Risk Factors for Mortality in COVID-19 Hospitalized Patients in Piedmont, Italy: Results from the Multicenter, Regional, CORACLE Registry
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Demographic Characteristics and Comorbidities
3.2. Mortality and Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Pneumonia of Unknown Cause—China. Available online: https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/ (accessed on 12 April 2021).
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus—Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Petrosillo, N.; Viceconte, G.; Ergonul, O.; Ippolito, G.; Petersen, E. COVID-19, SARS and MERS: Are they Closely Related? Clin. Microbiol. Infect. 2020, 26, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Lupia, T.; Corcione, S.; De Rosa, F.G. COVID-19: In the Uncertainty, do Not Try this at Home. Intern. Emerg. Med. 2020, 15, 1599–1600. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Shin, W.I.; Pang, Y.X.; Meng, Y.; Lai, J.; You, C.; Zhao, H.; Lester, E.; Wu, T.; Pang, C.H. The First 75 Days of Novel Coronavirus (SARS-CoV-2) Outbreak: Recent Advances, Prevention, and Treatment. Int. J. Environ. Res. Public Health 2020, 17, 2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johns Hopkins University Coronavirus Resource Center. COVID-19 Dashboard by the Center for Systems Science and Engi-neering (CSSE) at Johns Hopkins University (JHU). Available online: https://coronavirus.jhu.edu/map.html (accessed on 29 October 2020).
- Lupia, T.; Scabini, S.; Pinna, S.M.; Di Perri, G.; De Rosa, F.G.; Corcione, S. 2019 Novel Coronavirus (2019-nCoV) Outbreak: A New Challenge. J. Glob. Antimicrob. Resist. 2020, 21, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef]
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H.J.; El-Harakeh, A.; Bognanni, A.; Lotfi, T.; Loeb, M.; et al. Physical Distancing, Face Masks, and Eye Protection to Prevent Person-to-Person Transmission of SARS-CoV-2 and COVID-19: A Systematic Review and Meta-Analysis. Lancet 2020, 395, 1973–1987. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [Green Version]
- Lazzerini, M.; Putoto, G. COVID-19 in Italy: Momentous Decisions and Many Uncertainties. Lancet Glob. Health 2020, 8, e641–e642. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, G.; Massa, M.; Riboli, E. Covid-19 Epidemic in Italy: Evolution, Projections and Impact of Government Measures. Eur. J. Epidemiol. 2020, 35, 341–345. [Google Scholar] [CrossRef]
- Jhu CSSE. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. Available online: https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 (accessed on 28 October 2020).
- Bonanad, C.; García-Blas, S.; Tarazona-Santabalbina, F.; Sanchis, J.; Bertomeu-González, V.; Fácila, L.; Ariza, A.; Núñez, J.; Cordero, A. The Effect of Age on Mortality in Patients with COVID-19: A Meta-Analysis with 611,583 Subjects. J. Am. Med. Dir. Assoc. 2020, 21, 915–918. [Google Scholar] [CrossRef]
- Nogueira, P.J.; Nobre, M.D.A.; Costa, A.; Ribeiro, R.M.; Furtado, C.; Nicolau, L.B.; Camarinha, C.; Luís, M.; Abrantes, R.; Carneiro, A.V. The Role of Health Preconditions on COVID-19 Deaths in Portugal: Evidence from Surveillance Data of the First 20293 Infection Cases. J. Clin. Med. 2020, 9, 2368. [Google Scholar] [CrossRef]
