Next Article in Journal
Mitochondrial Biomarkers in the Omics Era: A Clinical-Pathophysiological Perspective
Previous Article in Journal
Host RNA Expression Signatures in Young Infants with Urinary Tract Infection: A Prospective Study
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy

by
Katarzyna Adamiak
1,
Vivian A. Gaida
2,
Jasmin Schäfer
2,
Lina Bosse
2,
Clara Diemer
2,
Russel J. Reiter
3,
Andrzej T. Slominski
4,5,
Kerstin Steinbrink
2,
Alina Sionkowska
1 and
Konrad Kleszczyński
2,*
1
Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland
2
Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
3
Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA
4
Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
5
Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2024, 25(9), 4858; https://doi.org/10.3390/ijms25094858
Submission received: 28 March 2024 / Revised: 19 April 2024 / Accepted: 26 April 2024 / Published: 29 April 2024
(This article belongs to the Section Molecular Oncology)

Abstract

:
Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021–2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.

1. Introduction

The skin with subcutis constitutes the largest organ in the human body, exposed to external and internal aging factors. The stochastic process of skin aging implies functional and phenotypic variability in cutaneous and immune cells, which occurs along with functional and structural changes in extracellular matrix constituents, including collagen and elastin. Wrinkling, roughness, skin laxity, and decrease in elasticity are the main clinical features of the skin aging process [1,2,3].
The crucial external factor of skin aging is the excessive exposure to ultraviolet radiation (UVR) which is connected with hyperpigmentary changes [4] and wrinkling [5], and also induces common types of skin cancer such as basal cell carcinoma [6,7], squamous cell carcinoma [8,9,10], and malignant melanoma [11,12]. The UVR spectra are: UVC (200–280 nm), UVB (280–315 nm) and UVA (315–400 nm), and radiation [13,14,15]. The UVC and 280–290 wavelengths of UVB are absorbed by the ozone layer of the atmosphere; however, the stratum corneum is able to absorb the UVC radiation after the exposition to non-natural light sources [14]. The UVA can penetrate the reticular dermis and induce biological effects, yet not as efficiently as the UVB radiation [16], which is absorbed by the upper layers of the epidermis and can penetrate the papillary dermis [13,15]. The UVR has an influence on many complex processes in the human body and can also trigger systemic reactions [17,18]. It can upregulate local and systemic neuroendocrine systems [18]. The locally induced cytokines, urocortins, enkephalins, and melanocortins can impose systemic effects while released into the circulation, like the agitation of the central hypothalamic–pituitary–adrenal axis, opioidogenic effects, and immunosuppression, as well as vitamin D synthesis and activation [17,18,19,20,21,22].
The UV lights have a tremendous impact on biological organisms and the origin of life on Earth [23,24,25,26]. The energy of UVR is similar to the energy of covalent bonds, which means that any molecule electron excitation by UV light can disrupt or create a covalent bond. Organic molecules exposed to the energy of UV light commute to chemical bonds with high-energy levels, achieving molecular complexity [18,26]. The cells can use their energy increasing the enthalpy of the system [26]. UVB is crucial in photosynthesis, providing various forms of vitamin D which can be enzymatically activated at the local and systemic levels in different organisms [21,22,27].
In human skin, reactive oxygen species/reactive nitrogen species (ROS/RNS) production can be induced by UVR, thereby elevating the secretion of pro-inflammatory cytokines. Increased cell proliferation and oxidation processes can disrupt cell membrane integrity and induce DNA fragmentation [7]. The topical delivery of antioxidants helps to maintain redox balance in epidermal cells, regulates pro-inflammatory cytokines release, and prevents oxidative damage and DNA fragmentation in these cells [28,29,30,31,32,33,34,35].
Melatonin (N-acetyl-5-methoxyindolamine) and sericin exert antioxidant properties and could be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response [36,37,38,39]. In human skin, melatonin suppresses the damage caused by UVR through numerous mechanisms associated with ROS/RNS production and programmed cell death (apoptosis) [40,41,42,43]. Melatonin derived from tryptophan constitutes an active pleiotropic molecule in the human organism, synthetized by cells of the pineal gland and also peripheral organs such as the skin, gastrointestinal tract, and lymphocytes [44,45,46]. Melatonin influences biorhythms, scavenges free radicals, enhances DNA repair, influences the gene expression of anti-oxidative enzymes, and stimulates wound healing properties [47,48,49,50,51]. Sericin as an effective antioxidant exhibits skin protective activity against UVB and UVA radiation-induced damage [52]. Chromophores’ UVB absorption is predominant, whereas UVA is weakly absorbed by DNA and cellular chromophores with greater ROS/RNS generation, which leads to oxidative changes in the cells [13,53]. Sericin is produced by silkworm’s glands (e.g., Bombyx mori, Bombyx mandarins, and other species) and has been explored in biomaterial applications because of its biodegradability, anti-oxidative, and antibacterial properties [54,55,56,57,58,59]. Furthermore, sericin inhibits tyrosinase activity and promotes cell proliferation, which can be supportive and useful in melanoma treatment [60,61,62,63,64]. After surgery, the potential bacterial infections could exacerbate epidermal/dermal damage and delay wound healing. Thus, developing biomaterials for melanoma therapy that reduces the risk of infection, maintaining redox balance in skin cells and preventing cancer recurrence is essential for patient recovery [65,66,67,68,69,70]. Sericin as a biomaterial has been used in the preparation of a variety of tissue engineering materials such as composites, hydrogels, membranes, nanofibers, and nanoparticles [71,72,73,74,75]. However, poor mechanical strength and high production costs of sericin-based scaffolds make it difficult to introduce this molecule for medical use. Using a biopolymer with improved mechanical properties and with the incorporation sericin and melatonin as active compounds may be highly useful for wound healing in melanoma-affected patients [76,77,78,79,80].

2. Melatonin and Sericin against the Skin Aging Process

The process of aging has a prominent impact on the skin’s healing function, mainly by prolonging the inflammatory phase and increasing ROS/RNS production [81,82]. The skin constitutes a protective barrier between external and internal environments and has the sensory capacity to maintain body homeostasis in response to deleterious factors. Skin aging is a natural process with progressive functional and morphological changes, determined by the overall exposure to both intrinsic and extrinsic factors, which may vary depending on skin regions within diverse ethnicities. The clinical signs of skin aging are visible as wrinkles, a rough-textured appearance, a loss of elasticity, and laxity [83,84].
The physiological process of skin aging is characterized primarily by fluctuation changes in endocrine circadian rhythmicity, gene expression, and hormonal descent, which are the reasons for appearance of morphological and functional alterations [85,86,87,88]. With increasing age, the occurrence of changes in the endocrine glands, the steroidogenic system, skin cholesterol synthesis, proopiomelanocortin (POMC) expression, and POMC-derived peptides production with the focus on the melanocortin receptor 1 (MC1R) and MC2R agonists, are more frequent and may lead to skin alterations and lesions [89,90,91,92]. Vitamin D production, essential to maintain proper skin functions and immunity, also decreases with age [92,93,94,95].
On the molecular level, the process of skin aging comprises ROS/RNS generation, diminished antioxidant protection, changes in gene expression, and defects in cellular DNA mechanisms. Along with the senescence of the organism, the mitochondrial DNA content and number decreases [96,97,98,99,100], but there is also enhanced ROS/RNS generation with reduced oxidative phosphorylation and adenosine triphosphate production which leads to mitochondria-mediated apoptosis [101,102,103]. Melatonin has an antioxidant capacity which relies on the indirect receptor-mediated stimulation of antioxidant enzymes to resist the oxidative stress [104,105,106,107,108,109,110,111,112]. Melatonin and its metabolites are also known for their anti-inflammatory and mitochondrial protective capability [32,113,114,115,116,117,118,119,120], which help to maintain proper skin functions [121,122,123]. Melatonin and its metabolites have a major role in human epidermal keratinocytes protection against UVB radiation, in particular N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), N1-acetyl-5-methoxykynuramine (AMK), 5-methoxytryptamine (5-MT), and 6-hydroxymelatonin (6(OH)MEL), which ameliorate the disruptive effects of UVR. Studies have shown that melatonin also protects the dermal fibroblasts from the deleterious action of UVA and UVB [124,125,126,127,128,129,130,131,132,133,134,135,136,137]. Thus, melatonin and its metabolites counteract photodamage and premature skin aging [138,139,140] (Figure 1). Finally, due to stimulated expression of involucrin, keratin-10 and keratin-14, topically applied melatonin enhances the epidermal barrier function of the skin and increases the activity of keratinocytes ex vivo [141,142] (Figure 1). The mechanism of action of melatonin and its metabolites would include the activation of the membrane-bound MT1 and T2 receptors [5] or the recently identified aryl hydrocarbon (AhR) and peroxisome proliferator-activated receptor gamma (PPAR-γ) [143], or the receptor independent mechanisms mentioned above.
Studies using dermal fibroblasts have shown that silk sericin stimulates collagen synthesis, which also indicates its anti-aging properties [144,145]. Results have revealed that silk sericin activates collagen type I synthesis and suppresses oxidative stress, maintaining unaltered fibroblast growth kinetics and cellular structure [146]. Next to ROS/RNS-scavenging activity, sericin also exhibits anti-tyrosinase and anti-elastase properties. Recent studies have shown that particular sericin strains have an anti-proliferative activity on peripheral blood mononuclear cells; in vitro IFN-γ secretion was decreased, without affecting TNF and IL-10 release. Thus, sericin may be useful for dermatological use [62,147].
The recent inventions using sericin in anti-aging treatments include extract loaded-sericin hydrogel as a topical agent [148], naringenin microemulsion-loaded sericin gel [149], and gold silk sericin/niacinamide/signaline complex [150]. Extract-loaded sericin hydrogels in six formulations were examined for anti-melanogenesis on the B16F10 melanoma cell line, UVR-preventive properties of human keratinocytes (HaCaT), and anti-aging effectiveness on normal human dermal fibroblasts. The study showed that the hydrogel increased the anthocyanin penetration through the skin. The most promising formulation using the purple waxy corn cob (Zea mays L.) extract demonstrated the highest tyrosinase activity inhibition, melanin pigment reduction, collagenase/elastase inhibition, collagen type I production, and elevation of cell viability.
Thus, the purple waxy corn cob extract-loaded sericin hydrogel as a topical agent indicates a great potential in anti-aging products [148]. Namely, naringenin microemulsion-loaded sericin gel showed an inhibition of UVR-induced photoaging and increased free radical scavenging. The in vitro cytotoxicity study on skin cancer cells enhanced anti-proliferative activity by increasing ROS/RNS in cancer cells with caspase-3 (Casp-3) activation [149]. The randomized study with the gold silk sericin/niacinamide/signaline complex have shown the efficacy of daily application in improving the condition of the skin with an antiaging effect [150].
UV light constitutes an important factor in skin aging and disturbances in skin proliferation. UV light up-regulates the nuclear factor kappa B (NF-κB) and releases pro-inflammatory cytokines, with a simultaneous increased generation of ROS/RNS. Next, free radicals affecting DNA decrease protein tyrosine phosphates and up-regulate matrix metalloproteinase generation, which leads to collagen decomposition [151,152]. Although, in healthy conditions urocanic acid, produced in the upper layers in the human skin, constitutes a natural skin UV absorber, excessive exposure to UV light should be avoided due to the harmful effects induced by UV light [153].

3. Melanoma: A Tumor of Melanocyte Origin

Melanoma, a tumor of melanocyte origin, constitutes one of the most formidable types of skin malignancy [154,155,156] described by local invasiveness, recurrence, early metastasis, and high mortality risk [157,158,159,160,161]. The standard treatment is surgical resection [162,163,164], while alternative therapies like chemotherapy, radiotherapy, or photodynamic therapy are focused on the elimination of the melanoma cells [165,166]. Nevertheless, the limitations of the treatment can cause prolonged stress for patients. Insufficient light penetration depth using photodynamic therapy may be a barrier for reaching pigmented lesions [167]. Furthermore, the complete tumor resection with residual tumor tissues may lead to major cutaneous defects [168,169]. The risk of the wound infection in post-surgical treatment is an emerging issue in the wound healing process. Therefore, it is essential to promote skin regeneration during melanoma treatment [170]. Throughout the years, various methods like autologous/allogenic skin grafts or tissue-engineered scaffolds were developed [171,172,173]. However, wound healing patches have drawn attention; understanding the requirements of melanoma treatment are indispensable to develop a strategy with integrated wound healing and therapeutic effects.
To better understand the process of melanoma wound healing, it is important to focus on the molecular bases of tumor development and possible ways to impede them [174,175,176]. Namely, the risk factors of melanoma induction are: UVR, burns, melanocytic nevi, fair skin or gene mutations (BRAF, NRAS, KIT) [177,178,179,180]. Also in the focus of attention is a tumor suppressor gene cyclin-dependent kinase inhibitor 2A (CDKN2A), and the encoding of p16INK4A and p14ARF proteins as a major genetic risk factor [181,182]. In the cell cycle of p16INK4α, the transition from G1 to S phase is regulated and the cycle also acts as a CDK inhibitor, blocking the phosphorylation and inactivation of the Rb protein. However, p14ARF shows anti-proliferation activity, inhibiting the disintegration of the p53 tumor suppressor. During the G2/M phase in normal conditions, the expression of p53 stops the cell cycle or induces apoptosis, which can be a response, for example, to UVR-induced DNA damage [183].
This process can activate the heat shock proteins (HSPs) which protect the cells from physical or environmental stressors [184]. In vitro studies have shown that after the exposure to UV light, melanoma cells release the HSP70 which activates anti-melanoma T cells [185,186,187,188]. Thus, HSPs play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and by preventing their aggregation [189]. Additionally, HSPs have a protective function; they allow the cells to survive in otherwise lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. Namely, several of these proteins have been demonstrated to directly interact with components of the cell signaling pathways, for instance those of the tightly regulated caspase-dependent programmed cell death machinery, upstream, downstream and at the mitochondrial level. HSPs can also affect caspase-independent apoptosis-like processes by interacting with apoptogenic factors, such as the apoptosis-inducing factor (AIF) or by acting at the lysosome level [189]. Melatonin is known to downregulate the expression of HSP40, HSP70, and HSP90 [32,190,191] to reduce oxidative stress. Thus, melatonin may constitute the additional defense in melanoma [32,192,193,194,195]. The anti-inflammatory properties of melatonin could also be an answer to the NF-κB activation, which is known to be the regulator in oncogenesis. NF-κB activation promotes cell proliferation and inhibits apoptosis and p53 in cancer development. The anti-inflammatory mechanism of melatonin’ purpose is to regulate cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokines [196].
Recent studies have confirmed that melatonin and its indolic and kynurenic derivatives downstream the pathway of melanogenesis, causing a drop in the cyclic adenosine monophosphate (cAMP) level and the microphthalmia-associated transcription factor (MITF) and causing the resultant collapse in tyrosinase (TYR) activity and melanin content. These findings can be a breakthrough for the future studies on pigmentation in melanoma therapies [122,142,196,197,198,199]. Since the inhibition of melanogenesis in advanced melanomas can serve as an adjuvant strategy in the systemic therapy of melanoma [200], melatonin as a mitochondrial protector with anti-inflammatory properties and direct antioxidants should be explored in topical and transepidermal delivery, especially in skin damage after UVR exposition. It is also known to be very effective in alopecia and atopic dermatitis treatment. It may be also considered as a skin barrier protectant in chronopharmacology [42,45,130]. In topical delivery, melanoma treatment using a combination of melatonin/sericin also indicates antioxidant and mitochondrial protection activity which may constitute a potential therapeutic strategy, including in the antibacterial properties of sericin that promote wound healing processes [201,202]. We also acknowledge the potential limitation of the accumulation of melatonin in tumor cells, which may increase their resistance to pharmaco- or radiotherapy, as discussed recently [203].

