ijms-logo

Journal Browser

Journal Browser

Meristem and Stem Cells and Stem Cell Regulation in Plants

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: closed (28 February 2023) | Viewed by 15441

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biology and Environment, The University of Haifa-Oranim, Tivon 36006, Israel
Interests: the beginning of agriculture and plant domestication; the ecology and evolution of defensive coloration in plants; developmental processes and meristematic activity; Arabidopsis thaliana as a model for tree biology; biology and ecology of trees; paleoecology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The stem cell niche in plants is called a meristem, an organ composed of several distinct regions. In the shoot apical meristem (SAM) of dicots, including the model plant Arabidopsis, three distinct regions can be identified, including the central zone (that contains genuine stem cells), the peripheral zone, and the rib meristem. An elaborate interplay between these regions is central to the functionality of the apical shoot meristem. Two major apical meristems, that of the root and that of the shoot, are responsible for the formation of the bulk of the above- and below-ground primary plant body. Besides primary apical meristems, plants possess secondary meristems, including intercalary meristems (most common in grasses), which are located at the internodes or the base of the leaves, and lateral meristems, such as the cambium and the phellogen that build the majority of the secondary plant tissues. Dilatation meristem of the secondary bark may add additional cells and tissues to the outer parts of the bark in plants that express significant secondary growth. Meristems are thus the most important organs that drive plant growth and development. They determine the number and fate of cells, the structure and fate of tissues, the shape and type of organs, the phases of plant vegetative and sexual reproduction, and general plant architecture. Their organized, efficient, and reliable operation is an extremely complicated function, crucial to the fitness of a sessile organism such as a plant.

The applications of genetic and various molecular approaches to study plant meristems have uncovered some of the molecular mechanisms underlying meristem establishment and maintenance. In this Special Issue, we wish to highlight these mechanisms and the bearing environmental signals might have on the structure and function of these meristems.

We invite papers addressing various molecular aspects of meristem (apical, intercalary, or lateral) organization, establishment, and maintenance, with a focus on the effects of internal and environmental signals. We encourage papers addressing the genetics of plant meristems, the role of plant hormones in meristem structure and function, how stress shapes the meristem, and how epigenetics regulates meristem organization and function.

Prof. Dr. Simcha Lev-Yadun
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Apical meristems
  • Lateral meristems (e.g., cambium)
  • Intercalary meristems
  • Differentiation
  • Pattern formation
  • Stem cells
  • Stress responses
  • Plant hormones
  • Epigenetics

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 7245 KiB  
Article
Lateral Root Initiation in Cucumber (Cucumis sativus): What Does the Expression Pattern of Rapid Alkalinization Factor 34 (RALF34) Tell Us?
by Alexey S. Kiryushkin, Elena L. Ilina, Elizaveta D. Guseva, Katharina Pawlowski and Kirill N. Demchenko
Int. J. Mol. Sci. 2023, 24(9), 8440; https://doi.org/10.3390/ijms24098440 - 8 May 2023
Cited by 3 | Viewed by 2133
Abstract
In Arabidopsis, the small signaling peptide (peptide hormone) RALF34 is involved in the gene regulatory network of lateral root initiation. In this study, we aimed to understand the nature of the signals induced by RALF34 in the non-model plant cucumber (Cucumis sativus [...] Read more.
In Arabidopsis, the small signaling peptide (peptide hormone) RALF34 is involved in the gene regulatory network of lateral root initiation. In this study, we aimed to understand the nature of the signals induced by RALF34 in the non-model plant cucumber (Cucumis sativus), where lateral root primordia are induced in the apical meristem of the parental root. The RALF family members of cucumber were identified using phylogenetic analysis. The sequence of events involved in the initiation and development of lateral root primordia in cucumber was examined in detail. To elucidate the role of the small signaling peptide CsRALF34 and its receptor CsTHESEUS1 in the initial stages of lateral root formation in the parental root meristem in cucumber, we studied the expression patterns of both genes, as well as the localization and transport of the CsRALF34 peptide. CsRALF34 is expressed in all plant organs. CsRALF34 seems to differ from AtRALF34 in that its expression is not regulated by auxin. The expression of AtRALF34, as well as CsRALF34, is regulated in part by ethylene. CsTHESEUS1 is expressed constitutively in cucumber root tissues. Our data suggest that CsRALF34 acts in a non-cell-autonomous manner and is not involved in lateral root initiation in cucumber. Full article
(This article belongs to the Special Issue Meristem and Stem Cells and Stem Cell Regulation in Plants)
Show Figures