- Li, J.; Huang, D.Q.; Zou, B.; Yang, H.; Hui, W.Z.; Rui, F.; Yee, N.T.S.; Liu, C.; Nerurkar, S.N.; Kai, J.C.Y.; et al. Epidemiology of COVID-19: A Systematic Review and Meta-Analysis of Clinical Characteristics, Risk Factors, and Outcomes. J. Med Virol. 2021, 93, 1449–1458. [Google Scholar] [CrossRef]
- Singh, A.K.; Gillies, C.L.; Singh, R.; Singh, A.; Chudasama, Y.; Coles, B.; Seidu, S.; Zaccardi, F.; Davies, M.J.; Khunti, K. Prevalence of Co-Morbidities and their Association with Mortality in Patients with COVID-19: A Systematic Review and Meta-Analysis. Diabetes Obes. Metab. 2020, 22, 1915–1924. [Google Scholar] [CrossRef]
- Mesas, A.E.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Cabrera, M.A.S.; De Andrade, S.M.; Sequí-Dominguez, I.; Martínez-Vizcaíno, V. Predictors of in-Hospital COVID-19 Mortality: A Comprehensive Systematic Review and Meta-Analysis Exploring Differences by Age, Sex and Health Conditions. PLoS ONE 2020, 15, e0241742. [Google Scholar] [CrossRef]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute Respiratory Distress Syndrome. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Casas-Rojo, J.; Antón-Santos, J.; Millán-Núñez-Cortés, J.; Lumbreras-Bermejo, C.; Ramos-Rincón, J.; Roy-Vallejo, E.; Artero-Mora, A.; Arnalich-Fernández, F.; García-Bruñén, J.; Vargas-Núñez, J.; et al. Características Clínicas de Los Pacientes Hospitalizados con COVID-19 en España: Resultados del Registro SEMI-COVID-19. Rev. Clín. Esp. 2020, 220, 480–494. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.; Fuentes, M.; Alarcón, M.; Palomo, I. Immune System Dysfunction in the Elderly. Anais Acad. Bras. Ciências 2017, 89, 285–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opal, S.M.; Girard, T.D.; Ely, E.W. The Immunopathogenesis of Sepsis in Elderly Patients. Clin. Infect. Dis. 2005, 41, S504–S512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albitar, O.; Ballouze, R.; Ooi, J.P.; Ghadzi, S.M.S. Risk Factors for Mortality among COVID-19 Patients. Diabetes Res. Clin. Pract. 2020, 166, 108293. [Google Scholar] [CrossRef]
- Palaiodimos, L.; Kokkinidis, D.G.; Li, W.; Karamanis, D.; Ognibene, J.; Arora, S.; Southern, W.N.; Mantzoros, C.S. Severe Obesity, Increasing Age and Male Sex are Independently Associated with Worse in-Hospital Outcomes, and Higher in-Hospital Mortality, in a Cohort of Patients with COVID-19 in the Bronx, New York. Metabolism 2020, 108, 154262. [Google Scholar] [CrossRef]
- Li, X.; Xu, S.; Yu, M.; Wang, K.; Tao, Y.; Zhou, Y.; Shi, J.; Zhou, M.; Wu, B.; Yang, Z.; et al. Risk Factors for Severity and Mortality in Adult COVID-19 Inpatients in Wuhan. J. Allergy Clin. Immunol. 2020, 146, 110–118. [Google Scholar] [CrossRef]
- Zheng, Z.; Peng, F.; Xu, B.; Zhao, J.; Liu, H.; Peng, J.; Li, Q.; Jiang, C.; Zhou, Y.; Liu, S.; et al. Risk Factors of Critical & Mortal COVID-19 Cases: A Systematic Literature Review and Meta-Analysis. J. Infect. 2020, 81, e16–e25. [Google Scholar] [CrossRef] [PubMed]
