jointly driven by multiple factors. In Scenario 1, road network density and population density had the strongest explanatory power. Under administrative boundary constraints, however, county type and ethnic autonomy became increasingly influential. In conclusion, in ultra-high-altitude areas where natural conditions remain difficult to overcome, improving educational equity depends less on transport expansion or facility provision and more on relaxing county-level boundary restrictions that constrain access to services. These findings may provide useful evidence to inform targeted policy interventions and resource allocation strategies aimed at promoting equitable access to basic education in underdeveloped and high-altitude regions. Full article
Show Figures

Figure 1

13 pages, 47202 KB  
Article
Coseismic Deformation, Fault Slip Distribution, and Stress Changes of the 2025 MS 6.8 Dingri Earthquake from Sentinel-1A InSAR Observations
by Junwen Zhu, Bo Zhang, Saisai Yao and Yimeng Cai
Geosciences 2025, 15(11), 421; https://doi.org/10.3390/geosciences15110421 - 5 Nov 2025
Viewed by 387
Abstract
On 7 January 2025, a MS 6.8 earthquake struck Dingri County, southern Tibet, within the extensional regime of the central Himalaya–southern Tibetan Plateau. Using ascending and descending Sentinel-1A SAR data, we applied a two-pass Differential InSAR (D-InSAR) approach with SRTM DEM data [...] Read more.
On 7 January 2025, a MS 6.8 earthquake struck Dingri County, southern Tibet, within the extensional regime of the central Himalaya–southern Tibetan Plateau. Using ascending and descending Sentinel-1A SAR data, we applied a two-pass Differential InSAR (D-InSAR) approach with SRTM DEM data to retrieve high-precision coseismic deformation fields. We observed significant LOS deformation, revealing peak displacements of −1.06 m and +0.76 m, with deformation concentrated along the Denmo Co graben and clear offsets along its western boundary fault. Nonlinear inversion using the Okada elastic dislocation model and a quadtree down-sampled dataset yields a rupture plane 28.42 km long and 12.81 km wide, striking 183.51°, dipping 55.41°, and raking −71.95°, consistent with a predominantly normal-faulting mechanism with a minor left-lateral component. Distributed-slip inversion reveals that peak slip (4.79 m) was concentrated in the upper ~10 km of the fault, with the main asperity located in the central fault segment. The seismic moment is estimated to be 4.24 × 1019 Nm, which corresponds to a magnitude of MW 7.05. Coulomb failure stress (ΔCFS) calculations indicate stress increases (>0.01 MPa) at the northern and southern rupture terminations (5–10 km depth) and the flanks at 15–20 km depth, suggesting elevated seismic potential in these regions. This integrated InSAR–modeling–stress analysis provides new constraints on the source parameters, slip distribution, and tectonic implications of the 2025 Dingri earthquake, offering important insights for regional seismic hazard assessment. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

16 pages, 11906 KB  
Article
RXR Expression Profiles in Yak Reproductive Tissues During Follicular, Luteal, and Pregnancy Phases
by Xiaokun Zhang, Wenbin Ma, Xin Ma, Jianying Chang, Juan Yang, Meng Wang, Libin Wang, Qian Zhang and Yangyang Pan
Animals 2025, 15(19), 2814; https://doi.org/10.3390/ani15192814 - 26 Sep 2025
Viewed by 446
Abstract
The yak is a large ruminant that lives in the high-altitude and hypoxic environment of the Qinghai–Tibet Plateau in China and typically exhibits limited reproductive capacity, posing a significant challenge to the advancement of animal husbandry in the region. Retinoid X receptors (RXRs), [...] Read more.
The yak is a large ruminant that lives in the high-altitude and hypoxic environment of the Qinghai–Tibet Plateau in China and typically exhibits limited reproductive capacity, posing a significant challenge to the advancement of animal husbandry in the region. Retinoid X receptors (RXRs), as an important member of the NR superfamily, play a key role in the regulation of reproductive hormone synthesis, follicular development, and embryo implantation. However, there is still a lack of systematic research on the expression characteristics and potential functions of RXRs in the yak’s reproductive system. This study characterized RXR expression in ovarian, uterine, and oviductal tissues from three yaks per reproductive phase (follicular, luteal, and pregnancy). Using Quantitative Real-Time PCR Experiments (RT-qPCR), Western blot (WB), immunohistochemistry (IHC), and immunofluorescence (IF), we analyzed RXR mRNA and protein expression and localization. RXR expression varied significantly (p ≤ 0.05), peaking in ovaries during the follicular phase, oviducts during the luteal phase, and uteri during pregnancy. RXRs were localized in ovarian granulosa and theca cells, oviductal epithelium, and uterine endometrial glands, with dynamic nuclear–cytoplasmic shifts. These findings suggest RXRs regulate key reproductive processes in yaks, offering insights on improving fertility in high-altitude environments. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