4. State of Innovation in Melatonin-Polymer Wound Healing Patches

Melatonin, a derivative of tryptophan, was initially characterized and isolated by Lerner et al. [204]. Melatonin is an indoleamine, which is defined as a indole heterocycle that contains two chains, i.e., 5-methoxy and 3-amide group. The indole structure is rich in electrons and has high resonance stability and reactivity which is the reason for melatonin’s free radical scavenging capacity [204]. To date, it has been reported that melatonin neutralizes a high number of ROS including hydrogenperoxide (H2O2), peroxyl radicals (ROO•), hydroxyl radical (•OH), singlet oxygen (1O2), and RNS, such as peroxynitrite (ONOO) or nitric oxide radicals (NO•) [205,206,207,208,209,210,211]. The high antioxidant potential of melatonin enables the protection of the cells against oxidative stress more efficiently than other antioxidants. For instance, Figure 2 summarizes the cascade interaction between ROS/RNS and melatonin as well as its metabolites. Thus, melatonin has a capacity to detoxify numerous toxic ROS or RNS, whereas the scavenging ability of other antioxidants is significantly lower [212].
Furthermore, Table 1 presents melatonin as an active substance that is found in wound healing patches in combination with polymers: silk fibroin/methacrylate [213], polycaprolactone [214], carboxymethyl cellulose [215], methacrylated gelatin/thiolated pectin hydrogel [216], chitosan-sulfonated ethylene–propylene–diene terpolymer, sulfonated ethylene–propylene–diene terpolymer [217], nanoclay [218], polycaprolactone/sodium alginate [219], polycaprolactone/gelatin [220], collagen/chitosan cross-linked by glyoxal [221], gelatin [222], carboxymethyl chitosan [223], chitosan/collagen [224], chitosan–polycaprolactone/polyvinyl alcohol [225], chitosan–polycaprolactone [226], and collagen with aminated xanthan gum [227]. The main applications of melatonin-polymer patches are wound healing [214,223,224] and wound dressings [222,225], but they are also used in diabetic wound repair [215], skin delivery [218], and skin tissue engineering [221]. Furthermore, melatonin-loaded polymer patches were also used in cartilage repair [213], vital pump regeneration [216], tendon regeneration [219], membranes [217], nerve tissue engineering [220], skin tissue regeneration [227], and osteosarcoma treatment [226]. Polymers used in inventions were mainly synthetic but modified biopolymers including polycaprolactone [214], carboxymethyl cellulose [215], methacrylated gelatin/thiolated pectin hydrogel [216], chitosan-sulfonated ethylene–propylene–diene terpolymer [217], sulfonated ethylene–propylene–diene terpolymer [217], carboxymethyl chitosan [223], and chitosan–polycaprolactone [225]. A combination of natural and synthetic polymer were also observed, e.g., silk fibroin/methacrylate [213], polycaprolactone/sodium alginate [219], polycaprolactone/gelatin [220], collagen/chitosan cross-linked by glyoxal [221], chitosan/collagen [224], and collagen with aminated xanthan gum [227], although natural polymer matrix nanoclay was rare [218], as was gelatin alone [222]. Other active substances in wound healing patches found in recent years are γ-cyclodextrin [215], tideglusib [216], and silver nanoparticles [227].

5. State of Innovation in Sericin-Polymer Wound Healing Patches

Sericin is a “glue-like” protein coiled around the protein core which keeps the fibroin filaments together. This macromolecule constitutes a globular protein built from coil and β-sheets [228]. The coil structure for β-sheet can change in response to temperature, mechanical stretching properties, and moisture absorption. In 50–60 °C water solution, the protein acquires its soluble form. At lower temperatures, the coil structure converts into β-sheets resulting in the gel formation [229]. Sericin exhibits a hydrophilic character and is composed of 18 amino acids with polar groups such as hydroxyl, carboxyl, and amino groups. The group formation is capable of forming crosslinks, co-polymerizations, and compositions with other polymers [230]. The significant structure of sericin defines its biological properties that includes anti-bacterial activity, antioxidant, and biocompatibility [231].
The antioxidant and photoprotective potential of sericin against UVB in human epidermal keratinocytes was confirmed using the flow cytometry assessment [232]. It was revealed that treatment with sericin significantly attenuated apoptosis by inhibiting the expression of pro-apoptotic proteins and upregulation of the anti-apoptotic Bcl-2 proteins family, as well as preventing Casp-3 activation [232]. The role of sericin in preventing mitochondrial damage was also confirmed by the inhibition of hydrogen peroxide formation. As a consequence, the intracellular ROS/RNS and activation of poly-ADP-ribose polymerase enzyme (PARP) were distinctly reduced. Studies have shown that sericin is a potent antioxidant and anti-apoptotic agent [232,233]. Additionally, the antioxidant properties of sericin are related to high serine and threonine content, whereas hydroxyl groups act as a chelator of trace elements such as copper and iron [234,235].
In recent years, wound healing patches containing sericin have been the center of attention (Table 2). Sericin as a component of the matrix appeared next to polymers: poly (vinyl alcohol) [236], sodium carboxy-methyl-cellulose and polyvinyl alcohol [237], placenta-derived extracellular matrix [238], silk fiber [239], PVA/chitosan [240], PVA [241], robust alcohol, polyurethane/chitosan [242], carboxymethyl cellulose [243], poly (N-isopropylacrylamide) [244], cellulose/silk nonwoven fabric [245], collagen-fibrin [246], poly(2-hydroxyethyl methacrylate) [247], cellulose [248], carboxymethyl cellulose as hydrogels [249], cellulose/poly(vinyl alcohol) [250], poly lactide-co-glycolic acid [251], PVA/collagen [252], PVA/chitosan [253], polycaprolactone/cellulose acetate/fibroin [254], poly(ethyleneterephhalate)-g-poly(hydroxyethylmethacrylate, PET-g-HEMA) nanofibers [255], sericin/chitosan/polyvinyl alcohol [256], gelatin [257], fibroin [258], poly(Σ-caprolactone)/poly(ethylene oxide) [259]. There are also sericin-based patches with only sericin or sericin treated with HRP/H2O2 as a matrix, but in significantly smaller amounts [260,261].
The main active substances in those inventions included resveratrol [239], turmeric [243], silver nanoparticles [255], poly(lactic-co-glycolic acid) nanoparticles [257], and sericin as a sole ingredient [260,261] or in combinations with human placenta [238], silver [244], collagen [246] or azithromycin [250]. The applications of sericin-polymer patches in recent years involved wound treatment [238,239,243,244,245,249,250,252,254,257,259,261], including acute [237] and infected large burn wounds [236], artificial skin [242], wound dressings [240,241,248,253,255,258], tissue engineering [247], regenerative scaffolds [246], and periodontal tissue engineering [251]. The composition of the wound healing patches in the years 2021–2023 was mostly a combination of natural and synthetic components, where sericin was the natural ingredient. There were also fully natural patches designed from sericin and human placenta [238], as well as the combination of sericin and collagen [246].
The studies have shown that nanofiber (NF) wound dressing loaded with 20% melatonin (NF + 20% MEL) indicated the highest mRNA expression of collagen type 1 (COL1A1) on the 14th day of treatment compared to Comfeel Plus, NF + 10% MEL, nanofiber dressing, and the non-treated group. Thus, NF + 20% MEL electrospun wound dressing could be used as an effective matrix for accelerating the wound healing process reducing the costs of wound repair [225].
Another study has shown that the melatonin-loaded hydrogel significantly increased the percent of effectiveness of wound closure, promoted tissue granulation and re-epithelialization, leading to accelerated collagen deposition, when compared to the control group and the hydrogel with no melatonin groups. Therefore, it is essential to conduct further research using melatonin in wound healing patches [223].

6. Discussion: Melatonin/Sericin Collagen Scaffolds as Possible Wound Healing Patches

Recent advances in melatonin-polymer wound healing patches showed that melatonin is the main active ingredient [213,214,215,216,217,218,219,220,221,222,223,224,225,226,227]. Melatonin was also combined with other active substances to enhance regenerative, healing or anti-bacterial properties of dressings such as γ-cyclodextrin [215], tideglusib [216], and silver nanoparticles [227]. In comparison, sericin was used most often as a polymer in combinations with polyvinyl alcohol [237], carboxymethyl cellulose [243], sodium carboxymethylcellulose and polyvinyl alcohol [237], poly lactide-co-glycolic acid [251], PVA/chitosan [253], PVA/collagen [252], poly (N-isopropylacrylamide) [244], polyurethane/chitosan [242], poly(2-hydroxyethyl methacrylate) [247], polycaprolactone/cellulose acetate/fibroin [254], poly (ethylene terephthalate)-g-poly(hydroxyethylmethacrylate) (PET-g-HEMA) nanofibers [255], and poly(Σ-caprolactone)/poly(ethylene oxide) [259]. Less often occurring polymers used in combinations with sericin were gelatin [257], fibroin [258], cellulose [248], collagen/fibrin [246], placenta-derived extracellular matrix [238], silk fiber [239], and cellulose/silk nonwoven fabric [245]. Sericin used separately as a matrix was relatively rare, probably because of its mechanical properties [260,261]. Sericin used in the mentioned inventions were treated with HRP/H2O2 to enhance the mechanical properties [261]. When applied as a polymer of the matrix, it was used in combination with resveratrol [239], turmeric [243], silver nanoparticles [255], poly(lactic-co-glycolic acid) nanoparticles [257] as the active ingredients. Although sericin also constituted the main substance in the wound healing patches over the years 2021–2023 [236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261], it was effectively used in combinations with human placenta [238], silver [244], collagen [246] or azithromycin [250] to increase the efficacy of wound-healing dressings (Figure 3).
Polymers including melatonin were similar to those that were used in sericin wound healing patches such as polycaprolactone [214,259] and carboxymethyl cellulose [215,249], whereas similar polymers used in different combinations included silk fibroin/methacrylate, methacrylated gelatin/thiolated pectin hydrogel, poly(2-hydroxyethyl methacrylate) [213,216,247], chitosan-sulfonated ethylene–propylene–diene terpolymer, sulfonated ethylene–propylene–diene terpolymer [217], collagen/chitosan cross-linked by glyoxal [221], carboxymethyl chitosan [223], chitosan/collagen [224], PVA/sericin/chitosan [240,253,256], polycaprolactone/gelatin [220], gelatin [257], collagen with aminated xanthan gum [227] and collagen-fibrin [246]. Sericin-polymer patches in recent years have had a variety of applications as follows: wound treatment [238,239,243,244,245,249,250,252,254,256,257,259,261], including acute [237] and infected large burn wounds [236], artificial skin [242], wound dressings [240,241,248,253,255,258], tissue engineering [247], regenerative scaffolds [246], and periodontal tissue engineering [251]. The main applications of melatonin-polymer patches in the years 2021–2023 were wound healing [214,223,224] and wound dressings [222,225], also used in diabetic wound repair [215], skin delivery [218], and skin tissue engineering [221]. During this period, melatonin-polymer patches were employed in cartilage repair [213], vital pump regeneration [216], tendon regeneration [216], membranes [217], nerve tissue engineering [220], skin tissue regeneration [227], and osteosarcoma treatment [226]. Active compounds combined with resveratrol and turmeric exhibit antioxidant and anti-inflammatory properties [239,243], whereas silver nanoparticles or poly(lactic-co-glycolic acid) nanoparticles reveal anti-bacterial effect [255,257]. Thus, for wound healing patches it was essential to include them as proof of the regeneration processes of the skin. Finally, numerous reports have shown that both melatonin and sericin but also resveratrol and turmeric exhibit high antioxidant potential [262,263,264,265].
The elevating secretion of pro-inflammatory cytokines, increased cell proliferation and oxidation processes can damage cell membrane integrity and lead to DNA fragmentation [7,27]. Although UVR is one of the major melanoma risk factors it is also essential for initiating vitamin D synthesis, while active forms of vitamin D also have photoprotective properties [266,267,268]. The topical treatment of large or non-resectable melanoma lesions including lentigo maligna using a combination of melatonin and sericin also shows that mitochondrial and antioxidant protection activity may lead to the development of a valuable additional strategy targeting melanoma, regarding the antibacterial properties of sericin that accelerate wound healing [269,270].

7. Conclusions, Challenges and Future Perspectives

Sericin-polymer patches have a variety of applications such as wound treatment [237,238], including acute [237] and infected large burn wounds [236], artificial skin [242], wound dressings [240,241], tissue engineering [247], regenerative scaffolds [246], and periodontal tissue engineering [251], whereas the main applications of melatonin-polymer patches in years 2021–2023 were wound healing and wound dressings [222,223,224,225]; they were also used in diabetic wound repair [215], skin delivery [218], and skin tissue engineering [221]. During this period, melatonin-polymer patches were also used in cartilage repair, vital pump regeneration, tendon regeneration, membranes, nerve tissue engineering, skin tissue regeneration, and osteosarcoma treatment [213,216,217,220,226,227]. Research has shown that both melatonin and sericin exhibit high antioxidant potential that is beneficial in melanoma treatment [271]. Melatonin/sericin-polymer patches have not been exploited for their application in post-melanoma wound healing treatment; this is the field that would likely benefit from further investigation.

Author Contributions

Conceptualization and writing—original draft preparation, K.A., A.S. and K.K.; supervision, A.S. and K.K.; revision and approval of the final version of the manuscript, K.A., V.A.G., J.S., L.B., C.D., R.J.R., A.T.S., K.S., A.S. and K.K. All authors have read and agreed to the published version of the manuscript.