- Vardavas, C.I.; Nikitara, K. COVID-19 and Smoking: A Systematic Review of the Evidence. Tob. Induc. Dis. 2020, 18, 20. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, J.S.; Oyelade, T.; Aldhahir, A.M.; Alghamdi, S.M.; Almehmadi, M.; Alqahtani, A.S.; Quaderi, S.; Mandal, S.; Hurst, J.R. Prevalence, Severity and Mortality Associated with COPD and Smoking in Patients with COVID-19: A Rapid Systematic Review and Meta-Analysis. PLoS ONE 2020, 15, e0233147. [Google Scholar] [CrossRef]
- Polverino, F. Cigarette Smoking and COVID-19: A Complex Interaction. Am. J. Respir. Crit. Care Med. 2020, 202, 471–472. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- Hussain, M.; Jabeen, N.; Raza, F.; Shabbir, S.; Baig, A.A.; Amanullah, A.; Aziz, B. Structural Variations in Human ACE2 may Influence its Binding with SARS-CoV-2 Spike Protein. J. Med. Virol. 2020, 92, 1580–1586. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.; Boss, Y.; Xiao, F.; Kheradmand, F.; Amos, C.I. Tobacco Smoking Increases the Lung Gene Expression of ACE2, the Receptor of SARSCoV-2. Am. J. Respir. Crit. Care Med. 2020, 201, 1557–1559. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Meng, M.; Kumar, R.; Wu, Y.; Huang, J.; Lian, N.; Deng, Y.; Lin, S. The Impact of COPD and Smoking History on the Severity of COVID-19: A Systemic Review and Meta-Analysis. J. Med. Virol. 2020, 92, 1915–1921. [Google Scholar] [CrossRef] [Green Version]
- Leung, J.M.; Niikura, M.; Yang, C.W.T.; Sin, D.D. COVID-19 and COPD. Eur. Respir. J. 2020, 56, 2002108. [Google Scholar] [CrossRef]
- Kumar, A.; Arora, A.; Sharma, P.; Anikhindi, S.A.; Bansal, N.; Singla, V.; Khare, S.; Srivastava, A. Is Diabetes Mellitus Associated with Mortality and Severity of COVID-19? A Meta-Analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M.; Cuspidi, C.; Sala, C. COVID-19 and Diabetes: Is there Enough Evidence? J. Clin. Hypertens. 2020, 22, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Byrne, C.D.; Zheng, M.H.; Targher, G. Diabetes as a Risk Factor for Greater COVID-19 Severity and in-Hospital Death: A Meta-Analysis of Observational Studies. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1236–1248. [Google Scholar] [CrossRef]
- Tian, S.; Xiong, Y.; Liu, H.; Niu, L.; Guo, J.; Liao, M.; Xiao, S.-Y. Pathological Study of the 2019 Novel Coronavirus Disease (COVID-19) through Postmortem Core Biopsies. Mod. Pathol. 2020, 33, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Felsenstein, S.; Herbert, J.A.; McNamara, P.S.; Hedrich, C.M. COVID-19: Immunology and Treatment Options. Clin. Immunol. 2020, 215, 108448. [Google Scholar] [CrossRef]
- Barton, L.M.; Duval, E.J.; Stroberg, E.; Ghosh, S.; Mukhopadhyay, S. COVID-19 Autopsies, Oklahoma, USA. Am. J. Clin. Pathol. 2020, 153, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Copin, M.C.; Parmentier, E.; Duburcq, T.; Poissy, J.; Mathieu, D. Lille COVID-19 ICU and Anatomopathology Group. Time to Consider Histologic Pattern of Lung Injury to Treat Critically Ill Patients with COVID-19 Infection. Intensive Care Med. 2020, 46, 1124–1126. [Google Scholar] [CrossRef] [Green Version]