Graphical abstract

28 pages, 7434 KiB  
Article
Integrative Proteomics and Metabolomics Analysis Reveals the Role of Small Signaling Peptide Rapid Alkalinization Factor 34 (RALF34) in Cucumber Roots
by Julia Shumilina, Alexey S. Kiryushkin, Nadezhda Frolova, Valeria Mashkina, Elena L. Ilina, Vera A. Puchkova, Katerina Danko, Svetlana Silinskaya, Evgeny B. Serebryakov, Alena Soboleva, Tatiana Bilova, Anastasia Orlova, Elizaveta D. Guseva, Egor Repkin, Katharina Pawlowski, Andrej Frolov and Kirill N. Demchenko
Int. J. Mol. Sci. 2023, 24(8), 7654; https://doi.org/10.3390/ijms24087654 - 21 Apr 2023
Cited by 4 | Viewed by 2941
Abstract
The main role of RALF small signaling peptides was reported to be the alkalization control of the apoplast for improvement of nutrient absorption; however, the exact function of individual RALF peptides such as RALF34 remains unknown. The Arabidopsis RALF34 (AtRALF34) peptide [...] Read more.
The main role of RALF small signaling peptides was reported to be the alkalization control of the apoplast for improvement of nutrient absorption; however, the exact function of individual RALF peptides such as RALF34 remains unknown. The Arabidopsis RALF34 (AtRALF34) peptide was proposed to be part of the gene regulatory network of lateral root initiation. Cucumber is an excellent model for studying a special form of lateral root initiation taking place in the meristem of the parental root. We attempted to elucidate the role of the regulatory pathway in which RALF34 is a participant using cucumber transgenic hairy roots overexpressing CsRALF34 for comprehensive, integrated metabolomics and proteomics studies, focusing on the analysis of stress response markers. CsRALF34 overexpression resulted in the inhibition of root growth and regulation of cell proliferation, specifically in blocking the G2/M transition in cucumber roots. Based on these results, we propose that CsRALF34 is not part of the gene regulatory networks involved in the early steps of lateral root initiation. Instead, we suggest that CsRALF34 modulates ROS homeostasis and triggers the controlled production of hydroxyl radicals in root cells, possibly associated with intracellular signal transduction. Altogether, our results support the role of RALF peptides as ROS regulators. Full article
(This article belongs to the Special Issue Meristem and Stem Cells and Stem Cell Regulation in Plants)
Show Figures

Graphical abstract

12 pages, 11177 KiB  
Communication
The NGATHA-like Genes DPA4 and SOD7 Are Not Required for Stem Cell Specification during Embryo Development in Arabidopsis thaliana
by Antoine Nicolas and Patrick Laufs
Int. J. Mol. Sci. 2022, 23(19), 12007; https://doi.org/10.3390/ijms231912007 - 9 Oct 2022
Viewed by 1745
Abstract
In plants, stem cells are embedded in structures called meristems. Meristems can be formed either during embryogenesis or during the plant’s life such as, for instance, axillary meristems. While the regulation of the stem cell population in an established meristem is well described, [...] Read more.
In plants, stem cells are embedded in structures called meristems. Meristems can be formed either during embryogenesis or during the plant’s life such as, for instance, axillary meristems. While the regulation of the stem cell population in an established meristem is well described, how it is initiated in newly formed meristems is less well understood. Recently, two transcription factors of the NGATHA-like family, DEVELOPMENT-RELATED PcG TARGET IN THE APEX4 (DPA4)/NGAL3 and SUPPRESSOR OF DA1-1 7 (SOD7)/NGAL2 have been shown to facilitate de novo stem cell initiation in Arabidopsis thaliana axillary meristems. Here, we tested whether the DPA4 and SOD7 genes had a similar role during stem cell formation in embryo shoot apical meristems. Using DPA4 and SOD7 reporter lines, we characterized the expression pattern of these genes during embryo development, revealing only a partial overlap with the stem cell population. In addition, we showed that the expression of a stem cell reporter was not modified in dpa4-2 sod7-2 double mutant embryos compared to the wild type. Together, these observations suggest that DPA4 and SOD7 are not required for stem cell specification during embryo shoot apical meristem initiation. This work stresses the difference in the regulatory network leading to meristem formation during the embryonic and post-embryonic phases. Full article
(This article belongs to the Special Issue Meristem and Stem Cells and Stem Cell Regulation in Plants)
Show Figures

Figure 1

11 pages, 2120 KiB  
Article
Establishment of Stem Cell-like Cells of Sida hermaphrodita (L.) Rusby from Explants Containing Cambial Meristems
by Šarlota Kaňuková, Marcela Gubišová, Lenka Klčová, Daniel Mihálik and Ján Kraic
Int. J. Mol. Sci. 2022, 23(14), 7644; https://doi.org/10.3390/ijms23147644 - 11 Jul 2022
Cited by 1 | Viewed by 1668
Abstract
The in vitro cultures of plant stem cells and stem cell-like cells can be established from tissues containing meristematic cells. Chemical compounds—as well as their production potential—is among the emerging topics of plant biotechnology. We induced the callus cell biomass growth and characterized [...] Read more.
The in vitro cultures of plant stem cells and stem cell-like cells can be established from tissues containing meristematic cells. Chemical compounds—as well as their production potential—is among the emerging topics of plant biotechnology. We induced the callus cell biomass growth and characterized the parameters indicating the presence of stem cells or stem cell-like cells. Four types of explants (stem, petiole, leaf, root) from Sida hermaphrodita (L.) Rusby and various combinations of auxins and cytokinins were tested for initiation of callus, growth of sub-cultivated callus biomass, and establishment of stem cells or stem cell-like cells. Induction of callus and its growth parameters were significantly affected both by the explant type and the combination of used plant growth hormones and regulators. The responsibility for callus initiation and growth was the highest in stem-derived explants containing cambial meristematic cells. Growth parameters of callus biomass and specific characteristics of vacuoles confirmed the presence of stem cells or stem cell-like cells in sub-cultivated callus cell biomass. Establishment of in vitro stem cell or stem cell-like cell cultures in S. hermaphrodita can lead to the development of various applications of in vitro cultivation systems as well as alternative applications of this crop. Full article
(This article belongs to the Special Issue Meristem and Stem Cells and Stem Cell Regulation in Plants)
Show Figures