Funding

The present report was supported by the grants of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG): KL2900/3-1 (K.K.), TR156/C05-246807620 (K.S.), SFB1009/B11-194468054 (K.S.), SFB1066/B06-213555243 (K.S.), SFB1450/C06-431460824 (K.S.) as well as in some part by the IDUB Program (Nicolaus Copernicus University, Toruń, Poland) (A.S.), by the NIH grants 1R01AR073004-01A1 and R01AR071189-01A1 and by a VA merit (grant no. 1I01BX004293-01A1) and DOD grant: W81XWH2210689 (A.T.S.).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Slominski, A.; Wortsman, J. Neuroendocrinology of the skin. Endocr. Rev. 2000, 21, 457–487. [Google Scholar] [CrossRef] [PubMed]
  2. Slominski, A.; Zmijewski, M.; Skobowiat, C.; Zbytek, B.; Slominski, R.; Steketee, J. Sensing the Environment: Regulation of Local and Global Homeostasis by the Skin’s Neuroendocrine System; Advances in Anatomy, Embryology and Cell Biology; Springer Science and Business Media: Dordrecht, The Netherlands, 2012; Volume 212, pp. 1–115. [Google Scholar]
  3. Bocheva, G.; Slominski, R.; Slominski, A. Neuroendocrine aspects of skin aging. Int. J. Mol. Sci. 2019, 20, 2798. [Google Scholar] [CrossRef] [PubMed]
  4. Choi, W.; Miyamura, Y.; Wolber, R.; Smuda, C.; Reinhold, W.; Liu, H.; Kolbe, L.; Hearing, V. Regulation of human skin pigmentation In Situ by repetitive UV exposure: Molecular characterization of responses to UVA and/or UVB. J. Investig. Dermatol. 2010, 130, 1685–1696. [Google Scholar] [CrossRef] [PubMed]
  5. Edwards, C.; Pearse, A.; Marks, R.; Nishimori, Y.; Matsumoto, K.; Kawai, M. Degenerative Alterations of Dermal Collagen Fiber Bundles in Photodamaged Human Skin and UV-Irradiated Hairless Mouse Skin: Possible Effect on Decreasing Skin Mechanical Properties and Appearance of Wrinkles. J. Investig. Dermatol. 2001, 117, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
  6. Moan, J.; Grigalavicius, M.; Baturaite, Z.; Dahlback, A.; Juzeniene, A. The relationship between UV exposure and incidence of skin cancer. Photodermatol. Photoimmunol. Photomed. 2015, 31, 26–35. [Google Scholar] [CrossRef] [PubMed]
  7. Bajgar, R.; Moukova, A.; Chalupnikova, N.; Kolarova, H. Differences in the effects of broad-band UVA and narrow-band UVB on epidermal keratinocytes. Int. J. Environ. Res. Public Health 2021, 18, 12480. [Google Scholar] [CrossRef] [PubMed]
  8. Berman, B. Basal cell carcinoma and actinic keratoses: Patients’ perceptions of their disease and current treatments. Int. J. Dermatol. 2001, 40, 573–576. [Google Scholar] [CrossRef] [PubMed]
  9. Brash, D.; Rudolph, J.; Simon, J.; Lin, A.; McKenna, G.; Baden, H.; Halperin, A.; Ponten, J. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 1991, 88, 10124–10128. [Google Scholar] [CrossRef] [PubMed]
  10. Collins, G.; Nickoonahand, N.; Morgan, M. Changing demographics and pathology of nonmelanoma skin cancer in the last 30 years. Semin. Cutan. Med. Surg. 2004, 23, 80–83. [Google Scholar] [CrossRef]
  11. Ley, R.D. Ultraviolet radiation A-induced precursors of cutaneous melanoma in Monodelphis domestica. Cancer Res. 1997, 57, 3682–3684. [Google Scholar]
  12. Gidanian, S.; Mentelle, M.; Meyskens, F.; Farmer, P. Melanosomal damage in normal human melanocytes induced by UVB and metal uptake—A basis for the pro-oxidant state of melanoma. Photochem. Photobiol. 2008, 84, 556–564. [Google Scholar] [CrossRef] [PubMed]
  13. Bjorn, L. Photobiology: The Science of Life and Light, 2nd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
  14. Morison, W. Phototherapy and Photochemotherapy for Skin Disease, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
  15. Gilchrest, B. Photodamage, 1st ed.; Blackwell Science: Cambridge, MA, USA, 1995. [Google Scholar]
  16. Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [PubMed]
  17. Skobowiat, C.; Dowdy, J.; Sayre, R.; Tuckey, R.; Slominski, A. Cutaneous hypothalamic-pituitary-adrenal axis homolog: Regulation by ultraviolet radiation. Am. J. Physiol. Endocrinol. Metab. 2011, 301, 484–493. [Google Scholar] [CrossRef]
  18. Slominski, R.M.; Chen, J.Y.; Raman, C.; Slominski, A.T. Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc. Natl. Acad. Sci. USA 2024, 121, e2308374121. [Google Scholar] [CrossRef] [PubMed]
  19. Slominski, A. Ultraviolet radiation (UVR) activates central neuro-endocrine-immune system. Photodermatol. Photoimmunol. Photomed. 2015, 31, 121–123. [Google Scholar] [CrossRef] [PubMed]
  20. Skobowiat, C.; Slominski, A. UVB Activates Hypothalamic-Pituitary-Adrenal Axis in C57BL/6 Mice. J. Investig. Dermatol. 2015, 135, 1638–1648. [Google Scholar] [CrossRef] [PubMed]
  21. Slominski, A.T.; Tuckey, R.C.; Jetten, A.M.; Holick, M.F. Recent Advances in Vitamin D Biology: Something New under the Sun. J. Investig. Dermatol. 2023, 143, 2340–2342. [Google Scholar] [CrossRef] [PubMed]
  22. Holick, M.F.; Slominski, A.T. Photobiology of vitamin D. In Feldman and Pike’s Vitamin D; Hewison, M., Ed.; Academic Press: Oxford, UK, 2024; pp. 27–45. [Google Scholar]
  23. Cockell, C.; Gerda, H. The History of the UV Radiation Climate of the Earth—Theoretical and Space-based Observations. Photochem. Photobiol. 2001, 73, 447–451. [Google Scholar] [CrossRef] [PubMed]
  24. Cockell, C. Ultraviolet radiation and the photobiology of earth’s early oceans. Orig. Life Evol. Biosph. 2000, 30, 467–500. [Google Scholar] [CrossRef]
  25. Dworkin, J.; Deamer, D.; Sandford, S.; Allamandola, L. Self-assembling amphiphilic molecules: Synthesis in simulated interstellar/precometary ices. Proc. Natl. Acad. Sci. USA 2001, 98, 815–819. [Google Scholar] [CrossRef]
  26. Slominski, A.; Zmijewski, M.; Plonka, P.; Szaflarski, J.; Paus, R. How UV Light Touches the Brain and Endocrine System through Skin, and Why. Endocrinology 2018, 159, 1992–2007. [Google Scholar] [CrossRef] [PubMed]
  27. Kim, T.K.; Slominski, R.; Pyza, E.; Kleszczyński, K.; Tuckey, R.; Reiter, R.J.; Holick, M.; Slominski, A.T. Evolutionary formation of melatonin and vitamin D in early life forms: Insects take centre stage. Biol. Rev. 2024; in press. [Google Scholar] [CrossRef]
  28. Ho, Y.; Wu, J.; Chang, C. A new natural antioxidant biomaterial from Cinnamomum osmophloeum Kanehira leaves represses melanogenesis and protects against DNA damage. Antioxidants 2019, 8, 474. [Google Scholar] [CrossRef] [PubMed]
  29. Bose, V.; Balaganesan, V.; Govindaraj, G.; Veerichetty, V. Cellular antioxidant and cytotoxic activity of astaxanthin and ellagic acid on UV irradiated skin melanoma cells and gel formulation. Mater. Today Proc. 2023; in press. [Google Scholar]
  30. Galano, A.; Tan, D.; Reiter, R. Melatonin: A versatile protector against oxidative DNA damage. Molecules 2018, 23, 530. [Google Scholar] [CrossRef] [PubMed]
  31. Salucci, S.; Burattini, S.; Buontempo, F.; Martelli, A.; Falcieri, E.; Battistelli, M. Protective effect of different antioxidant agents in UVB-irradiated keratinocytes. Eur. J. Histochem. 2017, 61, 215–221. [Google Scholar] [CrossRef] [PubMed]
  32. Kleszczyński, K.; Zwicker, S.; Tukaj, S.; Kasperkiewicz, M.; Zillikens, D.; Wolf, R.; Fischer, T.W. Melatonin compensates silencing of heat shock protein 70 and suppresses ultraviolet radiation-induced inflammation in human skin ex vivo and cultured keratinocytes. J. Pineal Res. 2015, 58, 117–126. [Google Scholar] [CrossRef] [PubMed]
  33. López-Burillo, S.; Tan, D.; Rodriguez-Gallego, V.; Manchester, L.; Mayo, J.; Sainz, R.; Reiter, R. Melatonin and its derivatives cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine and 6-methoxymelatonin reduce oxidative DNA damage induced by Fenton reagents. J. Pineal Res. 2003, 34, 178–184. [Google Scholar] [CrossRef]
  34. Sliwinski, T.; Rozej, W.; Morawiec-Bajda, A.; Morawiec, Z.; Reiter, R.; Blasiak, J. Protective action of melatonin against oxidative DNA damage—Chemical inactivation versus base-excision repair. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2007, 634, 220–227. [Google Scholar] [CrossRef] [PubMed]
  35. Fischer, T.; Kleszczyński, K.; Hardkop, L.; Kruse, N.; Zillikens, D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2’-deoxyguanosine) in Ex Vivo human skin. J. Pineal Res. 2013, 54, 303–312. [Google Scholar] [CrossRef]
  36. Hu, X.; Tian, X.; Yang, C.; Ling, F.; Liu, H.; Zhu, X.; Pei, M.; Yang, H.; Liu, T.; Xu, Y.; et al. Melatonin-loaded self-healing hydrogel targets mitochondrial energy metabolism and promotes annulus fibrosus regeneration. Mater. Today Bio 2023, 23, 100811. [Google Scholar] [CrossRef]
  37. Wei, L.; Yu, M.; Xie, D.; Wang, L.; Ye, C.; Zhu, Q.; Liu, F.; Yang, L. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res. Ther. 2020, 11, 259. [Google Scholar]
  38. Rupesh, D.; Acharya, C.; Bindu, P.; Kundu, S. Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts. BMB Rep. 2008, 41, 236–241. [Google Scholar]
  39. Boni, B.; Lamboni, L.; Bakadia, B.; Hussein, S.; Yang, G. Combining silk sericin and surface micropatterns in bacterial cellulose dressings to control fibrosis and enhance wound healing. Eng. Sci. 2020, 10, 68–77. [Google Scholar] [CrossRef]
  40. Slominski, A.; Zmijewski, M.; Semak, I.; Kim, T.; Janjetovic, Z.; Slominski, R.; Zmijewski, J. Melatonin, mitochondria, and the skin. Cell. Mol. Life Sci. 2017, 74, 3913–3925. [Google Scholar] [CrossRef] [PubMed]
  41. Holtkamp, C.; Warmus, D.; Bonowicz, K.; Gagat, M.; Linowiecka, K.; Wolnicka-Glubisz, A.; Reiter, R.; Böhm, M.; Słominski, A.; Steinbrink, K.; et al. Ultraviolet Radiation-Induced Mitochondrial Disturbances Are Attenuated by Metabolites of Melatonin in Human Epidermal Keratinocytes. Metabolites 2023, 13, 861. [Google Scholar] [CrossRef] [PubMed]
  42. Slominski, A.; Kleszczyński, K.; Semak, I.; Janjetovic, Z.; Żmijewski, M.; Kim, T.; Slominski, R.; Reiter, R.; Fischer, T. Local melatoninergic system as the protector of skin integrity. Int. J. Mol. Sci. 2014, 15, 17705–17732. [Google Scholar] [CrossRef] [PubMed]
  43. Kleszczyński, K.; Tukaj, S.; Kruse, N.; Zillikens, D.; Fischer, T. Melatonin prevents ultraviolet radiation-induced alterations in plasma membrane potential and intracellular pH in human keratinocytes. J. Pineal Res. 2013, 54, 89–99. [Google Scholar] [CrossRef] [PubMed]
  44. Acuña-Castroviejo, D.; Escames, G.; Venegas, C.; Díaz-Casado, M.; Lima-Cabello, E.; López, L.; Sergio Rosales-Corral, D.; Reiter, R. Extrapineal melatonin: Sources, regulation, and potential functions. Cell. Mol. Life Sci. 2014, 71, 2997–3025. [Google Scholar] [CrossRef] [PubMed]
  45. Slominski, A.; Wortsman, J.; Tobin, D. The cutaneous serotoninergic/melatoninergic system: Securing a place under the sun. FASEB J. 2015, 19, 176–194. [Google Scholar] [CrossRef] [PubMed]
  46. Slominski, A.; Hardeland, R.; Zmijewski, M.; Slominski, R.; Reiter, R.; Paus, R. Melatonin: A Cutaneous Perspective on its Production, Metabolism, and Functions. J. Investig. Dermatol. 2018, 138, 490–499. [Google Scholar] [CrossRef]
  47. Vasey, C.; McBride, J.; Penta, K. Circadian rhythm dysregulation and restoration: The role of melatonin. Nutrients 2021, 13, 3480. [Google Scholar] [CrossRef]
  48. Du Plessis, S.; Hagenaar, K.; Lampiao, F. The In Vitro effects of melatonin on human sperm function and its scavenging activities on NO and ROS. Andrologia 2010, 42, 112–116. [Google Scholar] [CrossRef] [PubMed]
  49. Liu, R.; Fu, A.; Hoffman, A.; Zheng, T.; Zhu, Y. Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways. BMC Cell Biol. 2013, 14, 1. [Google Scholar] [CrossRef] [PubMed]
  50. Ackermann, K.; Plomp, R.; Lao, O.; Middleton, B.; Revell, V.; Skene, D.; Kayser, M. Effect of sleep deprivation on rhythms of clock gene expression and melatonin in humans. Chronobiol. Int. 2013, 30, 901–909. [Google Scholar] [CrossRef] [PubMed]
  51. Pugazhenthi, K.; Kapoor, M.; Clarkson, A.; Hall, I.; Appleton, I. Melatonin accelerates the process of wound repair in full-thickness incisional wounds. J. Pineal Res. 2008, 44, 387–396. [Google Scholar] [CrossRef] [PubMed]
  52. Kumar, J.; Alam, S.; Jain, A.; Ansari, K.; Mandal, B. Protective activity of silk sericin against UV radiation-induced skin damage by downregulating oxidative stress. ACS Appl. Bio Mater. 2018, 1, 2120–2132. [Google Scholar] [CrossRef] [PubMed]
  53. Young, A. Chromophores in human skin. Phys. Med. Biol. 1997, 42, 789–802. [Google Scholar] [CrossRef] [PubMed]
  54. Akturk, O.; Tezcaner, A.; Bilgili, H.; Deveci, M.; Gecit, M.; Keskin, D. Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J. Biosci. Bioeng. 2011, 112, 279–288. [Google Scholar] [CrossRef] [PubMed]