18 pages, 3041 KB  
Article
Spatio-Temporal Dynamics of Wetland Ecosystem and Its Driving Factors in the Qinghai–Tibet Plateau
by Haoyuan Zheng and Yinghui Guan
Water 2025, 17(18), 2746; https://doi.org/10.3390/w17182746 - 17 Sep 2025
Viewed by 824
Abstract
Globally, wetlands have suffered severe degradation due to natural environmental changes and human activities. The wetlands on the Qinghai–Tibet Plateau (QTP) play a unique and critical ecological role, making it essential to understand their spatiotemporal dynamics and driving forces for effective conservation. Based [...] Read more.
Globally, wetlands have suffered severe degradation due to natural environmental changes and human activities. The wetlands on the Qinghai–Tibet Plateau (QTP) play a unique and critical ecological role, making it essential to understand their spatiotemporal dynamics and driving forces for effective conservation. Based on multi-source remote sensing data and Partial Least Squares Structural Equation Modeling (PLS-SEM), this study comprehensively quantified the spatiotemporal changes in wetlands and their key driving factors on the QTP from 1990 to 2020. The results show a net increase in total wetland area (including both natural and artificial wetlands) of approximately 538.72 km2 per year over the 30-year period. Spatially, wetland expansion was most pronounced in the central–western and northern parts of the plateau, primarily driven by the conversion of grasslands, barren lands, and snow/ice cover, while localized degradation persisted in eastern regions. The PLS-SEM demonstrated an excellent fit (R2 = 0.962) and identified human activities—such as ecological restoration policies and infrastructure development—as the dominant direct driver of wetland expansion (path coefficient = 0.918). Climate change, improved vegetation cover, and cryospheric loss also contributed positively to wetland gains (path coefficients = 0.056, 0.044, and 0.138, respectively). This study provides a transferable framework for understanding complex wetland dynamics and their drivers in alpine regions under global environmental change, which is crucial for designing more effective wetland conservation strategies. Full article
(This article belongs to the Special Issue Impact of Climate Change on Water and Soil Erosion)
Show Figures

Figure 1

16 pages, 1387 KB  
Article
Introduced Western Honeybees Dramatically Reduce the Abundance of Wild Bees in Alpine Meadows, Eastern Tibet Plateau
by Ruimin An and Shucun Sun
Biology 2025, 14(9), 1186; https://doi.org/10.3390/biology14091186 - 3 Sep 2025
Cited by 1 | Viewed by 983
Abstract
Over the past few decades, the western honeybee (Apis mellifera) has been widely introduced throughout China. Introduced honeybees have often been observed to pose a significant threat to native bee species diversity through competition for floral resources. However, the specific impact [...] Read more.
Over the past few decades, the western honeybee (Apis mellifera) has been widely introduced throughout China. Introduced honeybees have often been observed to pose a significant threat to native bee species diversity through competition for floral resources. However, the specific impact on native pollinator communities is not well understood, especially in alpine meadows, where bee diversity is particularly high. In this study, we determined the difference in species abundance and diversity of native bees between nearby and distant plots relative to apiaries in alpine meadows on the eastern Tibetan Plateau. We constructed a plant–bee network and calculated perceived apparent competition (i.e., the feeding niche overlap) between the introduced honeybees and each of the native bee species. Furthermore, we determined the relationship between the relative change in species abundance and the perceived apparent competition and species abundance across bee species. Among the 15 native bee species, 9 bee species were significantly lower in abundance in the nearby plots compared to the distant plots, and, in particular,, 5 rare species were not found in the nearby plots. For the other six species, the abundance difference was statistically non-significant. Data analysis reveals that the species abundance of native bees in distant plots, along with the feeding niche overlap between introduced bees and native bees in distant plots, explains the variation in the relative change in species abundance across bee species. However, the feeding niche overlap between introduced bees and native bees in nearby plots does not account for this variation. Our findings demonstrate that rare native bee species with greater feeding niche overlap have been significantly impacted by the introduced western honeybees. These results highlight important implications for pollinator management in natural ecosystems and the conservation of wild bees. Full article
Show Figures