Figure 1

16 pages, 7924 KiB  
Article
Dynamic Changes in Reactive Oxygen Species in the Shoot Apex Contribute to Stem Cell Death in Arabidopsis thaliana
by Yukun Wang, Makoto Shirakawa and Toshiro Ito
Int. J. Mol. Sci. 2022, 23(7), 3864; https://doi.org/10.3390/ijms23073864 - 31 Mar 2022
Cited by 8 | Viewed by 2531
Abstract
In monocarpic plants, stem cells are fated to die. However, the potential mechanism of stem cell death has remained elusive. Here, we reveal that the levels of two forms of reactive oxygen species (ROS), superoxide anion free radical (O2· [...] Read more.
In monocarpic plants, stem cells are fated to die. However, the potential mechanism of stem cell death has remained elusive. Here, we reveal that the levels of two forms of reactive oxygen species (ROS), superoxide anion free radical (O2·) and hydrogen peroxide (H2O2), show dynamic changes in the shoot apex during the plant life cycle of Arabidopsis thaliana. We found that the level of O2· decreased and disappeared at four weeks after bolting (WAB), while H2O2 appeared at 3 WAB and showed a burst at 5 WAB. The timing of dynamic changes in O2· and H2O2 was delayed for approximately three weeks in clv3-2, which has a longer lifespan. Moreover, exogenous application of H2O2 inhibited the expression of the stem cell determinant WUSCHEL (WUS) and promoted the expression of the developmentally programmed cell death (dPCD) marker gene ORESARA 1 (ORE1). These results indicate that H2O2 triggers an important signal inducing dPCD in stem cells. Given that O2· plays roles in maintaining WUS expression and stem cell activity, we speculate that the dynamic shift from O2· to H2O2 in the shoot apex results in stem cell death. Our findings provide novel insights for understanding ROS-mediated regulation during plant stem cell death. Full article
(This article belongs to the Special Issue Meristem and Stem Cells and Stem Cell Regulation in Plants)
Show Figures

Figure 1

13 pages, 3890 KiB  
Article
Post-Embryonic Lateral Organ Development and Adaxial—Abaxial Polarity Are Regulated by the Combined Effect of ENHANCER OF SHOOT REGENERATION 1 and WUSCHEL in Arabidopsis Shoots
by Yoshihisa Ikeda, Michaela Králová, David Zalabák, Ivona Kubalová and Mitsuhiro Aida
Int. J. Mol. Sci. 2021, 22(19), 10621; https://doi.org/10.3390/ijms221910621 - 30 Sep 2021
Cited by 3 | Viewed by 3115
Abstract
The development of above-ground lateral organs is initiated at the peripheral zone of the shoot apical meristem (SAM). The coordination of cell fate determination and the maintenance of stem cells are achieved through a complex regulatory network comprised of transcription factors. Two AP2/ERF [...] Read more.
The development of above-ground lateral organs is initiated at the peripheral zone of the shoot apical meristem (SAM). The coordination of cell fate determination and the maintenance of stem cells are achieved through a complex regulatory network comprised of transcription factors. Two AP2/ERF transcription factor family genes, ESR1/DRN and ESR2/DRNL/SOB/BOL, regulate cotyledon and flower formation and de novo organogenesis in tissue culture. However, their roles in post-embryonic lateral organ development remain elusive. In this study, we analyzed the genetic interactions among SAM-related genes, WUS and STM, two ESR genes, and one of the HD-ZIP III members, REV, whose protein product interacts with ESR1 in planta. We found that esr1 mutations substantially enhanced the wus and stm phenotypes, which bear a striking resemblance to those of the wus rev and stm rev double mutants, respectively. Aberrant adaxial–abaxial polarity is observed in wus esr1 at relatively low penetrance. On the contrary, the esr2 mutation partially suppressed stm phenotypes in the later vegetative phase. Such complex genetic interactions appear to be attributed to the distinct expression pattern of two ESR genes because the ESR1 promoter-driving ESR2 is capable of rescuing phenotypes caused by the esr1 mutation. Our results pose the unique genetic relevance of ESR1 and the SAM-related gene interactions in the development of rosette leaves. Full article
(This article belongs to the Special Issue Meristem and Stem Cells and Stem Cell Regulation in Plants)
Show Figures

Figure 1

Back to TopTop