  55. Tao, G.; Cai, R.; Wang, Y.; Zuo, H.; He, H. Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing. Mater. Sci. Eng. C 2021, 119, 111597. [Google Scholar] [CrossRef] [PubMed]
  56. Chirila, T.; Suzuki, S.; McKirdy, N. Further development of silk sericin as a biomaterial: Comparative investigation of the procedures for its isolation from Bombyx mori silk cocoons. Prog. Biomater. 2016, 5, 135–145. [Google Scholar] [CrossRef]
  57. Chirila, T.; Suzuki, S.; Bray, L.; Barnett, N.; Harkin, D. Evaluation of silk sericin as a biomaterial: In Vitro growth of human corneal limbal epithelial cells on Bombyx mori sericin membranes. Prog. Biomater. 2013, 2, 14. [Google Scholar] [CrossRef]
  58. Kundu, B.; Kundu, S. Silk sericin/polyacrylamide In Situ forming hydrogels for dermal reconstruction. Biomaterials 2012, 33, 7456–7467. [Google Scholar] [CrossRef] [PubMed]
  59. Mandal, B.; Priya, A.; Kundu, S. Novel silk sericin/gelatin 3-D scaffolds and 2-D films: Fabrication and characterization for potential tissue engineering applications. Acta Biomater. 2009, 5, 3007–3020. [Google Scholar] [CrossRef] [PubMed]
  60. Aramwit, P.; Damrongsakkul, S.; Kanokpanont, S.; Srichana, T. Properties and antityrosinase activity of sericin from various extraction methods. Biotechnol. Appl. Biochem. 2010, 55, 91–98. [Google Scholar] [CrossRef] [PubMed]
  61. Jena, K.; Pandey, J.; Kumari, R.; Sinha, A.; Gupta, V.; Singh, G. Tasar silk fiber waste sericin: New source for anti-elastase, anti-tyrosinase and anti-oxidant compounds. Int. J. Biol. Macromol. 2018, 114, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
  62. Chlapanidas, T.; Faragò, S.; Lucconi, G.; Perteghella, S.; Galuzzi, M.; Mantelli, M.; Avanzini, M.; Tosca, M.; Marazzi, M.; Vigo, D.; et al. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and In Vitro immunomodulatory activities. Int. J. Biol. Macromol. 2013, 58, 47–56. [Google Scholar] [CrossRef] [PubMed]
  63. Liu, J.; Qi, C.; Tao, K.; Zhang, J.; Zhang, J.; Xu, L.; Jiang, X.; Zhang, Y.; Huang, L.; Xie, H.; et al. Sericin/dextran injectable hydrogel as an optically trackable drug delivery system for malignant melanoma treatment. ACS Appl. Mater. Interfaces 2016, 8, 6411–6422. [Google Scholar] [CrossRef] [PubMed]
  64. Villani, A.; Scalvenzi, M.; Micali, G.; Lacarrubba, F.; Fornaro, L.; Martora, F.; Potestio, L. Management of Advanced Invasive Melanoma: New Strategies. Adv. Ther. 2023, 40, 3381–3394. [Google Scholar] [CrossRef] [PubMed]
  65. Wang, S.; Zheng, H.; Zhou, L.; Cheng, F.; Liu, Z.; Zhang, H.; Zhang, Q. Injectable redox and light responsive MnO2 hybrid hydrogel for simultaneous melanoma therapy and multidrug-resistant bacteria-infected wound healing. Biomaterials 2020, 260, 120314. [Google Scholar] [CrossRef] [PubMed]
  66. Yuan, C.; Zhang, D.; Tang, Y.; Guo, Z.; Lin, K.; Yu, Y.; Li, J.; Cai, Q. Fibrous dressing containing bioactive glass with combined chemotherapy and wound healing promotion for post-surgical treatment of melanoma. Biomater. Adv. 2023, 149, 213387. [Google Scholar] [CrossRef]
  67. Dhall, S.; Do, D.; Garcia, M.; Wijesinghe, D.; Brandon, A.; Kim, J.; Sanchez, A.; Lyubovitsky, J.; Gallagher, S.; Nothnagel, E.; et al. A novel model of chronic wounds: Importance of redox imbalance and biofilm-forming bacteria for establishment of chronicity. PLoS ONE 2014, 9, e109848. [Google Scholar] [CrossRef]
  68. Dryden, M. Complicated skin and soft tissue infection. J. Antimicrob. Chemother. 2010, 65, 35–44. [Google Scholar] [CrossRef] [PubMed]
  69. Widgerow, A.; King, K.; Tocco-Tussardi, I.; Banyard, D.; Chiang, R.; Awad, A.; Afzel, H.; Bhatnagel, S.; Melkumyan, S.; Wirth, G.; et al. The burn wound exudate—An under-utilized resource. Burns 2015, 41, 11–17. [Google Scholar] [CrossRef] [PubMed]
  70. Song, J.; Razzaq, A.; Khan, N.; Iqbal, H.; Ni, J. Chitosan/poly (3-hydroxy butyric acid-co-3-hydroxy valeric acid) electrospun nanofibers with cephradine for superficial incisional skin wound infection management. Int. J. Biol. Macromol. 2023, 250, 126229. [Google Scholar] [CrossRef] [PubMed]
  71. Nayak, S.; Talukdar, S.; Kundu, S. Potential of 2D crosslinked sericin membranes with improved biostability for skin tissue engineering. Cell Tissue Res. 2012, 347, 783–794. [Google Scholar] [CrossRef] [PubMed]
  72. Yuan, L.; Jiang, X.; Jiang, M.; Guo, Y.; Liu, Y.; Ming, P.; Li, S.; Zhou, P.; Cai, R.; Yu, K.; et al. Biocompatible gellan gum/sericin hydrogels containing halloysite@ polydopamine nanotubes with hemostasis and photothermal antibacterial properties for promoting infectious wound repair. Mater. Des. 2023, 227, 111744. [Google Scholar] [CrossRef]
  73. Oviedo, M.; Montoya, Y.; Alvarez, C.; Bustamante, J. Influence of Electrospinning Parameters on the Physicochemical Properties of Polycaprolactone, Chitosan, and Sericin Membranes. Mater. Proc. 2023, 11, 5. [Google Scholar] [CrossRef]
  74. Rui, Z.; Li, X.; Sun, B.; Zhang, Y.; Zhang, D.; Tang, Z.; Chen, X.; Wang, C. Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Int. J. Biol. Macromol. 2014, 68, 92–97. [Google Scholar]
  75. Sood, A.; Bhaskar, R.; Won, S.; Seok, Y.; Kumar, A.; Han, S. Disulfide bond-driven hyaluronic acid/sericin nanoparticles for wound-healing application. J. Nanostruct. Chem. 2023, 13, 463–480. [Google Scholar] [CrossRef]
  76. Lee, H.; Jang, M.; Park, B.; Um, I. Structural Characteristics and Properties of Redissolved Silk Sericin. Polymers 2023, 15, 3405. [Google Scholar] [CrossRef]
  77. Teh, T.; Toh, S.; Goh, J. Optimization of the silk scaffold sericin removal process for retention of silk fibroin protein structure and mechanical properties. Biomed. Mater. 2010, 5, 35008. [Google Scholar] [CrossRef]
  78. Turbiani, F.; Tomadon, J.; Seixas, F.; Gimenes, M. Properties and structure of sericin films: Effect of the crosslinking degree. Chem. Eng. Trans. 2011, 24, 1489–1494. [Google Scholar]
  79. Wang, J.; Shang, J.; Ren, F.; Leng, X. Study of the physical properties of whey protein: Sericin protein-blended edible films. Eur. Food Res. Technol. 2010, 231, 109–116. [Google Scholar] [CrossRef]
  80. Sothornvit, R.; Chollakup, R. Properties of sericin–glucomannan composite films. Int. J. Food Sci. Technol. 2009, 44, 1395–1400. [Google Scholar] [CrossRef]
  81. Roubenoff, R.; Harris, T.; Abad, L.; Wilson, P.; Dallal, G.; Dinarello, C. Monocyte cytokine production in an elderly population: Effect of age and inflammation. J. Gerontol. A Biol. Sci. Med. Sci. 1998, 53, 20–26. [Google Scholar] [CrossRef] [PubMed]
  82. Gorni, D.; Finco, A. Oxidative stress in elderly population: A prevention screening study. Aging Med. 2020, 3, 205–213. [Google Scholar] [CrossRef] [PubMed]
  83. Makrantonaki, E.; Bekou, V.; Zouboulis, C. Genetics and skin aging. Derm.-Endocrinol. 2012, 4, 280–284. [Google Scholar] [CrossRef] [PubMed]
  84. Venkatesh, S.; Maymone, M.; Vashi, N. Aging in skin of color. Clin. Dermatol. 2019, 37, 351–357. [Google Scholar] [CrossRef] [PubMed]
  85. Mazzoccoli, G.; De Cata, A.; Greco, A.; Damato, M.; Marzulli, N.; Dagostino, M.; Carughi, S.; Perfetto, F.; Tarquini, R. Aging related changes of circadian rhythmicity of cytotoxic lymphocyte subpopulations. J. Circadian Rhytm. 2010, 8, 6. [Google Scholar] [CrossRef] [PubMed]
  86. Barth, E.; Srivastava, A.; Wengerodt, D.; Stojiljkovic, M.; Axer, H.; Witte, O.; Kretz, A.; Marz, M. Age-dependent expression changes of circadian system-related genes reveal a potentially conserved link to aging. Aging 2021, 13, 25694–25716. [Google Scholar] [CrossRef]
  87. Gorelik, S.; Belousova, O.; Treneva, E.; Bulgakova, S.; Zakharova, N.; Nesterenko, S. Effect of daily rhythms of cortisol secretion on the rate of aging in men. Arch. Razi Inst. 2022, 77, 1233–1239. [Google Scholar]
  88. Martinez-Nicolas, A.; Madrid, J.; García, F.; Campos, M.; Moreno-Casbas, M.; Almaida-Pagán, P.; Lucas-Sanchez, A.; Rol, M. Circadian monitoring as an aging predictor. Sci. Rep. 2018, 8, 15027. [Google Scholar] [CrossRef] [PubMed]
  89. Cirillo, N.; Prime, S. Keratinocytes synthesize and activate cortisol. J. Cell. Biochem. 2011, 112, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
  90. Jackson, E.; Heidl, M.; Imfeld, D.; Meeus, L.; Schuetz, R.; Campiche, R. Discovery of a highly selective MC1R agonists pentapeptide to be used as a skin pigmentation enhancer and with potential anti-aging properties. Int. J. Mol. Sci. 2019, 20, 6143. [Google Scholar] [CrossRef] [PubMed]
  91. Slominski, A.T.; Slominski, R.M.; Raman, C.; Chen, J.Y.; Athar, M.; Elmets, C. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am. J. Physiol. Cell Physiol. 2022, 323, C1757–C1776. [Google Scholar] [CrossRef] [PubMed]
  92. Bocheva, G.; Slominski, R.; Slominski, A. The impact of vitamin D on skin aging. Int. J. Mol. Sci. 2021, 22, 9097. [Google Scholar] [CrossRef] [PubMed]
  93. Slominski, A.; Brożyna, A.; Zmijewski, M.; Jóźwicki, W.; Jetten, A.; Mason, R.; Tuckey, R.; Elmets, C. Vitamin D signaling and melanoma: Role of vitamin D and its receptors in melanoma progression and management. Lab. Investig. 2017, 97, 706–724. [Google Scholar] [CrossRef] [PubMed]
  94. Janjetovic, Z.; Slominski, A.T. Promising Functions of Novel Vitamin D Derivatives as Cosmetics: A New Fountain of Youth in Skin Aging and Skin Protection. Cosmetics 2024, 11, 37. [Google Scholar] [CrossRef]
  95. Slominski, A.; Brożyna, A.; Skobowiat, C.; Zmijewski, M.; Kim, T.; Janjetovic, Z.; Oak, A.; Jozwicki, W.; Jetten, A.; Mason, R.S.; et al. On the role of classical and novel forms of vitamin D in melanoma progression and management. J. Steroid. Biochem. Mol. Biol. 2018, 177, 159–170. [Google Scholar] [CrossRef] [PubMed]
  96. Noh, E.; Park, J.; Song, H.; Kim, J.; Lee, M.; Song, H.; Hong, O.; Whang, P.; Han, M.; Kwon, K.; et al. Skin aging-dependent activation of the PI3K signaling pathway via downregulation of PTEN increases intracellular ROS in human dermal fibroblasts. Oxid. Med. Cell. Longev. 2016, 2016, 6354261. [Google Scholar] [CrossRef]
  97. Bratic, A.; Larsson, N.G. The role of mitochondria in aging. J. Clin. Investig. 2013, 123, 951–957. [Google Scholar] [CrossRef]
  98. Trifunovic, A.; Wredenberg, A.; Falkenberg, M.; Spelbrink, J.N.; Rovio, A.T.; Bruder, C.E.; Bohlooly, Y.M.; Gidlöf, S.; Oldfors, A.; Wibom, R.; et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004, 429, 417–423. [Google Scholar] [CrossRef] [PubMed]
  99. McCullough, J.L.; Kelly, K.M. Prevention and treatment of skin aging. Ann. N. Y. Acad. Sci. 2006, 1067, 323–331. [Google Scholar] [CrossRef] [PubMed]
  100. Zhang, R.; Wang, Y.; Ye, K.; Picard, M.; Gu, Z. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genom. 2017, 18, 890. [Google Scholar] [CrossRef]
  101. Anderson, A.; Bowman, A.; Boulton, S.; Manning, P.; Birch-Machin, M. A role for human mitochondrial complex II in the production of reactive oxygen species in human skin. Redox Biol. 2014, 2, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
  102. Zungu, I.; Hawkins Evans, D.; Abrahamse, H. Mitochondrial responses of normal and injured human skin fibroblasts following low level laser irradiation—An In Vitro study. Photochem. Photobiol. 2009, 85, 987–996. [Google Scholar] [CrossRef]
  103. Birch-Machin, M.; Bowman, A. Oxidative stress and ageing. Br. J. Dermatol. 2016, 175, 26–29. [Google Scholar] [CrossRef]
  104. Reiter, R.J.; Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016, 61, 259–278. [Google Scholar] [CrossRef]
  105. Tan, D.X.; Chen, L.D.; Poeggeler, B.; Manchester, L.C.; Reiter, R.J. Melatonin: A potent endogenous hydroxyl radical scavenger. Endocrine 1993, 1, 57–60. [Google Scholar]
  106. Reiter, R.; Tan, D.; Rosales-Corral, S.; Galano, A.; Jou, M.; Acuna-Castroviejo, D. Melatonin mitigates mitochondrial meltdown: Interactions with SIRT3. Int. J. Mol. Sci. 2018, 19, 2439. [Google Scholar] [CrossRef]
  107. Hardeland, R. Antioxidant protection by melatonin: Multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 2005, 27, 119–130. [Google Scholar] [CrossRef]
  108. Reiter, R.; Rosales-Corral, S.; Tan, D.; Jou, M.; Galano, A.; Xu, B. Melatonin as a mitochondria-targeted antioxidant: One of evolution’s best ideas. Cell. Mol. Life Sci. 2017, 74, 3863–3881. [Google Scholar] [CrossRef]
  109. Reiter, R.; Tan, D.; Manchester, L.; Qi, W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: Are view of the evidence. Cell Biochem. Biophys. 2001, 34, 237–256. [Google Scholar] [CrossRef]