Figure 1

16 pages, 4629 KB  
Article
Projecting Range Shifts of Hippophae neurocarpa in China Under Future Climate Change Using CMIP6 Models
by Bing Zhu, Yaqin Peng and Danping Xu
Diversity 2025, 17(9), 609; https://doi.org/10.3390/d17090609 - 28 Aug 2025
Viewed by 477
Abstract
Hippophae neurocarpa S. W. Liu & T. N. Ho exhibits established medicinal characteristics, valuable dietary attributes, and remarkable adaptability, displaying strong resistance to cold, drought, and to acidic and alkaline soils. These traits and others make it a valuable species for soil erosion [...] Read more.
Hippophae neurocarpa S. W. Liu & T. N. Ho exhibits established medicinal characteristics, valuable dietary attributes, and remarkable adaptability, displaying strong resistance to cold, drought, and to acidic and alkaline soils. These traits and others make it a valuable species for soil erosion control and a distinctive economic forest tree in western China. However, research on its geographic distribution remains limited. To address this gap, we employed the MaxEnt model to map its current distribution and to predict the future geographic distribution of suitable habitats for this species under SSP1-2.6, SSP2-4.5, and SSP5-8.5 climate scenarios. Collectively, these data suggest that the species’ current and future suitable habitats are predominantly concentrated at the junction of the northeastern Qinghai-Tibet Plateau and the Loess Plateau. Under present climatic conditions, highly suitable habitats are primarily located in the northeastern Qinghai-Tibet Plateau, with smaller patches in the Hengduan and Himalaya mountains. The AUC value of this model reached 0.954; projections under three future emission scenarios indicate an overall expansion trend in suitable habitat area. Notably, by the 2070s under the SSP2-4.5 scenario, the total suitable habitat area is projected to increase by 11.64%—the highest among all scenarios. Additionally, climate change is expected to drive a slight northward shift in the species’ distribution center toward higher latitudes. Key environmental factors influencing its projected distribution include elevation (elev), temperature seasonality (bio04), mean temperature of the coldest quarter (bio11), and precipitation of the warmest quarter (bio18). These insights are critical for conserving H. neurocarpa’s genetic resources and guiding future biodiversity conservation strategies. Full article
(This article belongs to the Topic Responses of Trees and Forests to Climate Change)
Show Figures

Figure 1

17 pages, 2321 KB  
Article
Variations in the Surface Atmospheric Electric Field on the Qinghai–Tibet Plateau: Observations at China’s Gar Station
by Jia-Nan Peng, Shuai Fu, Yan-Yan Xu, Gang Li, Tao Chen and En-Ming Xu
Atmosphere 2025, 16(8), 976; https://doi.org/10.3390/atmos16080976 - 17 Aug 2025
Cited by 2 | Viewed by 930
Abstract
The Qinghai-Tibet Plateau, known as the “third pole” of the Earth with an average elevation of approximately 4500 m, offers a unique natural laboratory for probing the dynamic behavior of the global electric circuit. In this study, we conduct a comprehensive analysis of [...] Read more.
The Qinghai-Tibet Plateau, known as the “third pole” of the Earth with an average elevation of approximately 4500 m, offers a unique natural laboratory for probing the dynamic behavior of the global electric circuit. In this study, we conduct a comprehensive analysis of near-surface vertical atmospheric electric field (AEF) measurements collected at the Gar Station (80.1° E, 32.5° N; 4259 m a.s.l.) on the western Tibetan Plateau, spanning the period from November 2021 to December 2024. Fair-weather conditions are imposed. The annual mean AEF at Gar is ∼0.331 kV/m, significantly higher than values observed at lowland and plain sites, indicating a pronounced enhancement in atmospheric electricity associated with high-altitude conditions. Moreover, the AEF exhibits marked seasonal variability, peaking in December (∼0.411–0.559 kV/m) and valleying around July–August (∼0.150–0.242 kV/m), yielding an overall amplitude of approximately 0.3 kV/m. We speculate that this seasonal pattern is primarily driven by variations in aerosol concentration. During winter, increased aerosol loading from residential heating and vehicle emissions due to incomplete combustion reduces atmospheric conductivity by depleting free ions and decreasing ion mobility, thereby enhancing the near-surface AEF. In contrast, lower aerosol concentrations in summer lead to weaker AEF. This seasonal decline in aerosol levels is likely facilitated by stronger winds and more frequent rainfall in summer, which enhance aerosol dispersion and wet scavenging, whereas weaker winds and limited precipitation in winter favor near-surface aerosol accumulation. On diurnal timescales, the Gar AEF curve deviates significantly from the classical Carnegie curve, showing a distinct double-peak and double-trough structure, with maxima at ∼03:00 and 14:00 UT and minima near 00:00 and 10:00 UT. This deviation may partly reflect local influences related to sunrise and sunset. This study presents the longest ground-based AEF observations over the Qinghai–Tibet Plateau, providing a unique reference for future studies on altitude-dependent AEF variations and their coupling with space weather and climate processes. Full article
Show Figures