- Clay, C.; Donart, N.; Fomukong, N.; Knight, J.B.; Lei, W.; Price, L.; Hahn, F.; Van Westrienen, J.; Harrod, K.S. Primary Severe Acute Respiratory Syndrome Coronavirus Infection Limits Replication but Not Lung Inflammation upon Homologous Rechallenge. J. Virol. 2012, 86, 4234–4244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Rosa, F.G.; Lupia, T.; Corcione, S. COVID-19: Where have the Lymphocytes Gone? Intern. Med. J. 2020, 50, 1436–1437. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.; GECOVID Working Group; Esposito, P.; Taramasso, L.; Magnasco, L.; Saio, M.; Briano, F.; Russo, C.; Dettori, S.; Vena, A.; et al. Kidney Disease and all-Cause Mortality in Patients with COVID-19 Hospitalized in Genoa, Northern Italy. J. Nephrol. 2021, 34, 173–183. [Google Scholar] [CrossRef]
- Vena, A.; Giacobbe, D.R.; Di Biagio, A.; Mikulska, M.; Taramasso, L.; De Maria, A.; Ball, L.; Brunetti, I.; LoConte, M.; Patroniti, N.A.; et al. Clinical Characteristics, Management and in-Hospital Mortality of Patients with Coronavirus Disease 2019 in Genoa, Italy. Clin. Microbiol. Infect. 2020, 26, 1537–1544. [Google Scholar] [CrossRef]
- Jain, V.; Yuan, J.-M. Predictive Symptoms and Comorbidities for Severe COVID-19 and Intensive Care Unit Admission: A Systematic Review and Meta-Analysis. Int. J. Public Health 2020, 65, 533–546. [Google Scholar] [CrossRef]
- Yang, W.; Cao, Q.; Qin, L.; Wang, X.; Cheng, Z.; Pan, A.; Dai, J.; Sun, Q.; Zhao, F.; Qu, J.; et al. Clinical Characteristics and Imaging Manifestations of the 2019 Novel Coronavirus Disease (COVID-19):A Multi-Center Study in Wenzhou City, Zhejiang, China. J. Infect. 2020, 80, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, A.B.; Zampieri, F.G.; Rosa, R.G.; Azevedo, L.C.; Veiga, V.C.; Avezum, A.; Damiani, L.P.; Marcadenti, A.; Kawano-Dourado, L.; Lisboa, T.; et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. New Engl. J. Med. 2020, 383, 2041–2052. [Google Scholar] [CrossRef]
- Rosenberg, E.S.; Dufort, E.M.; Udo, T.; Wilberschied, L.A.; Kumar, J.; Tesoriero, J.; Weinberg, P.; Kirkwood, J.; Muse, A.; DeHovitz, J.; et al. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA 2020, 323, 2493–2502. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.S.; Gonzalez, J.; Nahass, R.G.; Brunetti, L. Impact of Hydroxychloroquine on Mortality in Hospitalized Patients with COVID-19: Systematic Review and Meta-Analysis. Pharmacy 2020, 8, 208. [Google Scholar] [CrossRef] [PubMed]
- Arshad, S.; Kilgore, P.; Chaudhry, Z.S.; Jacobsen, G.; Wang, D.D.; Huitsing, K.; Brar, I.; Alangaden, G.J.; Ramesh, M.S.; McKinnon, J.E.; et al. Treatment with Hydroxychloroquine, Azithromycin, and Combination in Patients Hospitalized with COVID-19. Int. J. Infect. Dis. 2020, 97, 396–403. [Google Scholar] [CrossRef]
- Million, M.; Lagier, J.-C.; Gautret, P.; Colson, P.; Fournier, P.-E.; Amrane, S.; Hocquart, M.; Mailhe, M.; Esteves-Vieira, V.; Doudier, B.; et al. Early Treatment of COVID-19 Patients with Hydroxychloroquine and Azithromycin: A Retrospective Analysis of 1061 Cases in Marseille, France. Travel Med. Infect. Dis. 2020, 35, 101738. [Google Scholar] [CrossRef] [PubMed]
- The RECOVERY Collaborative Group. The Recovery Collaborative Group Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2020, 383, 2030–2040. [Google Scholar] [CrossRef]