  110. Bonnefont-Rousselot, D.; Collin, F. Melatonin: Action as antioxidant and potential applications in human disease and aging. Toxicology 2010, 278, 55–67. [Google Scholar] [CrossRef] [PubMed]
  111. Yuksel Egrilmez, M.; Kocturk, S.; Aktan, S.; Oktay, G.; Resmi, H.; Simsek Keskin, H.; Akdogan, G.; Ozkan, S. Melatonin prevents UVB-induced skin photoaging by inhibiting oxidative damage and MMP expression through JNK/AP-1 signaling pathway in human dermal fibroblasts. Life 2022, 12, 950. [Google Scholar] [CrossRef]
  112. Ayata, A.; Mollaoglu, H.; Yilmaz, H.; Akturk, O.; Ozguner, F.; Altuntas, I. Oxidative stress-mediated skin damage in an experimental mobile phone model can be prevented by melatonin. J. Dermatol. 2004, 31, 878–883. [Google Scholar] [CrossRef]
  113. Ashrafizadeh, M.; Najafi, M.; Kavyiani, N.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S. Anti-inflammatory activity of melatonin: A focus on the role of NLRP3 inflammasome. Inflammation 2021, 44, 1207–1222. [Google Scholar] [CrossRef] [PubMed]
  114. Mayo, J.; Sainz, R.; Tan, D.; Hardeland, R.; Leon, J.; Rodriguez, C.; Reiter, R.J. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J. Neuroimmunol. 2005, 165, 139–149. [Google Scholar] [CrossRef] [PubMed]
  115. Tan, D.; Manchester, L.; Qin, L.; Reiter, R. Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int. J. Mol. Sci. 2016, 17, 2124. [Google Scholar] [CrossRef]
  116. Hardeland, R. Melatonin and inflammation-story of a double-edged blade. J. Pineal Res. 2018, 65, e12525. [Google Scholar] [CrossRef]
  117. Galano, A.; Tan, D.X.; Reiter, R.J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J. Pineal Res. 2013, 54, 245–257. [Google Scholar] [CrossRef]
  118. Tan, D.; Manchester, L.; Burkhardt, S.; Sainz, R.; Mayo, J.; Kohen, R.; Shohami, E.; Huo, Y.; Hardeland, R.; Reiter, R. N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J. 2001, 15, 2294–2296. [Google Scholar] [CrossRef] [PubMed]
  119. Slominski, A.; Fischer, T.W.; Zmijewski, M.; Wortsman, J.; Semak, I.; Zbytek, B.; Slominski, R.; Tobin, D. On the role of melatonin in skin physiology and pathology. Endocrine 2005, 27, 137–148. [Google Scholar] [CrossRef] [PubMed]
  120. Fischer, T.; Zmijewski, M.; Zbytek, B.; Sweatman, T.; Slominski, R.; Wortsman, J.; Slominski, A. Oncostatic effects of the indole melatonin and expression of its cytosolic and nuclear receptors in cultured human melanoma cell lines. Int. J. Oncol. 2006, 29, 665–672. [Google Scholar] [CrossRef] [PubMed]
  121. Galano, A.; Tan, D.; Reiter, R. Melatonin as a naturally against oxidative stress: A physicochemical examination. J. Pineal Res. 2011, 51, 1–16. [Google Scholar] [CrossRef]
  122. Kobayashi, H.; Kromminga, A.; Dunlop, T.; Tychsen, B.; Conrad, F.; Suzuki, N.; Memezawa, A.; Bettermann, A.; Aiba, S.; Carlberg, C.; et al. A role of melatonin in neuroectodermal-mesodermal interactions: The hair follicle synthesizes melatonin and expresses functional melatonin receptors. FASEB J. 2005, 19, 1710–1712. [Google Scholar] [CrossRef] [PubMed]
  123. Li, W.; Wang, Z.; Cao, J.; Dong, Y.; Chen, Y. Melatonin improves skin barrier damage caused by sleep restriction through gut microbiota. J. Pineal Res. 2023, 75, e12874. [Google Scholar] [CrossRef]
  124. Skobowiat, C.; Brożyna, A.; Janjetovic, Z.; Jeayeng, S.; Oak, A.; Kim, T.; Panich, U.; Reiter, R.; Slominski, A. Melatonin and its derivatives counteract the ultraviolet B radiation-induced damage in human and porcine skin ex vivo. J. Pineal Res. 2018, 65, e12501. [Google Scholar] [CrossRef]
  125. Izykowska, I.; Cegielski, M.; Gebarowska, E.; Podhorska-Okolow, M.; Piotrowska, A.; Zabel, M.; Dziegiel, P. Effect of melatonin on human keratinocytes and fibroblasts subjected to UVA and UVB radiation In Vitro. In Vivo 2009, 23, 739–745. [Google Scholar]
  126. Kleszczynski, K.; Hardkop, L.; Fischer, T. Differential effects of melatonin as a broad range UV-damage preventive dermato-endocrine regulator. Derm.-Endocrinol. 2011, 3, 27–31. [Google Scholar] [CrossRef]
  127. Cho, J.; Kim, C.; Lee, K. Modification of gene expression by melatonin in UVB-irradiated HaCaT keratinocyte cell lines using a cDNA microarray. Oncol. Rep. 2007, 17, 573–577. [Google Scholar] [CrossRef]
  128. Kleszczynski, K.; Zillikens, D.; Fischer, T. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (γ-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK). J. Pineal Res. 2016, 61, 187–197. [Google Scholar] [PubMed]
  129. Fischer, T.; Zmijewski, M.; Wortsman, J.; Slominski, A. Melatonin maintains mitochondrial membrane potential and attenuates activation of initiator (casp-9) and effector caspases (casp-3/casp-7) and PARP in UVR-exposed HaCaT keratinocytes. J. Pineal Res. 2008, 44, 397–407. [Google Scholar] [CrossRef] [PubMed]
  130. Fischer, T.; Sweatman, T.; Semak, I.; Sayre, R.; Wortsman, J.; Slominski, A. Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. FASEB J. 2006, 20, 897–908. [Google Scholar] [CrossRef] [PubMed]
  131. Lee, K.; Lee, W.; Suh, S.; Kim, S.; Lee, S.; Ryoo, Y.; Kim, B. Melatonin reduces ultraviolet-B induced cell damage and polyamine levels in human skin fibroblasts in culture. Exp. Mol. Med. 2003, 35, 263–268. [Google Scholar] [CrossRef] [PubMed]
  132. Rezzani, R.; Rodella, L.; Favero, G.; Damiani, G.; Paganelli, C.; Reiter, R. Attenuation of ultraviolet A-induced alterations in NIH3T3 dermal fibroblasts by melatonin. Br. J. Dermatol. 2014, 170, 382–391. [Google Scholar] [CrossRef] [PubMed]
  133. Ryoo, Y.; Suh, S.; Mun, K.; Kim, B.; Lee, K. The effects of the melatonin on ultraviolet-B irradiated cultured dermal fibroblasts. J. Dermatol. Sci. 2001, 27, 162–169. [Google Scholar] [CrossRef] [PubMed]
  134. Janjetovic, Z.; Jarrett, S.; Lee, E.; Duprey, C.; Reiter, R.; Slominski, A. Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. Sci. Rep. 2017, 7, 1274. [Google Scholar] [CrossRef] [PubMed]
  135. Lee, J.; Moon, J.; Nazim, U.; Lee, Y.; Seol, J.; Eo, S.; Lee, J.; Park, S. Melatonin protects skin keratinocyte from hydrogen peroxide-mediated cell death via theSIRT1 pathway. Oncotarget 2016, 7, 12075–12088. [Google Scholar] [CrossRef] [PubMed]
  136. Ranieri, D.; Avitabile, D.; Shiota, M.; Yokomizo, A.; Naito, S.; Bizzarri, M.; Torrisi, M. Nuclear redox imbalance affects circadian oscillation in HaCaT keratinocytes. Int. J. Biochem. Cell Biol. 2015, 65, 113–124. [Google Scholar] [CrossRef]
  137. Haslam, I.; Jadkauskaite, L.; Szabo, I.; Staege, S.; Hesebeck-Brinckmann, J.; Jenkins, G.; Bhogal, R.; Lim, F.; Farjo, N.; Farjo, B.; et al. Oxidative damage control in a human (mini-) organ: Nrf2 activation protects against oxidative stress-induced hair growth inhibition. J. Investig. Dermatol. 2017, 137, 295–304. [Google Scholar] [CrossRef]
  138. Scheuer, C. Melatonin for prevention of erythema and oxidative stress in response to ultraviolet radiation. Dan. Med. J. 2017, 64, B5358. [Google Scholar] [PubMed]
  139. Dong, K.; Goyarts, E.; Rella, A.; Pelle, E.; Wong, Y.; Pernodet, N. Age associated decrease of MT-1 melatonin receptor in human dermal skin fibroblasts impairs protection against UV-induced DNA damage. Int. J. Mol. Sci. 2020, 21, 326. [Google Scholar] [CrossRef] [PubMed]
  140. Scheuer, C.; Pommergaard, H.C.; Rosenberg, J.; Gogenur, I. Dose dependent sun protective effect of topical melatonin: A randomized, placebo-controlled, double-blind study. J. Dermatol. Sci. 2016, 84, 178–185. [Google Scholar] [CrossRef] [PubMed]
  141. Kim, T.; Kleszczynski, K.; Janjetovic, Z.; Sweatman, T.; Lin, Z.; Li, W. Metabolism of melatonin and biological activity of intermediates of melatoninergic pathway in human skin cells. FASEB J. 2013, 27, 2742–2755. [Google Scholar] [CrossRef] [PubMed]
  142. Slominski, A.; Chassalevris, N.; Mazurkiewicz, J.; Maurer, M.; Paus, R. Murine skin as a target for melatonin bioregulation. Exp. Dermatol. 1994, 3, 44–50. [Google Scholar] [CrossRef] [PubMed]
  143. Slominski, A.T.; Kim, T.K.; Slominski, R.M.; Song, Y.; Qayyum, S.; Placha, W.; Janjetovic, Z.; Kleszczyński, K.; Atigadda, V.; Song, Y.; et al. Melatonin and Its Metabolites Can Serve as Agonists on the Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor Gamma. Int. J. Mol. Sci. 2023, 24, 15496. [Google Scholar] [CrossRef] [PubMed]
  144. Aramwit, P.; Kanokpanont, S.; Nakpheng, T.; Srichana, T. The effect of sericin from various extraction methods on cell viability and collagen production. Int. J. Mol. Sci. 2010, 11, 2200–2211. [Google Scholar] [CrossRef]
  145. Aramwit, P.; Kanokpanont, S.; De-Eknamkul, W.; Kamei, K.; Srichana, T. The effect of sericin with variable amino-acid content from different silk strains on the production of collagen and nitric oxide. J. Biomater. Sci. Polym. Ed. 2009, 20, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
  146. Kitisin, T.; Maneekan, P.; Luplertlop, N. In Vitro characterization of silk sericin as an anti-aging agent. J. Agric. Sci. 2013, 5, 54–62. [Google Scholar] [CrossRef]
  147. Sangwong, G.; Sumida, M.; Sutthikhum, V. Antioxidant activity of chemically and enzymatically modified sericin extracted from cocoons of Bombyx mori. Biocatal. Agric. Biotechnol. 2016, 5, 155–161. [Google Scholar] [CrossRef]
  148. Kanpipit, N.; Nualkaew, N.; Thapphasaraphong, S. The Potential of Purple Waxy Corn Cob (Zea mays L.) Extract Loaded-Sericin Hydrogel for Anti-Hyperpigmentation, UV Protection and Anti-Aging Properties as Topical Product Applications. Pharmaceuticals 2023, 16, 35. [Google Scholar] [CrossRef] [PubMed]
  149. Parashar, P.; Pal, S.; Dwivedi, M.; Saraf, S. Augmented Therapeutic Efficacy of Naringenin through Microemulsion-Loaded Sericin Gel against UVB-Induced Photoaging. AAPS PharmSciTech 2020, 21, 215. [Google Scholar] [CrossRef] [PubMed]
  150. Berardesca, E.; Ardigo, M.; Cameli, N.; Mariano, M.; Agozzino, M.; Matts, P. Randomized, double-blinded, vehicle-controlled, split-face study to evaluate the effects of topical application of a Gold Silk Sericin/Niacinamide/Signaline complex on biophysical parameters related to skin ageing. Int. J. Cosmet. Sci. 2015, 37, 606–612. [Google Scholar] [CrossRef] [PubMed]
  151. Fisher, G.; Wang, Z.; Datta, S.; Varani, J.; Kang, S.; Voorhees, J. Pathophysiology of premature skin aging induced by ultraviolet light. N. Engl. J. Med. 1997, 337, 1419–1429. [Google Scholar] [CrossRef] [PubMed]
  152. Hudson, L.; Rashdan, E.; Bonn, C.; Chavan, B.; Rawlings, D.; Birch-Machin, M. Individual and combined effects of the infrared, visible, and ultraviolet light components of solar radiation on damage biomarkers in human skin cells. FASEB J. 2020, 34, 3874–3883. [Google Scholar] [CrossRef] [PubMed]
  153. Barresi, C.; Stremnitzer, C.; Mlitz, V.; Kezic, S.; Kammeyer, A.; Ghannadan, M.; Posa-Markaryan, K.; Selden, C.; Tschachler, E.; Eckhart, L. Increased sensitivity of histidinemic mice to UVB radiation suggests a crucial role of endogenous urocanic acid in photoprotection. J. Investig. Dermatol. 2011, 131, 188–194. [Google Scholar] [CrossRef]
  154. Andor, N.; Graham, T.; Jansen, M.; Xia, L.; Aktipis, C.; Petritsch, C.; Ji, H.; Maley, C. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 2016, 22, 105–113. [Google Scholar] [CrossRef] [PubMed]
  155. Dalle Carbonare, L.; Minoia, A.; Vareschi, A.; Piritore, F.; Zouari, S.; Gandini, A.; Meneghel, M.; Elia, R.; Lorenzi, P.; Antoniazzi, F.; et al. Exploring the Interplay of RUNX2 and CXCR4 in Melanoma Progression. Cells 2024, 13, 408. [Google Scholar] [CrossRef] [PubMed]
  156. Colebatch, A.; Scolyer, R. Trajectories of premalignancy during the journey from melanocyte to melanoma. Pathology 2018, 50, 16–23. [Google Scholar] [CrossRef]
  157. Elder, D.; Gimotty, P.; Guerry, D. Cutaneous melanoma: Estimating survival and recurrence risk based on histopathologic features. Dermatol. Ther. 2005, 18, 369–385. [Google Scholar] [CrossRef]
  158. Baade, P.; Whiteman, D.; Janda, M.; Cust, A.; Neale, R.; Smithers, B.; Green, A.; Khosrotehrani, K.; Mar, V.; Soyer, P.; et al. Long-term deaths from melanoma according to tumor thickness at diagnosis. Int. J. Cancer 2020, 147, 1391–1396. [Google Scholar] [CrossRef]
  159. Owen, C.; Shoushtari, A.; Chauhan, D.; Palmieri, D.J.; Lee, B.; Rohaan, M.; Mangana, J.; Atkinson, V.; Zaman, F.; Young, A.; et al. Management of early melanoma recurrence despite adjuvant anti-PD-1 antibody therapy. Ann. Oncol. 2020, 31, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