Figure 1

18 pages, 3673 KB  
Article
Does Short-Distance Migration Facilitate the Recovery of Black-Necked Crane Populations?
by Le Yang, Lei Xu, Waner Liang, Jia Guo, Yongbing Yang, Cai Lyu, Shengling Zhou, Qing Zeng, Yifei Jia and Guangchun Lei
Animals 2025, 15(15), 2304; https://doi.org/10.3390/ani15152304 - 6 Aug 2025
Viewed by 748
Abstract
Understanding the migratory strategies of plateau-endemic species is essential for informing effective conservation, especially under climate change. The Black-necked Crane (Grus nigricollis), a high-altitude specialist, has shown notable population growth in recent years. We analysed satellite tracking data from 16 individuals [...] Read more.
Understanding the migratory strategies of plateau-endemic species is essential for informing effective conservation, especially under climate change. The Black-necked Crane (Grus nigricollis), a high-altitude specialist, has shown notable population growth in recent years. We analysed satellite tracking data from 16 individuals of a western subpopulation in the lake basin region of northern Tibet (2021–2024), focusing on migration patterns, stopover use, and habitat selection. This subpopulation exhibited short-distance (mean: 284.21 km), intra-Tibet migrations with low reliance on stopover sites. Autumn migration was shorter, more direct, higher in altitude, and slower in speed than spring migration. Juveniles used smaller, more fragmented habitats than subadults, and their spatial range expanded over time. Given these patterns, we infer that the short-distance migration strategy may reduce energetic demands and mortality risks while increasing route flexibility—characteristics that may benefit population growth. We refer to this as a low-energy, high-efficiency migration strategy, which we hypothesise could support faster population growth and enhance resilience to environmental change. We recommend prioritizing the conservation of short-distance migration corridors, such as the typical lake basin area in northern Tibet–Yarlung Tsangpo River system, which may help sustain plateau-endemic migratory populations under future climate scenarios. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

24 pages, 3003 KB  
Article
Fault Geometry and Slip Distribution of the 2023 Jishishan Earthquake Based on Sentinel-1A and ALOS-2 Data
by Kaifeng Ma, Yang Liu, Qingfeng Hu, Jiuyuan Yang and Limei Wang
Remote Sens. 2025, 17(13), 2310; https://doi.org/10.3390/rs17132310 - 5 Jul 2025
Viewed by 848
Abstract
On 18 December 2023, a Mw 6.2 earthquake occurred in close proximity to Jishishan County, located on the northeastern edge of the Qinghai–Tibet Plateau. The event struck the structural intersection of the Haiyuan fault, Lajishan fault, and West Qinling fault, providing empirical [...] Read more.
On 18 December 2023, a Mw 6.2 earthquake occurred in close proximity to Jishishan County, located on the northeastern edge of the Qinghai–Tibet Plateau. The event struck the structural intersection of the Haiyuan fault, Lajishan fault, and West Qinling fault, providing empirical evidence for investigating the crustal compression mechanisms associated with the northeastward expansion of the Qinghai–Tibet Plateau. In this study, we successfully acquired a high-resolution coseismic deformation field of the earthquake by employing interferometric synthetic aperture radar (InSAR) technology. This was accomplished through the analysis of image data obtained from both the ascending and descending orbits of the Sentinel-1A satellite, as well as from the ascending orbit of the ALOS-2 satellite. Our findings indicate that the coseismic deformation is predominantly localized around the Lajishan fault zone, without leading to the development of a surface rupture zone. The maximum deformations recorded from the Sentinel-1A ascending and descending datasets are 7.5 cm and 7.7 cm, respectively, while the maximum deformation observed from the ALOS-2 ascending data reaches 10 cm. Geodetic inversion confirms that the seismogenic structure is a northeast-dipping thrust fault. The geometric parameters indicate a strike of 313° and a dip angle of 50°. The slip distribution model reveals that the rupture depth predominantly ranges between 5.7 and 15 km, with a maximum displacement of 0.47 m occurring at a depth of 9.6 km. By integrating the coseismic slip distribution and aftershock relocation, this study comprehensively elucidates the stress coupling mechanism between the mainshock and its subsequent aftershock sequence. Quantitative analysis indicates that aftershocks are primarily located within the stress enhancement zone, with an increase in stress ranging from 0.12 to 0.30 bar. It is crucial to highlight that the structural units, including the western segment of the northern margin fault of West Qinling, the eastern segment of the Daotanghe fault, the eastern segment of the Linxia fault, and both the northern and southern segment of Lajishan fault, exhibit characteristics indicative of continuous stress loading. This observation suggests a potential risk for fractures in these areas. Full article
Show Figures