- Griffith, G.J.; Morris, T.T.; Tudball, M.J.; Herbert, A.; Mancano, G.; Pike, L.; Sharp, G.C.; Sterne, J.; Palmer, T.M.; Smith, G.D.; et al. Collider bias Undermines our Understanding of COVID-19 Disease Risk and Severity. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
Total n = 1538 | In-Hospital Mortality, n (%) | p-Value | ||
---|---|---|---|---|
Variables [Number of Available Data] | n (%) | Yes n = 422 (27%) | No n = 1116 (73%) | |
Sex (1533), n (%): | 0.448 | |||
| 641 (42%) | 183 (29%) | 458 (71%) | |
| 892 (58%) | 239 (27%) | 653 (73%) | |
Age (1538), median (IQR): | 74 (61–83) | 83 (76–87) | 69 (57–80) | <0.001 |
Age distribution (1538), n (%): | <0.001 | |||
| 153 (10%) | 4 (3%) | 149 (97%) | |
| 490 (32%) | 48 (10%) | 442 (90%) | |
| 379 (24%) | 116 (31%) | 263 (69%) | |
| 413 (27%) | 197 (48%) | 216 (52%) | |
| 103 (7%) | 57 (55%) | 46 (45%) | |
Smokers (1121), n (%): | 0.033 | |||
| 76 (7%) | 13 (17%) | 63 (83%) | |
| 256 (23%) | 83 (32%) | 173 (68%) | |
| 789 (70%) | 223 (28%) | 566 (72%) | |
Comorbidities (1538), n (%): | ||||
| 324 (21%) | 120 (37%) | 204 (63%) | <0.001 |
| 759 (49%) | 250 (33%) | 509 (67%) | <0.001 |
| 309 (20%) | 161 (52%) | 148 (48%) | <0.001 |
| 490 (32%) | 218 (44%) | 272 (56%) | <0.001 |
| <0.001 | |||
| 175 (11.4%) | 84 (48%) | 91 (52%) | |
| 23 (1.5%) | 5 (22%) | 18 (78%) | |
| 1 (0.1%) | 1 (100%) | 0 (0%) | |
Immunosuppression (1538), n (%): | 148 (10%) | 53 (36%) | 95 (64%) | 0.016 |
| 74 (5%) | 31 (42%) | 43 (58%) | 0.004 |
| 38 (2%) | 12 (32%) | 26 (68%) | 0.558 |
| 21 (1%) | 5 (24%) | 16 (76%) | 0.711 |
| 29 (2%) | 9 (31%) | 20 (69%) | 0.657 |
| 1 (0.1%) | 0 (0%) | 1 (100%) | 0.539 |
Symptoms at admission, n (%): | 1249 (93%) | 353 (28%) | 896 (72%) | 0.758 |
| 1023 (76%) | 270 (26%) | 753 (74%) | 0.005 |
| 719 (53%) | 250 (35%) | 469 (65%) | <0.001 |
| 221 (16%) | 40 (18%) | 181 (82%) | <0.001 |
| 23 (3%) | 4 (17%) | 19 (83%) | 0.152 |
| 573 (43%) | 105 (18%) | 468 (82%) | <0.001 |
| 172 (13%) | 27 (16%) | 145 (84%) | <0.001 |
| 97 (7%) | 26 (27%) | 71 (73%) | 0.758 |
Days from symptom onset to positive test (1248), median (IQR): | 4 (1–8) | 3 (0–6) | 5 (2–9) | <0.001 |
Days from symptoms onset to hospital admission (1445), median (IQR): | 6 (2–10) | 3 (0–7) | 7 (3–10) | <0.001 |
PaO2/FiO2 at admission (distribution) (1019), n (%): | <0.001 | |||
| 180 (18%) | 114 (63%) | 66 (37%) | |
| 412 (40%) | 150 (36%) | 262 (64%) | |
| 427 (42%) | 68 (16%) | 359 (84%) | |
Pneumonia (1469), n (%): | 1238 (84%) | 355 (29%) | 883 (71%) | 0.074 |
Total n = 1538 | In-Hospital Mortality, n (%) | p-Value | ||
---|---|---|---|---|
Variables [Number of Available Data] | n (%) | Yes n = 422 (27%) | No n = 1116 (73%) | |
% Lymphocytes (1312), median (IQR): | 15 (8.9–22.1) | 10.5 (6.7–18.4) | 16.5 (10.1–23) | <0.001 |
Lymphopenia (<1000) (1312), n (%): | 694 (53%) | 231 (33%) | 463 (67%) | <0.001 |
LDH (U/L) (1200), median (IQR): | 582 (436–766) | 699 (520–900) | 552 (422–713) | <0.001 |
D-dimer (ng/mL) (800), median (IQR): | 1200 (610–2290) | 1825 (966–3325) | 959 (550–1875) | <0.001 |
CRP (mg/L) (1461), median (IQR): | 74 (28–139) | 109 (52–175) | 62 (21–124) | <0.001 |
PCT (ng/mL) (904), median (IQR): | 0.1 (0.1–0.4) | 0.3 (0.1–0.9) | 0.1 (0.1–0.2) | <0.001 |