  160. Dedeilia, A.; Lwin, T.; Li, S.; Tarantino, G.; Tunsiricharoengul, S.; Lawless, A.; Sharova, T.; Liu, D.; Boland, G.; Cohen, S. Factors Affecting Recurrence and Survival for Patients with High-Risk Stage II Melanoma. Ann. Surg. Oncol. 2024, 31, 2713–2726. [Google Scholar] [CrossRef]
  161. Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.; Vries, E.; Whiteman, D.; Bray, F. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef] [PubMed]
  162. Enomoto, L.; Levine, E.; Shen, P.; Votanopoulos, K. Role of surgery for metastatic melanoma. Surg. Clin. 2020, 100, 127–139. [Google Scholar] [CrossRef]
  163. Joyce, D.; Skitzki, J. Surgical management of primary cutaneous melanoma. Surg. Clin. 2020, 100, 61–70. [Google Scholar] [CrossRef]
  164. Koizumi, S.; Inozume, T.; Nakamura, Y. Current surgical management for melanoma. J. Dermatol. 2024, 51, 312–323. [Google Scholar] [CrossRef] [PubMed]
  165. Patil, T.; Rohiwal, S.; Tiwari, A. Stem cells: Therapeutic implications in chemotherapy and radiotherapy resistance in cancer therapy. Curr. Stem Cell Res. Ther. 2023, 18, 750–765. [Google Scholar] [CrossRef]
  166. Pires, L.; Demidov, V.; Wilson, B.; Salvio, A.; Moriyama, L.; Bagnato, V.; Vitkin, I.; Kurachi, C. Dual-agent photodynamic therapy with optical clearing eradicates pigmented melanoma in preclinical tumor models. Cancers 2020, 12, 1956. [Google Scholar] [CrossRef]
  167. Mallidi, S.; Anbil, S.; Bulin, A.; Obaid, G.; Ichikawa, M.; Hasan, T. Beyond the barriers of light penetration: Strategies, perspectives and possibilities for photodynamic therapy. Theranostics 2016, 6, 2458–2487. [Google Scholar] [CrossRef]
  168. Rio, A.; Mas, J.O.; Moreno, G.; Sanchez, D.; Castresana, I.; Cuxart, J. Reconstruction Using Perforator Propeller Flaps After Malignant Melanoma Resection of the Lower Extremity. Plast. Surg. 2022, 32, 276–282. [Google Scholar]
  169. Wing, W. Reconstruction of head and neck melanoma defects. Oral Maxillofac. Surg. Clin. 2020, 34, 283–298. [Google Scholar]
  170. Mohiuddin, J.; Chu, B.; Facciabene, A.; Poirier, K.; Wang, X.; Doucette, A.; Zheng, C.; Xu, W.; Anstadt, E.; Amaravadi, R.; et al. Association of antibiotic exposure with survival and toxicity in patients with melanoma receiving immunotherapy. J. Nat. Cancer Inst. 2021, 113, 162–170. [Google Scholar] [CrossRef] [PubMed]
  171. Huynh, M.; Olaiya, O.; Kim, P.; Gallo, L.; Dunn, E.; Farrokhyar, F.; McRae, M.; Voinescos, S.; McRae, M. A comparison of skin grafts versus local flaps for facial skin cancer from the patient perspective: Protocol for a feasibility study. Jpn. J. Clin. Oncol. 2023, 53, 489–493. [Google Scholar] [CrossRef] [PubMed]
  172. Mamsen, F.; Kiilerich, C.; Hesselfeldt-Nielsen, J.; Saltvig, I.; Remvig, C.; Trøstrup, H.; Schmidt, V. Risk stratification of local flaps and skin grafting in skin cancer-related facial reconstruction: A retrospective single-center study of 607 patients. J. Pers. Med. 2022, 12, 2067. [Google Scholar] [CrossRef] [PubMed]
  173. Zhang, X.; Sun, Y.; Hou, Z.; Luo, B.; Li, C.; Jiang, K.; Liu, J.; Yao, G.; Tang, J. Application of dermal regenerative template in reconstructing skin defects after plantar malignant melanoma excision. J. BUON 2021, 26, 2146–2153. [Google Scholar]
  174. Heo, J.; Jeon, E.; Joo, K.; Cha, H. Locoregional melanoma therapy by tissue adhesive microneedle patch-assisted trans-tumoral delivery of anticancer drug. Biotechnol. Bioprocess Eng. 2023, 28, 473–482. [Google Scholar] [CrossRef]
  175. Xu, Q.; Wang, Y.; Chen, T.; Lao, C.; Gao, H.; Wei, R.; Feng, B.; Zhi, W.; Weng, J.; Wang, J. A distinctive nanocomposite hydrogel integrated platform for the healing of wound after the resection of melanoma. Materialia 2020, 14, 100931. [Google Scholar] [CrossRef]
  176. Du, S.; Suo, H.; Xie, G.; Lyu, Q.; Mo, M.; Xie, Z.; Zhou, N.; Zhang, L.; Tao, J.; Zhu, J. Self-powered and photothermal electronic skin patches for accelerating wound healing. Nano Energy 2022, 93, 106906. [Google Scholar] [CrossRef]
  177. Andreassi, L. UV exposure as a risk factor for skin cancer. Expert Rev. Dermatol. 2011, 6, 445–454. [Google Scholar] [CrossRef]
  178. Cho, E.; Rosner, B.; Colditz, G. Risk factors for melanoma by body site. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 1241–1244. [Google Scholar] [CrossRef]
  179. Bauer, J.; Garbe, C. Acquired melanocytic nevi as risk factor for melanoma development. A comprehensive review of epidemiological data. Pigment Cell Res. 2003, 16, 297–306. [Google Scholar] [CrossRef] [PubMed]
  180. Gutiérrez-Castañeda, L.; Nova, J.; Tovar-Parra, J. Frequency of mutations in BRAF, NRAS, and KIT in different populations and histological subtypes of melanoma: A systemic review. Melanoma Res. 2020, 30, 62–70. [Google Scholar] [CrossRef] [PubMed]
  181. Potrony, M.; Puig-Butillé, J.; Aguilera, P.; Badenas, C.; Carrera, C.; Malvehy, J.; Puig, S. Increased prevalence of lung, breast, and pancreatic cancers in addition to melanoma risk in families bearing the cyclin-dependent kinase inhibitor 2A mutation: Implications for genetic counseling. J. Am. Acad. Dermatol. 2014, 71, 888–895. [Google Scholar] [CrossRef]
  182. Abdel-Rahman, M.; Pilarski, R.; Massengill, J.; Christopher, B.; Noss, R.; Davidorf, F. Melanoma candidate genes CDKN2A/p16/INK4A, p14ARF, and CDK4 sequencing in patients with uveal melanoma with relative high-risk for hereditary cancer predisposition. Melanoma Res. 2011, 21, 175–179. [Google Scholar] [CrossRef]
  183. Roesch, A.; Volkenandt, M. Dermatology, 3rd ed.; Springer: Berlin, Germany, 2009; pp. 1416–1432. [Google Scholar]
  184. Li, B.; Smith, C.; Laing, J.; Gober, M.; Liu, L.; Aurelian, L. Overload of the heat-shock protein H11/HspB8 triggers melanoma cell apoptosis through activation of transforming growth factor-β-activated kinase 1. Oncogene 2007, 26, 3521–3531. [Google Scholar] [CrossRef]
  185. Knudsen, S.; Schardt, A.; Buhl, T.; Boeckmann, L.; Schön, M.; Neumann, C.; Haenssle, H. Enhanced T-cell activation by immature dendritic cells loaded with HSP70-expressing heat-killed melanoma cells. Exp. Dermatol. 2010, 19, 108–116. [Google Scholar] [CrossRef]
  186. Park, K.; Kim, D.; Choi, H.; Kim, K.; Chung, J.; Eun, H.; Lee, S.; Seo, J.S. Overexpression of HSP70 prevents ultraviolet B-induced apoptosis of a human melanoma cell line. Arch. Dermatol. Res. 2000, 292, 482–487. [Google Scholar] [CrossRef] [PubMed]
  187. Russo, A.; Cardile, V.; Caggia, S.; Gunther, G.; Troncoso, N.; Garbarino, J. Boldo prevents UV light and nitric oxide-mediated plasmid DNA damage and reduces the expression of Hsp70 protein in melanoma cancer cells. J. Pharm. Pharmacol. 2011, 63, 1219–1229. [Google Scholar] [CrossRef]
  188. Roh, B.; Kim, D.; Cho, M.; Park, Y.; Whang, K. Expression of heat shock protein 70 in human skin cells as a photoprotective function after UV exposure. Ann. Dermatol. 2008, 20, 184. [Google Scholar] [CrossRef]
  189. Lanneau, D.; Brunet, M.; Frisan, E.; Solary, E.; Fontenay, M.; Garrido, C. Heat shock proteins: Essential proteins for apoptosis regulation. J. Cell. Mol. Med. 2008, 12, 743–761. [Google Scholar] [CrossRef] [PubMed]
  190. Assefa, Z.; Van Laethem, A.; Garmyn, M.; Agostinis, P. Ultraviolet radiation-induced apoptosis in keratinocytes: On the role of cytosolic factors. Biochim. Biophys. Acta Rev. Cancer 2005, 1755, 90–106. [Google Scholar] [CrossRef] [PubMed]
  191. Strozyk, E.; Kulms, D. The role of AKT/mTOR pathway in stress response to UV-irradiation: Implication in skin carcinogenesis by regulation of apoptosis, autophagy and senescence. Int. J. Mol. Sci. 2013, 14, 15260–15285. [Google Scholar] [CrossRef] [PubMed]
  192. Cabrera, J.; Negrín, G.; Estévez, F.; Loro, J.; Reiter, R.; Quintana, J. Melatonin decreases cell proliferation and induces melanogenesis in human melanoma SK-MEL-1 cells. J. Pineal Res. 2010, 49, 45–54. [Google Scholar] [CrossRef] [PubMed]
  193. Brożyna, A.; Jóźwicki, W.; Roszkowski, K.; Filipiak, J.; Slominski, A. Melanin content in melanoma metastases affects the outcome of radiotherapy. Oncotarget 2016, 7, 17844–17853. [Google Scholar] [CrossRef] [PubMed]
  194. Roberts, J.; Wiechmann, A.; Hu, D. Melatonin receptors in human uveal melanocytes and melanoma cells. J. Pineal Res. 2000, 28, 165–171. [Google Scholar] [CrossRef] [PubMed]
  195. Souza, A.; Visconti, M.; Castrucci, A. Melatonin biological activity and binding sites in human melanoma cells. J. Pineal Res. 2003, 34, 242–248. [Google Scholar] [CrossRef] [PubMed]
  196. Pfeffer, M.; von Gall, C.; Wicht, H.; Korf, H.W. The Role of the Melatoninergic System in Circadian and Seasonal Rhythms-Insights From Different Mouse Strains. Front. Physiol. 2022, 13, 883637. [Google Scholar] [CrossRef] [PubMed]
  197. Gautier, C.; Theret, I.; Lizzo, G.; Ferry, G.; Guénin, S.P.; Boutin, J.A. Why Are We Still Cloning Melatonin Receptors? A Commentary. Methods Mol. Biol. 2022, 2550, 267–281. [Google Scholar]
  198. Song, Y.; Wang, S. Melatonin synergistically enhances docetaxel induced endoplasmic reticulum stress to promote apoptosis by suppressing NF-κB activation in cervical cancer. Med. Oncol. 2023, 40, 219. [Google Scholar] [CrossRef]
  199. Xiong, Y.; Ma, C.; Li, Q.; Zhang, W.; Zhao, H.; Ren, P.; Zhang, K.; Lei, X. Melatonin ameliorates simulated-microgravity-induced mitochondrial dysfunction and lipid metabolism dysregulation in hepatocytes. FASEB J. 2023, 37, 14947. [Google Scholar] [CrossRef] [PubMed]
  200. Slominski, R.M.; Sarna, T.; Płonka, P.M.; Raman, C.; Brożyna, A.A.; Slominski, A.T. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front. Oncol. 2022, 12, 842496. [Google Scholar] [CrossRef] [PubMed]
  201. Möller, J.; Linowiecka, K.; Gagat, M.; Brożyna, A.; Foksiński, M.; Wolnicka-Glubisz, A.; Pyza, E.; Reiter, R.; Tulic, M.; Slominski, A.; et al. Melanogenesis Is Directly Affected by Metabolites of Melatonin in Human Melanoma Cells. Int. J. Mol. Sci. 2023, 24, 14947. [Google Scholar] [CrossRef]
  202. Stefan, J.; Kim, T.K.; Schedel, F.; Janjetovic, Z.; Crossman, D.K.; Steinbrink, K.; Slominski, R.M.; Zmijewski, J.; Tulic, M.; Reiter, R.; et al. Differential and overlapping effects of melatonin and its metabolites on keratinocyte function: Bioinformatics and metabolic analyses. Antioxidants 2021, 10, 618. [Google Scholar] [CrossRef] [PubMed]
  203. Slominski, R.M.; Raman, C.; Chen, J.Y.; Slominski, A.T. How cancer hijacks the body’s homeostasis through the neuroendocrine system. Trends Neurosci. 2023, 46, 263–275. [Google Scholar] [CrossRef] [PubMed]
  204. Lerner, A.; Case, J.; Takahashi, Y.; Lee, T.; Mori, W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 1958, 80, 2587. [Google Scholar] [CrossRef]
  205. Tan, D.X.; Manchester, L.; Reiter, R.; Plummer, B.; Limson, J.; Weintraub, S.; Qi, W. Melatonin directly scavenges hydrogen peroxide: A potentially new metabolic pathway of melatonin biotransformation. Free Radic. Biol. Med. 2000, 29, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
  206. Galano, A. On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals. Phys. Chem. Chem. Phys. 2011, 13, 7178–7188. [Google Scholar] [CrossRef] [PubMed]
  207. Horstman, J.; Wrona, M.; Dryhurst, G. Further insights into the reaction of melatonin with hydroxyl radical. Bioorg. Chem. 2002, 30, 371–382. [Google Scholar] [CrossRef]
  208. Schaefer, M.; Hardeland, R. The melatonin metabolite N1-acetyl-5-methoxykynuramine is a potent singlet oxygen scavenger. J. Pineal Res. 2009, 46, 49–52. [Google Scholar] [CrossRef]
  209. Harasimowicz, J.; Marques, K.; Silva, A.; Costa, R.; Prior, J.; Rodrigues, S.; Santos, J. Chemiluminometric evaluation of melatonin and selected melatonin precursors’ interaction with reactive oxygen and nitrogen species. Anal. Biochem. 2012, 420, 1–6. [Google Scholar] [CrossRef] [PubMed]
  210. Zhang, H.; Squadrito, G.; Uppu, R.; Pryor, W. Reaction of peroxynitrite with melatonin: A mechanistic study. Chem. Res. Toxicol. 1999, 12, 526–534. [Google Scholar] [CrossRef]
  211. Noda, Y.; Mori, A.; Liburdy, R.; Packer, L. Melatonin and its precursors scavenge nitric oxide. J. Pineal Res. 1999, 27, 159–163. [Google Scholar] [CrossRef]
  212. Miguel, R.; Martínez, A. A new free radical scavenging cascade involving melatonin and three of its metabolites (3OHM, AFMK and AMK). Comput. Theor. Chem. 2018, 1123, 111–118. [Google Scholar]
  213. Mingzhuang, H.; Zhang, Y.; Liu, Y.; Ge, X.; Hu, X.; Zhao, Z.; Tian, X.; Liu, T.; Yang, H.; Chen, X.; et al. Biomimetic melatonin-loaded silk fibroin/GelMA scaffold strengthens cartilage repair through retrieval of mitochondrial functions. J. Mater. Sci. Technol. 2023, 146, 102–112. [Google Scholar]