Figure 1

20 pages, 1706 KB  
Commentary
Applying Transdisciplinary Thinking to Pastoral Livelihoods and Environments
by Keith Woodford, Xiaomeng Lucock and Derrick Moot
Animals 2025, 15(13), 1933; https://doi.org/10.3390/ani15131933 - 30 Jun 2025
Viewed by 456
Abstract
Transdisciplinary thinking lies at one end of a continuum within system thinking, with discipline-based approaches at the other end. Interdisciplinarity and multidisciplinarity are intermediate domains within this continuum. Transdisciplinary thinking is unique in always starting with problem-structuring related to contexts, in which people, [...] Read more.
Transdisciplinary thinking lies at one end of a continuum within system thinking, with discipline-based approaches at the other end. Interdisciplinarity and multidisciplinarity are intermediate domains within this continuum. Transdisciplinary thinking is unique in always starting with problem-structuring related to contexts, in which people, typically with multiple and competing objectives, interact with a biophysical world. As such, transdisciplinary thinking is particularly relevant to pastoral systems where livelihoods and environmental issues intersect, and where multiple stakeholders are the norm. Integration, both within transdisciplinary thinking and consequent action, is particularly challenging. This is because there is no quantitative methodology that can capture the complex essence of transdisciplinary issues that encompass both human and biophysical disciplines. Nevertheless, a transdisciplinary approach provides a framework for civilised debate and communication within a broad framework of policy generation. We illustrate these issues with two highly contrasting studies, these being pastoralism at the country level in New Zealand and at the county level in Qinghai on the Qinghai-Tibet Plateau in Western China. Both case studies are characterised by complex property rights within a dynamic resource-constrained environment, in which environmental issues have planetary implications that extend well beyond the bounds of the pastoral system itself. Full article
(This article belongs to the Special Issue Pastoralism and Animal Management within Agroecosystems and Society)
Show Figures

Figure 1

24 pages, 4268 KB  
Article
Zoning of the Disaster-Inducing Environment and Driving Factors for Landslides, Collapses, and Debris Flows on the Qinghai–Tibet Plateau
by Qiuyang Zhang, Weidong Ma, Yuan Gao, Tengyue Zhang, Xiaoyan Ma, Long Li, Qiang Zhou and Fenggui Liu
Appl. Sci. 2025, 15(12), 6569; https://doi.org/10.3390/app15126569 - 11 Jun 2025
Viewed by 1065
Abstract
The Qinghai–Tibet Plateau is one of the most geologically active regions in the world, characterized by significant geomorphic variation and a wide range of geological hazards. The multifactorial coupling of tectonic movements, geomorphological evolution, climate variability, and lithological characteristics contributes to the pronounced [...] Read more.
The Qinghai–Tibet Plateau is one of the most geologically active regions in the world, characterized by significant geomorphic variation and a wide range of geological hazards. The multifactorial coupling of tectonic movements, geomorphological evolution, climate variability, and lithological characteristics contributes to the pronounced spatial heterogeneity of the disaster-inducing environment. Identifying key controlling factors and their driving mechanisms is crucial for effective regional disaster prevention and mitigation. This study adopts a systematic framework based on regional disaster systems theory, integrating tectonic activity, engineering geology, topography, and precipitation to construct a multi-factor zoning system. Using the Random Forest model, we quantify factor contributions and delineate eight distinct disaster-inducing environment zones. Zones I–III (Himalayas–Hengduan Mountains–Qilian Mountains) are characterized by a dominant coupling mechanism of “tectonic fragmentation—topographic relief—precipitation erosion” and account for the majority of large-scale disasters. In contrast, Zones IV–VIII, primarily located in the central–western Plateau basins, are constrained by limited material sources, resulting in lower disaster densities. The findings indicate that geological structures and lithological fragmentation provide the material foundation for hazard occurrence, while topographic potential and hydrodynamic forces serve as critical triggering conditions. This nonlinear coupling of factors shapes a disaster geographic pattern characterized by “dense in the east and sparse in the west”. Based on these results, the targeted recommendations proposed offer valuable theoretical insights and methodological guidance for disaster mitigation and region-specific management across the Qinghai–Tibet Plateau. Full article
Show Figures