PCT (distribution) (904), n (%): | <0.001 | |||
| 248 (27%) | 33 (13%) | 215 (87%) | |
| 213 (24%) | 50 (23%) | 163 (77%) | |
| 218 (24%) | 74 (34%) | 144 (66%) | |
| 225 (25%) | 120 (53%) | 105 (47%) | |
eGFR (1282), median (IQR) | 77.2 (48.4–96.0) | 50.4 (28.4–79.1) | 83.9 (61.8–100.3) | <0.001 |
EGFR (mL/min/1.73 m2) (1282), n (%): | <0.001 | |||
| 852 (67%) | 150 (18%) | 702 (82%) | |
| 274 (21%) | 117 (43%) | 157 (57%) | |
| 156 (12%) | 97 (62%) | 59 (38%) | |
ESRD (1282), n (%): | 63 (5%) | 37 (59%) | 26 (41%) | <0.001 |
LMWH (1531), n (%): | 690 (45%) | 212 (31%) | 478 (69%) | 0.008 |
Antibiotics (1502), n (%): | 1221 (81%) | 351 (29%) | 870 (71%) | 0.242 |
Steroids (1454), n (%): | 381 (26%) | 82 (22%) | 299 (78%) | 0.001 |
Type of steroids (1454), n (%): | 0.002 | |||
| 171 (12%) | 45 (26%) | 126 (74%) | |
| 120 (8%) | 26 (22%) | 94 (78%) | |
| 15 (1%) | 0 (0%) | 15 (100%) | |
| 75 (5%) | 11 (15%) | 64 (85%) | |
Antivirals (1525), n (%): | 0.001 | |||
| 373 (25%) | 84 (23%) | 289 (77%) | |
| 14 (1%) | 2 (14%) | 12 (86%) | |
| 182 (12%) | 34 (19%) | 148 (81%) | |
Remdesivir (1335), n (%): | 7 (1%) | 1 (14%) | 6 (86%) | 0.405 |
Hydroxychloroquine (1527), n (%): | 1019 (67%) | 207 (20%) | 812 (80%) | <0.001 |
Tocilizumab (1336), n (%): | 97 (7%) | 15 (15%) | 82 (85%) | 0.004 |
Oxygen therapy (1500), n (%): | 1135 (76%) | 381 (34%) | 754 (66%) | <0.001 |
| 370 (25%) | 95 (26%) | 275 (74%) | 0.569 |
| 116 (8%) | 23 (20%) | 93 (80%) | 0.049 |
Oxygen therapy at discharge (693), n (%): | 69 (10%) | - | 69 (100%) | - |
Days of hospitalization (1487), median, n (%): | 10 (5–18) | 6 (2–12) | 12 (7–20) | <0.001 |
OR (95% CI) (Univariate Model) | p-Value | OR (95% CI) (Multivariate Model) * | p-Value | |
---|---|---|---|---|
Sex (M vs. F) | 0.92 (0.73–1.15) | 0.448 | 1.13 (0.84–1.53) | 0.417 |
Age at admission (per year) | 1.09 (1.08–1.10) | <0.001 | 1.07 (1.06–1.09) | <0.001 |
Smoking | ||||
| 0.52 (0.28–0.97) | 0.040 | 0.99 (0.47–2.13) | 0.996 |
| 1.22 (0.90–1.65) | 0.204 | 1.31 (0.88–1.95) | 0.177 |
Comorbidities (present vs. not present): | ||||
| 1.78 (1.37–2.31) | <0.001 | 1.41 (1.02–1.94) | 0.038 |
| 1.74 (1.39–2.19) | <0.001 | 0.78 (0.58–1.05) | 0.098 |
| 3.33 (2.63–4.21) | <0.001 | 1.79 (1.31–2.44) | <0.001 |
| 2.81 (2.03–3.87) | <0.001 | 1.48 (0.99–2.20) | 0.056 |
| 0.84 (0.31–2.29) | 0.740 | 1.45 (0.44–4.78) | 0.546 |
| 1.55 (1.08–2.21) | 0.016 | 1.65 (1.04–2.62) | 0.034 |
Characteristics at admission: | ||||
P/F: | ||||
| 0.33 (0.23–0.48) | <0.001 | 0.41 (0.27–0.65) | <0.001 |
| 0.11 (0.07–0.16) | <0.001 | 0.22 (0.13–0.36) | <0.001 |
Lymphocytopenia (yes vs. no) | 1.70 (1.33–2.18) | <0.001 | 1.28 (0.94–1.76) | 0.120 |
LDH (U/L): | ||||
| 1.19 (0.79–1.79) | 0.406 | 0.81 (0.49–1.33) | 0.405 |
| 1.80 (1.22–2.66) | 0.003 | 1.22 (0.75–1.99) | 0.427 |
| 3.41 (2.34–4.96) | <0.001 | 1.60 (0.97–2.62) | 0.065 |
D-dimer (ng/mL): | ||||
| 1.70 (1.01–2.84) | 0.046 | 1.02 (0.55–1.89) | 0.943 |
| 2.97 (1.80–4.90) | <0.001 | 1.01 (0.55–1.86) | 0.980 |
| 5.00 (3.07–8.14) | <0.001 | 1.44 (0.78–2.65) | 0.241 |
CRP (mg/L): | ||||
| 2.55 (1.74–3.74) | <0.001 | 1.75 (1.11–2.74) | 0.015 |
| 2.80 (1.92–4.10) | <0.001 | 1.49 (0.94–2.37) | 0.089 |
| 5.17 (3.57–7.49) | <0.001 | 2.17 (1.36–3.45) | 0.001 |
eGFR (mL/min/1.73 m2): | ||||
| 3.49 (2.59–4.70) | <0.001 | 1.47 (1.03–2.11) | 0.034 |
| 7.69 (5.32–11.12) | <0.001 | 3.53 (2.26–5.51) | <0.001 |
Total n = 1011 | In–Hospital Mortality, n (%) | p-Value | ||
---|---|---|---|---|
Variables [Number of Available Data] | n (%) | Yes n = 198 (20%) | No n = 813 (80%) | |
LMWH (1008) | 500 (50%) | 107 (21%) | 393 (79%) | 0.140 |
Steroids (970) | 305 (31%) | 62 (20%) | 243 (80%) | 0.777 |
Antivirals (1007) | 408 (41%) | 66 (16%) | 342 (84%) | 0.022 |
Lopinavir/Ritonavir (1007) | 251 (25%) | 40 (16%) | 211 (84%) | 0.086 |
Darunavir /Ritonavir or Cobicistat (1007) | 158 (16%) | 26 (16%) | 132 (84%) | 0.269 |
Remdesivir (882) | 7 (1%) | 1 (14%) | 6 (86%) | 0.701 |
Hydroxychloroquine (1008) | 731 (73%) | 118 (16%) | 613 (84%) | <0.001 |
Tocilizumab (884) | 90 (10%) | 13 (14%) | 77 (86%) | 0.196 |
Drug treatments (Yes vs. No) | OR (95% CI) (Univariate) | p-Value | OR (95%CI) (Adjusted) * | p-Value |
---|---|---|---|---|
LMWH | 1.26 (0.92–1.72) | 0.151 | 1.13 (0.72–1.77) | 0.597 |
Steroids | 1.07 (0.76–1.50) | 0.696 | 0.91 (0.58–1.43) | 0.692 |
Lopinavir/Ritonavir | 0.72 (0.49–1.06) | 0.094 | 1.07 (0.60–1.89) | 0.818 |
Darunavir /Ritonavir or Cobicistat | 0.78 (0.50–1.23) | 0.282 | 1.39 (0.75–2.57) | 0.295 |
Hydroxichloroquine | 0.48 (0.35–0.67) | <0.001 | 0.57 (0.36–0.90) | 0.015 |
Tocilizumab | 0.67 (0.37–1.24) | 0.201 | 1.41 (0.66–2.99) | 0.377 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Rosa, F.G.; Palazzo, A.; Rosso, T.; Shbaklo, N.; Mussa, M.; Boglione, L.; Borgogno, E.; Rossati, A.; Mornese Pinna, S.; Scabini, S.; et al. Risk Factors for Mortality in COVID-19 Hospitalized Patients in Piedmont, Italy: Results from the Multicenter, Regional, CORACLE Registry. J. Clin. Med. 2021, 10, 1951. https://doi.org/10.3390/jcm10091951
De Rosa FG, Palazzo A, Rosso T, Shbaklo N, Mussa M, Boglione L, Borgogno E, Rossati A, Mornese Pinna S, Scabini S, et al. Risk Factors for Mortality in COVID-19 Hospitalized Patients in Piedmont, Italy: Results from the Multicenter, Regional, CORACLE Registry. Journal of Clinical Medicine. 2021; 10(9):1951. https://doi.org/10.3390/jcm10091951
Chicago/Turabian StyleDe Rosa, Francesco Giuseppe, Annagloria Palazzo, Tiziana Rosso, Nour Shbaklo, Marco Mussa, Lucio Boglione, Enrica Borgogno, Antonella Rossati, Simone Mornese Pinna, Silvia Scabini, and et al. 2021. "Risk Factors for Mortality in COVID-19 Hospitalized Patients in Piedmont, Italy: Results from the Multicenter, Regional, CORACLE Registry" Journal of Clinical Medicine 10, no. 9: 1951. https://doi.org/10.3390/jcm10091951
APA StyleDe Rosa, F. G., Palazzo, A., Rosso, T., Shbaklo, N., Mussa, M., Boglione, L., Borgogno, E., Rossati, A., Mornese Pinna, S., Scabini, S., Chichino, G., Borrè, S., Del Bono, V., Garavelli, P. L., Barillà, D., Cattel, F., Di Perri, G., Ciccone, G., Lupia, T., & Corcione, S. (2021). Risk Factors for Mortality in COVID-19 Hospitalized Patients in Piedmont, Italy: Results from the Multicenter, Regional, CORACLE Registry. Journal of Clinical Medicine, 10(9), 1951. https://doi.org/10.3390/jcm10091951