  214. Azizoğlu, G.; Azizoğlu, E.; Barker, T.; Özer, Ö. Single and multi-dose drug loaded electrospun fiber mats for wound healing applications. J. Drug Deliv. Sci. Technol. 2023, 81, 104168. [Google Scholar] [CrossRef]
  215. Yamei, W.; Xiao, D.; Tang, Y.; Xia, Y.; Zhong, Y.; Zhang, L.; Sui, X.; Wang, B.; Feng, X.; Xu, H.; et al. Carboxymethyl cellulose-based injectable hydrogel loaded with a composite of melatonin and γ-cyclodextrin with antioxidant property for diabetic wound repair. Cellulose 2023, 30, 1791–1810. [Google Scholar]
  216. Atila, D.; Keskin, D.; Lee, Y.; Lin, F.; Hasirci, V.; Tezcaner, A. Injectable methacrylated gelatin/thiolated pectin hydrogels carrying melatonin/tideglusib-loaded core/shell PMMA/silk fibroin electrospun fibers for vital pulp regeneration. Colloids Surf. B 2023, 222, 113078. [Google Scholar] [CrossRef]
  217. Păncescu, F.; Rikabi, A.; Oprea, O.; Grosu, A.; Nechifor, A.; Grosu, V.A.; Tanczos, S.Z.; Dumitru, F.; Nechifor, G.; Bungău, S. Chitosan–sEPDM and Melatonin–Chitosan–sEPDM Composite Membranes for Melatonin Transport and Release. Membranes 2023, 13, 282. [Google Scholar] [CrossRef]
  218. Borrego-Sánchez, A.; Muñoz-Santiburcio, D.; Viseras, C.; Hernández-Laguna, A.; Sainz-Díaz, I. Melatonin/nanoclay hybrids for skin delivery. Appl. Clay Sci. 2022, 218, 106417. [Google Scholar] [CrossRef]
  219. Yao, Z.; Qian, Y.; Jin, Y.; Wang, S.; Li, J.; Yuan, W.E.; Fan, C. Biomimetic multilayer polycaprolactone/sodium alginate hydrogel scaffolds loaded with melatonin facilitate tendon regeneration. Carbohydr. Polym. 2022, 277, 118865. [Google Scholar] [CrossRef]
  220. Tingkuo, C.; Jiang, H.; Li, X.; Zhang, D.; Zhu, Y.; Chen, X.; Yang, H. Proliferation and differentiation study of melatonin functionalized polycaprolactone/gelatin electrospun fibrous scaffolds for nerve tissue engineering. Int. J. Biol. Macromol. 2022, 197, 103–110. [Google Scholar]
  221. Kaczmarek-Szczepańska, B.; Pin, J.; Zasada, L.; Sonne, M.; Reiter, R.; Słomiński, A.; Steinbrink, K.; Kleszczyński, K. Assessment of melatonin-cultured collagen/chitosan scaffolds cross-linked by a glyoxal solution as biomaterials for wound healing. Antioxidants 2022, 11, 570. [Google Scholar] [CrossRef]
  222. Nongmaithem, C.; Bhattacharya, K.; Marbaniang, D.; Pal, P.; Ray, S.; Mazumder, B. Evaluation of a novel melatonin-loaded gelatin sponge as a wound dressing. J. Vasc. Nur. 2022, 40, 2–10. [Google Scholar]
  223. Chen, K.; Tong, C.; Yang, J.; Cong, P.; Liu, Y.; Shi, X.; Liu, X.; Zhang, J.; Zou, R.; Xiao, K.; et al. Injectable melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel accelerates wound healing by reducing inflammation and promoting angiogenesis and collagen deposition. J. Mater. Sci. Technol. 2021, 63, 236–245. [Google Scholar] [CrossRef]
  224. Kaczmarek-Szczepańska, B.; Ostrowska, J.; Kozłowska, J.; Szota, Z.; Brożyna, A.; Dreier, R.; Reiter, R.; Słomiński, A.; Steinbrink, K.; Kleszczyński, K. Evaluation of polymeric matrix loaded with melatonin for wound dressing. Int. J. Mol. Sci. 2021, 22, 5658. [Google Scholar] [CrossRef]
  225. Mirmajidi, T.; Chogan, F.; Rezayan, A.; Sharifi, A. In Vitro and In Vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int. J. Pharm. 2021, 596, 120213. [Google Scholar] [CrossRef]
  226. Weilin, Z.; Zhao, W.; Li, Q.; Zhao, D.; Qu, J.; Yuan, Z.; Cheng, Z.; Zhu, X.; Zhuang, X.; Zhang, Z. 3D-printing magnesium–polycaprolactone loaded with melatonin inhibits the development of osteosarcoma by regulating cell-in-cell structures. J. Nanobiotechnol. 2021, 19, 263. [Google Scholar]
  227. Ragothaman, M.; Villalan, A.; Dhanasekaran, A.; Palanisamy, T. Bio-hybrid hydrogel comprising collagen-capped silver nanoparticles and melatonin for accelerated tissue regeneration in skin defects. Mater. Sci. Eng. C 2021, 128, 112328. [Google Scholar] [CrossRef]
  228. Sinohara, H. Glycopeptides isolated from sericin of the silkworm, Bombyx mori. Comp. Biochem. Physiol. B Biochem. Comp. Biochem. 1979, 63, 87–91. [Google Scholar] [CrossRef]
  229. Hoyoung, L.; Ahn, D.; Jeon, E.; Fam, D.; Lee, J.; Lee, W. Macroscopic assembly of sericin toward self-healable silk. Biomacromolecules 2021, 22, 4337–4346. [Google Scholar]
  230. Pornanong, A.; Siritientong, T.; Kanokpanont, S.; Srichana, T. Formulation and characterization of silk sericin–PVA scaffold crosslinked with genipin. Int. J. Biol. Macromol. 2010, 47, 668–675. [Google Scholar]
  231. Kunz, R.; Brancalhão, R.; Ribeiro, L.; Natali, M. Silkworm sericin: Properties and biomedical applications. BioMed Res. Int. 2016, 2, 1–19. [Google Scholar] [CrossRef]
  232. Rupesh, D.; Mandal, M.; Ghosh, S.; Kundu, S. Silk sericin protein of tropical tasar silkworm inhibits UVB-induced apoptosis in human skin keratinocytes. Mol. Cell. Biochem. 2008, 311, 111–119. [Google Scholar]
  233. Praveen, K.; Mandal, B. Silk sericin induced pro-oxidative stress leads to apoptosis in human cancer cells. Food Chem. Toxicol. 2019, 123, 275–287. [Google Scholar]
  234. Dash, R.; Ghosh, S.; Kaplan, D.; Kundu, S. Purification and biochemical characterization of a 70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 147, 129–134. [Google Scholar] [CrossRef]
  235. Kato, N.; Sato, S.; Yamanaka, A.; Yamada, H.; Fuwa, N.; Nomura, M. Silk Protein, Sericin, Inhibits Lipid Peroxidation and Tyrosinase Activity. Biosci. Biotechnol. Biochem. 1998, 62, 145–147. [Google Scholar] [CrossRef]
  236. Bakadia, B.; Lamboni, L.; Ahmed, A.; Zheng, R.; Boni, B.; Shi, Z.; Song, S.; Souho, T.; Mukole, B.; Qi, F.; et al. Antibacterial silk sericin/poly (vinyl alcohol) hydrogel with antifungal property for potential infected large burn wound healing: Systemic evaluation. Smart Mater. Med. 2023, 4, 37–58. [Google Scholar] [CrossRef]
  237. Fariha, M.; Tahir, H.; Ali, S.; Ali, A.; Tehreem, A.; Durr, S.; Zaidi, S.; Adnan, M.; Ijaz, F. Characterization and Evaluation of Silk Sericin-Based Hydrogel: A Promising Biomaterial for Efficient Healing of Acute Wounds. ACS Omega 2023, 8, 32090–32098. [Google Scholar]
  238. Jayavardhini, B.; Dharmalingam, S.; Sathyaraj, W.; Rajendran, S.; Rymbai, S.; Senthil, R.; Atchudan, R. Sericin/Human Placenta-Derived Extracellular Matrix Scaffolds for Cutaneous Wound Treatment—Preparation, Characterization, In Vitro and In Vivo Analyses. Pharmaceutics 2023, 15, 362. [Google Scholar] [CrossRef]
  239. Li, Y.; Wang, S.; Li, Y.; Zhang, G.; Wu, T.; Wei, Y.; Cao, X.; Yan, H.; Liang, P.; Yan, Z.; et al. Resveratrol loaded native silk fiber-sericin hydrogel double interpenetrating bioactive wound dressing facilitates full-thickness skin wound healing. Biomed. Mater. 2023, 18, 045007. [Google Scholar] [CrossRef]
  240. Bakhsheshi-Rad, H.; Ismail, A.; Aziz, M.; Akbari, M.; Hadisi, Z.; Omidi, M.; Chen, X. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In Vitro and In Vivo assessment. Int. J. Biomol. Macromol. 2020, 149, 513–521. [Google Scholar] [CrossRef]
  241. Ekasurya, W.; Joses, S.; Dita, P.; Asri, P.; Asri, L. Synthesis and Degradation Properties of Sericin/PVA Hydrogels. Gels 2023, 9, 76. [Google Scholar] [CrossRef]
  242. Jingwen, L.; Cui, T.; Xu, X.; Du, Y.; Wang, L.; Chen, S.; Pang, J. Robust Alcohol Soluble Polyurethane/Chitosan/Silk Sericin (APU/CS/SS) Nanofiber Scaffolds Toward Artificial Skin Extracellular Matrices via Microfluidic Blow-Spinning. Adv. Fiber Mater. 2023, 5, 349–361. [Google Scholar]
  243. Piyachat, C.; Pengsuk, C.; Lirdprapamongkol, K.; Thanyacharoen, T.; Techasakul, S.; Svasti, J.; Nooeaid, P. Turmeric Herb Extract-Incorporated Biopolymer Dressings with Beneficial Antibacterial, Antioxidant and Anti-Inflammatory Properties for Wound Healing. Polymers 2023, 15, 1090. [Google Scholar] [CrossRef]
  244. Yusu, W.; Li, H.; Xu, L.; Yan, J.; Wang, X. Preparation and properties of temperature-sensitive silver-loaded antibacterial sericin/poly (N-isopropylacrylamide) hydrogel. J. Macromol. Sci. B 2023, 1–15. [Google Scholar]
  245. Wang, K.; Hazra, R.; Ma, Q.; Khan, M.; Hoque, A.; Jiang, L.; Quadir, M.; Zhang, Y.; Wang, S.; Han, G. Robust biocompatible bacterial cellulose/silk nonwoven fabric/silk sericin sandwich membrane with strong UV-blocking and antioxidant properties. Cellulose 2023, 30, 3973–3993. [Google Scholar] [CrossRef]
  246. Griffanti, G.; McKee, M.; Nazhat, S. Mineralization of Bone Extracellular Matrix-like Scaffolds Fabricated as Silk Sericin-Functionalized Dense Collagen–Fibrin Hybrid Hydrogels. Pharmaceutics 2023, 15, 1087. [Google Scholar] [CrossRef]
  247. Nantaprapa, T.; Sonjan, S.; Promkrainit, S.; Daengmankhong, J.; Phimnuan, P.; Mahasaranon, S.; Jongjitwimol, J.; Charoensit, P.; Ross, G.; Viennet, C.; et al. Porous Poly (2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Tissue Engineering: Influence of Crosslinking Systems and Silk Sericin Concentration on Scaffold Properties. Polymers 2023, 15, 4052. [Google Scholar] [CrossRef]
  248. Boni, B.; Lamboni, L.; Mao, L.; Bakadia, B.; Shi, Z.; Yang, G. In Vivo performance of microstructured bacterial cellulose-silk sericin wound dressing: Effects on fibrosis and scar formation. Eng. Sci. 2022, 19, 175–185. [Google Scholar] [CrossRef]
  249. El-Samad, L.; Hassan, M.; Basha, A.; El-Ashram, S.; Radwan, E.; Aziz, K.; Tamer, T.; Augustyniak, M.; El Wakil, A. Carboxymethyl cellulose/sericin-based hydrogels with intrinsic antibacterial, antioxidant, and anti-inflammatory properties promote re-epithelization of diabetic wounds in rats. Int. J. Pharm. 2022, 629, 122328. [Google Scholar] [CrossRef] [PubMed]
  250. Moise, B.; Boni, B.; Ahmed, A.; Zheng, R.; Shi, Z.; Ullah, M.; Lamboni, L.; Yang, G. In Situ synthesized porous bacterial cellulose/poly (vinyl alcohol)-based silk sericin and azithromycin release system for treating chronic wound biofilm. Macromol. Biosci. 2022, 22, 2200201. [Google Scholar]
  251. Konstantina, C.; Karavasili, C.; Adamoudi, E.; Bouropoulos, N.; Tzetzis, D.; Bakopoulou, A.; Fatouros, D. Silk sericin/PLGA electrospun scaffolds with anti-inflammatory drug-eluting properties for periodontal tissue engineering. Biomater. Adv. 2022, 133, 112723. [Google Scholar]
  252. Apirujee, P.; Reddy, N.; Aramwit, P. Enhancing clinical applications of PVA hydrogel by blending with collagen hydrolysate and silk sericin. J. Polym. Res. 2022, 29, 110. [Google Scholar]
  253. Karthick, S.; Manjari, K.; Devi, M. Biocompatible and bioactive PVA/Sericin/Chitosan nanofibrous wound dressing matrix. Appl. Surf. Sci. Adv. 2023, 13, 100362. [Google Scholar] [CrossRef]
  254. Barnthip, N.; Teeka, J.; Kantha, P.; Teepoo, S.; Damjuti, W. Fabrication and characterization of polycaprolactone/cellulose acetate blended nanofiber mats containing sericin and fibroin for biomedical application. Sci. Rep. 2022, 12, 22370. [Google Scholar] [CrossRef]
  255. Gök, Z.; Yiğitoğlu, M.; Vargel, İ.; Şahin, Y.; Alçığır, M. Synthesis, characterization and wound healing ability of PET based nanofiber dressing material coated with silk sericin capped-silver nanoparticles. Mater. Chem. Phys. 2021, 259, 124043. [Google Scholar] [CrossRef]
  256. Zhang, M.; Wang, D.; Ji, N.; Lee, S.; Wang, G.; Zheng, Y.; Zhang, X.; Yang, L.; Qin, Z.; Yang, Y. Bioinspired design of sericin/chitosan/Ag@ MOF/GO hydrogels for efficiently combating resistant bacteria, rapid hemostasis, and wound healing. Polymers 2021, 13, 2812. [Google Scholar] [CrossRef]
  257. Akolpoğlu, B.; Gündüz, U.; Tezcaner, A.; Keskin, D. Topical delivery of heparin from PLGA nanoparticles entrapped in nanofibers of sericin/gelatin scaffolds for wound healing. Int. J. Pharm. 2021, 597, 120207. [Google Scholar] [CrossRef]
  258. Lin, N.; Zuo, B. Silk sericin/fibroin electrospinning dressings: A method for preparing a dressing material with high moisture vapor transmission rate. J. Biomater. Sci. Polym. Ed. 2021, 32, 1983–1997. [Google Scholar] [CrossRef]
  259. İnal, M.; Gün Gök, Z.; Kartal, E.; Verim, N.; Murat, S.; Apaydın, T.; Yiğitoğlu, M. The Fabrication of Poly (Σ-caprolactone)–Poly (ethylene oxide) Sandwich Type Nanofibers Containing Sericin-Capped Silver Nanoparticles as an Antibacterial Wound Dressing. J. Nanosci. Nanotechnol. 2021, 21, 3041–3049. [Google Scholar] [CrossRef] [PubMed]
  260. Arango, M.; Osorio, Y.; Osorno, J.; Parra, S.; Alvarez-López, C. Effect of Ethanol Post-Treatments over Sericin Scaffolds for Tissue Engineering Applications. J. Polym. Environ. 2023, 31, 1800–1811. [Google Scholar] [CrossRef]