Figure 1

26 pages, 8541 KB  
Article
Spatiotemporal Evolution and Driving Mechanisms of Composite Ecological Sensitivity in the Western Sichuan Plateau, China Based on Multi-Process Coupling Mechanisms
by Defen Chen, Yuchi Zou, Junjie Zhu, Wen Wei, Dan Liang, Weilai Zhang and Wuxue Cheng
Sustainability 2025, 17(11), 4941; https://doi.org/10.3390/su17114941 - 28 May 2025
Viewed by 707
Abstract
The Western Sichuan Plateau, an ecologically critical transition zone between the Qinghai–Tibet Plateau and the Sichuan Basin, is also a typical fragile and sensitive area in China’s ecological security. This study established a multi-process evaluation model using the Spatial Distance Index Method, integrating [...] Read more.
The Western Sichuan Plateau, an ecologically critical transition zone between the Qinghai–Tibet Plateau and the Sichuan Basin, is also a typical fragile and sensitive area in China’s ecological security. This study established a multi-process evaluation model using the Spatial Distance Index Method, integrating cluster analysis, Sen–Mann–Kendall trend detection, and OWA-based scenario simulations to assess composite ecological sensitivity dynamics. The optimal geodetector was further applied to quantitatively determine the driving mechanisms underlying these sensitivity dynamics. The research showed the following findings: (1) From 2000 to 2020, the ecological environment of the Western Sichuan Plateau exhibited a phased pattern characterized by significant improvement, partial rebound, and overall stabilization. The composite ecological sensitivity grading index showed a declining trend, indicating a gradual reduction in ecological vulnerability. The effectiveness of ecological restoration projects became evident after 2010, with the area of medium- to high-sensitivity zones decreasing by 24.29% at the regional scale compared to the 2010 baseline. (2) The spatial pattern exhibited a gradient-decreasing characteristic from west to east. Scenario simulations under varying decision-making behaviors prioritized Jiuzhaigou, Xiaojin, Jinchuan, Danba, and Yajiang counties as ecologically critical. (3) Driving force analysis revealed a marked increase in the explanatory power of freeze-thaw erosion, with its q-value rising from 0.49 to 0.80. Moreover, its synergistic effect with landslide disasters spans 74.19% of county-level units. Dominant drivers ranked: annual temperature range (q = 0.32) > distance to faults (q = 0.17) > slope gradient (q = 0.16), revealing a geomorphic-climatic-tectonic interactive mechanism. This study provided methodological innovations and decision-making support for sustainable environmental development in plateau transitional zones. Full article
Show Figures

Figure 1

28 pages, 20722 KB  
Article
Forest Carbon Storage Dynamics and Influencing Factors in Southeastern Tibet: GEE and Machine Learning Analysis
by Qingwei Fan, Yutong Jiang, Yuebin Wang and Guangpeng Fan
Forests 2025, 16(5), 825; https://doi.org/10.3390/f16050825 - 15 May 2025
Cited by 1 | Viewed by 938
Abstract
As an important ecological security barrier on the Tibetan Plateau, southeastern Tibet is crucial to maintaining regional carbon balance under climate change. This study innovatively integrates multi-source remote sensing data (Landsat 8, Sentinel-1, and GEDI) on the Google Earth Engine (GEE) platform, and [...] Read more.
As an important ecological security barrier on the Tibetan Plateau, southeastern Tibet is crucial to maintaining regional carbon balance under climate change. This study innovatively integrates multi-source remote sensing data (Landsat 8, Sentinel-1, and GEDI) on the Google Earth Engine (GEE) platform, and uses machine learning to model forest carbon storage dynamics from 2019 to 2023. The fusion of multi-source data improves forest vertical structure characterization and makes up for the shortage of single optical data. By comparing machine learning algorithms, the Gradient Boosting model performs excellently (validation set R2 = 0.909, RMSE = 26.608 Mg/Ha), achieving high-resolution spatiotemporal mapping. The results show significant spatial heterogeneity; the increase in carbon storage in the central and southern regions is mainly in contrast to the scattered decreases in the eastern and western regions, reflecting vegetation restoration and topographic influence. High-altitude areas are subject to climate restrictions and small changes, while low-altitude areas show significant fluctuations due to human activities. Key drivers were elevation (importance score 22.06), slope (17.00), and temperature (22.04). Land use transformation (such as forest expansion) promotes net carbon accumulation and highlights the effectiveness of regional protection policies. This study provides a scientific basis for targeted ecological management of high-altitude ecosystems. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 8037 KB  
Article
Evolution of the Ore-Bearing Fluid of Alin Sb–Au Orebodies in Shuixie Cu–Co Orefield, SW China: Constraints on the Rare Earth Element and Trace Element Components of Auriferous Pyrite and Host Rock
by Guo Li, Shanshan Ru, Chuandong Xue and Wei Wang
Minerals 2025, 15(5), 491; https://doi.org/10.3390/min15050491 - 6 May 2025
Viewed by 556
Abstract
The Shuixie Cu–Co polymetallic orefield, located in western Yunnan Province (southeastern margin of the Qinghai–Tibet Plateau), is renowned for its Cu–Co mineralization. A recent resource reassessment identified Sb–Au and Cu–Co–Bi (Sb–Au) orebodies as genetically associated with primary Cu–Co mineralization. The mineralization characteristics and [...] Read more.
The Shuixie Cu–Co polymetallic orefield, located in western Yunnan Province (southeastern margin of the Qinghai–Tibet Plateau), is renowned for its Cu–Co mineralization. A recent resource reassessment identified Sb–Au and Cu–Co–Bi (Sb–Au) orebodies as genetically associated with primary Cu–Co mineralization. The mineralization characteristics and microscopic observations indicate that gold mineralization in the Sb–Au orebodies follow a pulsating fluid injection model. The model includes four pulses: (1) euhedral gold-poor pyrite (PyI1) precipitation; (2) margin-parallel growth of gold-rich pyrite (PyI2) on PyI1; (3) continued growth of gold-rich pyrite (PyI3) along PyI2; and (4) outermost concentric gold-rich pyrite (PyI4) formation. This study examined gold-bearing pyrite in orebodies and host rocks. In situ laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) analysis of pyrite and inductively coupled plasma mass spectrometry (ICP–MS) whole-rock trace element analysis were conducted to track the ore-forming fluid evolution. Compared with CI chondrite, pyrites from all pulses were enriched in LREEs over HREEs. The pyrite REE distribution curves exhibited right-skewed patterns, reflecting LREE enrichment. The Hf/Sm, Nb/La, and Th/La ratios were generally below 1, indicating high-field-strength element depletion. These results suggest a Cl-rich, F-poor ore-forming fluid. The pyrite trace elements showed enrichment in the chalcophile elements (e.g., Cu and Pb) and exceptionally high Bi levels compared with the continental crust. The chalcophile elements (e.g., Zn and Cd) were depleted, whereas iron-group elements (e.g., Co) were enriched and Ni was depleted. The pyrite δCe values (0.87–1.28, mean = 1.01) showed weak anomalies, indicating a reducing ore-forming environment. The δEu values of pyrite during pulses 1 to 4 ranged widely, from 0.2–3.01 (mean of 1.17), 0.27–1.39 (0.6), and 0.41–1.40 (0.96) to 0.4–1.36 (0.84), respectively, suggesting an initial temperature decline and subsequent increase in the ore-forming fluid. Significant variations were found in the Y/Ho, Zr/Hf, and Nb/Ta ratios across pulses, indicating the potential involvement of high-temperature hydrothermal fluids or late-stage alteration during ore formation. The Y/Ho ratio of pyrite overlapped most closely with that of the continental crust of China, indicating a close relationship between the ore-forming fluids and the crust. Full article
Show Figures

Figure 1

Back to TopTop