  261. Baptista-Silva, S.; Borges, S.; Costa-Pinto, A.; Costa, R.; Amorim, M.; Dias, J.; Ramos, O.; Alves, P.; Granja, P.; Soares, R.; et al. In Situ forming silk sericin-based hydrogel: A novel wound healing biomaterial. ACS Biomater. Sci. Eng. 2021, 7, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
  262. Kukula-Koch, W.; Szwajgier, D.; Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Głowniak, K.; Meissner, H. Is Phytomelatonin Complex Better than Synthetic Melatonin? The Assessment of the Antiradical and Anti-Inflammatory Properties. Molecules 2021, 26, 6087. [Google Scholar] [CrossRef]
  263. Joyjamras, K.; Chaotham, C.; Chanvorachote, P. Response surface optimization of enzymatic hydrolysis and ROS scavenging activity of silk sericin hydrolysates. Pharm. Biol. 2022, 60, 308–318. [Google Scholar] [CrossRef] [PubMed]
  264. Intagliata, S.; Spadaro, A.; Lorenti, M.; Panico, A.; Siciliano, E.; Barbagallo, S.; Macaluso, B.; Kamble, S.; Modica, M.; Montenegro, L. In Vitro antioxidant and anti-glycation activity of resveratrol and its novel triester with trolox. Antioxidants 2020, 10, 12. [Google Scholar] [CrossRef] [PubMed]
  265. Dusman, T.; Volpato de Oliveira, T.; Giacobbo de Marco, I.; Palioto, G.; Düsman, E. Bioactive compounds and antioxidant, antimicrobial and cytotoxic activities of extracts of Curcuma longa. J. Food Meas. Charact. 2021, 15, 3752–3760. [Google Scholar]
  266. Slominski, A.; Chaiprasongsuk, A.; Janjetovic, Z.; Kim, T.; Stefan, J.; Slominski, R.; Hanumanthu, V.; Raman, C.; Qayyum, S.; Song, Y.; et al. Photoprotective Properties of Vitamin D and Lumisterol Hydroxyderivatives. Cell Biochem. Biophys. 2020, 78, 165–180. [Google Scholar] [CrossRef]
  267. Chaiprasongsuk, A.; Janjetovic, Z.; Kim, T.; Tuckey, R.; Li, W.; Raman, C.; Panich, U.; Slominski, A. CYP11A1-derived vitamin D3 products protect against UVB-induced inflammation and promote keratinocytes differentiation. Free Radic. Biol. Med. 2020, 1, 87–98. [Google Scholar] [CrossRef]
  268. Chaiprasongsuk, A.; Janjetovic, Z.; Kim, T.; Jarrett, S.; D’Orazio, J.; Holick, M.; Tang, E.; Tuckey, R.; Panich, U.; Li, W.; et al. Protective effects of novel derivatives of vitamin D3 and lumisterol against UVB-induced damage in human keratinocytes involve activation of Nrf2 and p53 defense mechanisms. Redox Biol. 2019, 24, 101206. [Google Scholar] [CrossRef]
  269. Moreno, A.; Freitas Saito, R.; Tiago, M.; Massaro, R.; Pagni, R.; Pegoraro, R.; Cruz Souza, P.; Reiter, R.; Campa, A.; Soengas, M.; et al. Melatonin inhibits human melanoma cells proliferation and invasion via cell cycle arrest and cytoskeleton remodeling. Melatonin Res. 2020, 3, 194–209. [Google Scholar] [CrossRef]
  270. Joyjamras, K.; Netcharoensirisuk, P.; Roytrakul, S.; Chanvorachote, P.; Chaotham, C. Recycled Sericin Hydrolysates Modified by Alcalase® Suppress Melanogenesis in Human Melanin-Producing Cells via Modulating MITF. Int. J. Mol. Sci. 2022, 23, 3925. [Google Scholar] [CrossRef] [PubMed]
  271. Bisevac, J.; Djukic, M.; Stanojevic, I.; Stevanovic, I.; Mijuskovic, Z.; Djuric, A.; Gobeljic, B.; Banovic, T.; Vojvodic, D. Association between oxidative stress and melanoma progression. J. Med. Biochem. 2018, 37, 12–20. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Cellular changes induced by ultraviolet radiation (UVR) including enhanced oxidative stress (ROS/RNS generation), mitochondrial dysfunction, DNA damage and protective action of melatonin as well as its kynuric (AFMK, AMK) and indolic (6(OH)MEL, 5-MT) metabolites.
Figure 1. Cellular changes induced by ultraviolet radiation (UVR) including enhanced oxidative stress (ROS/RNS generation), mitochondrial dysfunction, DNA damage and protective action of melatonin as well as its kynuric (AFMK, AMK) and indolic (6(OH)MEL, 5-MT) metabolites.
Ijms 25 04858 g001
Figure 2. The cascade reaction with ROS/RNS products (or metabolites) of melatonin which are involved in terms of attenuation of UVR-induced changes as described above and presented in Figure 1.
Figure 2. The cascade reaction with ROS/RNS products (or metabolites) of melatonin which are involved in terms of attenuation of UVR-induced changes as described above and presented in Figure 1.
Ijms 25 04858 g002
Figure 3. Melatonin/sericin-loaded matrix systems and their potential impact on skin-related applications.
Figure 3. Melatonin/sericin-loaded matrix systems and their potential impact on skin-related applications.
Ijms 25 04858 g003
Table 1. State of innovation in melatonin-polymer patches.
Table 1. State of innovation in melatonin-polymer patches.
InventionMatrix PolymerActive SubstanceApplicationOriginYearLiterature
Biomimetic
melatonin-loaded silk fibroin/GelMA
scaffolds
Silk fibroin/
gel methacrylate
MelatoninCartilage repairNatural/
synthetic
2023[213]
Melatonin-loaded polycaprolactone fiber matsPolycaprolactoneMelatoninWound healingSynthetic2023[214]
Carboxymethyl cellulose-based injectable hydrogel loaded with a composite of melatonin and
γ-cyclodextrin
Carboxymethyl
cellulose
Melatonin and
γ-cyclodextrin
Diabetic wound repairSynthetic2023[215]
Injectable methacrylated gelatin/thiolated pectin hydrogels carrying melatonin/tideglusib-loaded core/shell PMMA/silk fibroin electrospun fibersMethacrylated gelatin/thiolated pectin hydrogelsMelatonin/
tideglusib
Vital pulp regenerationSynthetic2023[216]
Chitosan–sEDMPand melatonin–chitosan–sEDMPcomposite membranesChitosan-sulfonated ethylene–propylene–
diene terpolymer (Chi-sEPDM)
membrane
Sulfonated ethylene–propylene–
diene terpolymer (sEPDM) membrane
MelatoninMembranesSynthetic2023[217]
Melatonin/nanoclay hybridsNanoclayMelatoninSkin deliveryNatural2022[218]
Biomimetic multilayer polycaprolactone/
sodium alginate hydrogel scaffolds loaded with
melatonin
Polycaprolactone/
sodium alginate
MelatoninTendon regenerationNatural/
synthetic
2022[219]
Melatonin-polycaprolactone/
gelatin
electrospun
fibrous scaffolds
Polycaprolactone/
gelatin
MelatoninNerve tissue engineeringNatural/
synthetic
2022[220]
Melatonin-cultured collagen/
chitosan scaffolds cross-linked by a glyoxal solution
Collagen/chitosan 3D scaffolds cross-linked by glyoxalMelatoninSkin tissue engineeringNatural/
synthetic
2022[221]
Melatonin-loaded gelatin spongeGelatin spongeMelatoninWound dressingNatural2022[222]
Melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogelCarboxymethyl chitosan (CMCS)-based hydrogelMelatoninWound healingSynthetic2021[223]
Polymeric matrix loaded with
melatonin
Chitosan/collagen (CTS/Coll)-contained biomaterialsMelatoninWound healingNatural/
synthetic
2021[224]
Nanofiber wound dressing loaded with melatoninChitosan–
polycaprolactone (PCL)/polyvinylalcohol (PVA)
MelatoninWound dressingSynthetic2021[225]
3D-printing magnesium–polycaprolactone loaded with melatoninPolycaprolactoneMelatoninOsteosarcoma treatmentSynthetic2021[226]
Bio-hybrid hydrogel comprising collagen-capped silver nanoparticles and melatoninBio-hybrid hydrogel system comprising collagen and aminated xanthan gumSilver nanoparticles and melatoninTissue regeneration in skin defectsNatural/
synthetic
2021[227]
Table 2. State of innovation in sericin-polymer patches.
Table 2. State of innovation in sericin-polymer patches.
InventionMatrix
Polymer
Active
Substance
ApplicationOriginYearLiterature
Silk sericin/poly (vinyl alcohol) hydrogelPoly (vinyl alcohol) hydrogelSericinInfected large burn wound
healing
Natural/synthetic2023[236]
Silk sericin-based hydrogelSodium carboxy-methyl-
cellulose and polyvinylalcohol
SericinAcute
wounds
Natural/
synthetic
2023[237]
Sericin/human placenta-derived extracellular matrix scaffoldsPlacenta-derived extracellular matrixSericin/
human
placenta
Wound
treatment
Natural2023[238]
Resveratrol loaded native silk
fiber-sericin hydrogel
HydrogelResveratrolWound healingNatural2023[239]
PVA/sericin/
chitosan nanofibrous matrix
PVA/sericin/
chitosan
SericinWound dressingNatural/
synthetic
2023[240]
Sericin/PVA
hydrogels
Sericin/PVA
hydrogels
SericinWound dressingNatural/
synthetic
2023[241]
Robust alcohol soluble polyurethane/chitosan/
silk sericin (APU/CS/SS) nanofiber
artificial skin
Robust alcohol soluble polyurethane/
chitosan/
silk sericin
N/AArtificial
skin
Natural/
synthetic
2023[242]
Turmeric-loaded carboxymethyl cellulose/silk sericin dressingsCarboxymethyl cellulose/silk sericinTurmericWound healingNatural/
synthetic
2023[243]
Silver-loaded
anti-bacterial
sericin/poly (N-isopropylacrylamide) hydrogel
Sericin/poly
(N-isopropylacrylamide) hydrogel
Silver/
sericin
Wound healingNatural/
synthetic
2023[244]
Cellulose/silk nonwoven
fabric/silk sericin sandwich membrane
Cellulose/silk nonwoven
fabric/silk sericin
SericinWound healingNatural/
synthetic
2023[245]
Silk
sericin-
functionalized dense
collagen/fibrin
hybrid
hydrogels
Collagen/fibrinSericin/
collagen
Regenerative scaffoldsNatural2023[246]
Sericin poly(2-hydroxyethyl methacrylate) hydrogel
scaffolds
Poly(2-hydroxyethyl methacrylate)SericinTissue engineeringNatural/
synthetic
2023[247]
Microstructured
bacterial
cellulose-silk sericin
Cellulose-silk sericinSericinWound dressingNatural/
synthetic
2022[248]
Carboxymethyl
cellulose/sericin-based hydrogels
Carboxymethyl cellulose/sericinSericinWound healingNatural/
synthetic
2022[249]
Porous bacterial cellulose/poly(vinyl alcohol)-based silk sericin and azithromycin release systemCellulose/
poly(vinyl alcohol)-based silk sericin
Sericin/
azithromycin
Wound healingNatural/
synthetic
2022[250]
Silk sericin/PLGA
electrospun
scaffolds
Silk sericin/
poly lactide-
co-glycolic acid
SericinPeriodontal tissue engineeringNatural/
synthetic
2022[251]
Polyvinyl alcohol (PVA) hydrogel with collagen hydrolysate and silk sericinPVA/collagen/
sericin
Collagen/
sericin
Wound healingNatural/
synthetic
2022[252]
PVA/sericin/
chitosan
nanofibrous wound dressing matrix
PVA/sericin/
chitosan
SericinWound
dressing
matrix
Natural/
synthetic
2022[253]
Polycaprolactone/
cellulose acetate blended nanofiber mats containing sericin and fibroin for biomedical
application
Polycaprolactone/cellulose acetate/sericin/fibroinSericinBiomedical applicationNatural/
synthetic
2022[254]
PET-based nanofiber dressing material coated with silk sericin capped-silver nanoparticlesPoly (ethylene terephthalate)-g-
poly
(hydroxyethylmethacrylate) (PET-g-HEMA)
nanofibers
Silver
nanoparticles
Wound
dressing
Natural/
synthetic
2021[255]
Silver nanoparticles@organic frameworks/
graphene oxide (Ag@MOF–GO) in
sericin/chitosan/
polyvinyl alcohol
hydrogel
Sericin/chitosan/
polyvinyl alcohol
Silver
nanoparticles
Wound
healing
Natural/
synthetic
2021[256]
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles
incorporated into
sericin/gelatin
nanofibers
Sericin/gelatinPoly(lactic-co-glycolic acid) nanoparticlesWound
healing
Natural/
synthetic
2021[257]
Silk sericin/
fibroin
electrospinning
dressings
Silk sericin/
fibroin
SericinWound
dressing
Natural/
synthetic
2021[258]
Poly(Σ-caprolactone) poly(ethylene oxide)
sandwich type nanofibers
containing
sericin-capped silver
nanoparticles
Poly(Σ-caprolactone)/poly(ethylene oxide)Silver
nanoparticles
Wound
healing
Natural/
synthetic
2021[259]
Sericin scaffolds with ethanol post-treatmentsSericinSericinTissue engineeringNatural/
synthetic
2023[260]
Horseradish perozidase-
mediated cross-linked
sericin hydrogels
Sericin treated HRP/H2O2SericinWound
healing
Natural/
synthetic
2021[261]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Adamiak, K.; Gaida, V.A.; Schäfer, J.; Bosse, L.; Diemer, C.; Reiter, R.J.; Slominski, A.T.; Steinbrink, K.; Sionkowska, A.; Kleszczyński, K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. Int. J. Mol. Sci. 2024, 25, 4858. https://doi.org/10.3390/ijms25094858

AMA Style

Adamiak K, Gaida VA, Schäfer J, Bosse L, Diemer C, Reiter RJ, Slominski AT, Steinbrink K, Sionkowska A, Kleszczyński K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. International Journal of Molecular Sciences. 2024; 25(9):4858. https://doi.org/10.3390/ijms25094858

Chicago/Turabian Style

Adamiak, Katarzyna, Vivian A. Gaida, Jasmin Schäfer, Lina Bosse, Clara Diemer, Russel J. Reiter, Andrzej T. Slominski, Kerstin Steinbrink, Alina Sionkowska, and Konrad Kleszczyński. 2024. "Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy" International Journal of Molecular Sciences 25, no. 9: 4858. https://doi.org/10.3390/ijms25094858

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop