Previous Issue
Volume 15, May
 
 

Genes, Volume 15, Issue 6 (June 2024) – 84 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 606 KiB  
Article
Prognostic Role of Human Leukocyte Antigen Alleles and Cytokine Single-Nucleotide Polymorphisms in Patients with Chronic Myeloid Leukemia Treated with Tyrosine Kinase Inhibitor Drugs
by Samuel Birru Kinde, Ilias Doxiadis, Rawleigh Howe, Tsehayneh Kelemu, Saifu Hailu Chala, Abdulaziz Sherif, Fisihatsion Tadesse, Aster Tsegaye, Amha Gebremedhin and Claudia Lehmann
Genes 2024, 15(6), 732; https://doi.org/10.3390/genes15060732 (registering DOI) - 2 Jun 2024
Abstract
Tyrosine kinase inhibitor (TKI) drugs have significantly improved chronic myeloid leukemia (CML) outcomes. Neopeptides from CML cells may induce specific immune responses, which are crucial for deep molecular (DMR) and treatment-free remission (TFR). In this study of Ethiopian patients with CML (n = [...] Read more.
Tyrosine kinase inhibitor (TKI) drugs have significantly improved chronic myeloid leukemia (CML) outcomes. Neopeptides from CML cells may induce specific immune responses, which are crucial for deep molecular (DMR) and treatment-free remission (TFR). In this study of Ethiopian patients with CML (n = 162), the HLA alleles and single-nucleotide polymorphisms of five cytokines revealed significant associations with clinical outcomes. Clinically unfavorable outcomes correlated with HLA alleles A*03:01/02, A*23:17:01, B*57:01/02/03, and HLA-DRB4*01:01 (p-value = 0.0347, p-value = 0.0285, p-value = 0.037, and p-value = 0.0127, respectively), while HLA-DRB4*01:03:01 was associated with favorable outcomes (p-value = 0.0058). After assigning values for the ‘low,’ ‘intermediate,’ and ‘high’ gene expression of the SNPs’ respective cytokine genes, Kaplan–Meier estimates for relapse-free survival, adjusted for age, treatment duration, and relapse risk among patients after the administration of TKIs, indicated that a gene expression ratio above the overall median of TNF-α, IL-6, and the combination of TGF-β1/IL-10, IFNγ, and IL-6/IL-10 TGF-β1 was correlated with a higher likelihood of treatment failure ((RR: 3.01; 95% CI: 1.1–8.3; p-value = 0.0261) and (RR: 2.4; 95% CI: 1.1–5.2; p-value = 0.022), respectively). Multi-SNPs, surpassing single-SNPs, and HLA allele polymorphisms showed promise in predicting outcomes of patients with CML during TKI treatment, prompting further exploration into their potential utility. Full article
(This article belongs to the Special Issue Genetic Analyses of Immune Genes in Human and Animals)
21 pages, 4499 KiB  
Article
Transcriptional Comparison Reveals Differential Resistance Mechanisms between CMV-Resistant PBC688 and CMV-Susceptible G29
by Guangjun Guo, Baogui Pan, Chengsheng Gong, Shubin Wang, Jinbing Liu, Changzhou Gao and Weiping Diao
Genes 2024, 15(6), 731; https://doi.org/10.3390/genes15060731 (registering DOI) - 2 Jun 2024
Abstract
The Cucumber mosaic virus (CMV) presents a significant threat to pepper cultivation worldwide, leading to substantial yield losses. We conducted a transcriptional comparative study between CMV-resistant (PBC688) and -susceptible (G29) pepper accessions to understand the mechanisms of CMV resistance. PBC688 effectively suppressed CMV [...] Read more.
The Cucumber mosaic virus (CMV) presents a significant threat to pepper cultivation worldwide, leading to substantial yield losses. We conducted a transcriptional comparative study between CMV-resistant (PBC688) and -susceptible (G29) pepper accessions to understand the mechanisms of CMV resistance. PBC688 effectively suppressed CMV proliferation and spread, while G29 exhibited higher viral accumulation. A transcriptome analysis revealed substantial differences in gene expressions between the two genotypes, particularly in pathways related to plant–pathogen interactions, MAP kinase, ribosomes, and photosynthesis. In G29, the resistance to CMV involved key genes associated with calcium-binding proteins, pathogenesis-related proteins, and disease resistance. However, in PBC688, the crucial genes contributing to CMV resistance were ribosomal and chlorophyll a–b binding proteins. Hormone signal transduction pathways, such as ethylene (ET) and abscisic acid (ABA), displayed distinct expression patterns, suggesting that CMV resistance in peppers is associated with ET and ABA. These findings deepen our understanding of CMV resistance in peppers, facilitating future research and variety improvement. Full article
(This article belongs to the Special Issue Vegetable Genetic Breeding)
Show Figures

Figure 1

17 pages, 2724 KiB  
Article
Phylogeny, Genetic Diversity and Population Structure of Fritillaria cirrhosa and Its Relatives Based on Chloroplast Genome Data
by Jiao Huang, Xia Hu, Yong Zhou, Yan-Jie Peng and Zhong Liu
Genes 2024, 15(6), 730; https://doi.org/10.3390/genes15060730 (registering DOI) - 2 Jun 2024
Abstract
Fritillaria cirrhosa and its relatives have been utilized in traditional Chinese medicine for many years and are under priority protection in China. Despite their medicinal and protective value, research on their phylogeny, genetic diversity, and divergence remains limited. Here, we investigate the chloroplast [...] Read more.
Fritillaria cirrhosa and its relatives have been utilized in traditional Chinese medicine for many years and are under priority protection in China. Despite their medicinal and protective value, research on their phylogeny, genetic diversity, and divergence remains limited. Here, we investigate the chloroplast genome variation architecture of 46 samples of F. cirrhosa and its relatives collected from various regions, encompassing the majority of wild populations across diverse geographical areas. The results indicate abundant variations in 46 accessions including 1659 single-nucleotide polymorphisms and 440 indels. Six variable markers (psbJ, ndhD, ycf1, ndhG, trnT-trnL, and rpl32-trnL) were identified. Phylogenetic and network analysis, population structure analysis, and principal component analysis showed that the 46 accessions formed five clades with significant divergence, which were related to their geographical distribution. The regions spanning from the southern Hengduan Mountains to the Qinghai–Tibet Plateau exhibited the highest levels of genetic diversity. F. cirrhosa and its relatives may have suffered a genetic bottleneck and have a relatively low genetic diversity level. Moreover, geographical barriers and discrete patches may have accelerated population divergence. The study offers novel perspectives on the phylogeny, genetic diversity, and population structure of F. cirrhosa and its relatives, information that can inform conservation and utilization strategies in the future. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2701 KiB  
Article
Gut Microbiota, Human Blood Metabolites, and Esophageal Cancer: A Mendelian Randomization Study
by Xiuzhi Li, Bingchen Xu, Han Yang and Zhihua Zhu
Genes 2024, 15(6), 729; https://doi.org/10.3390/genes15060729 (registering DOI) - 2 Jun 2024
Abstract
Background: Unbalances in the gut microbiota have been proposed as a possible cause of esophageal cancer (ESCA), yet the exact causal relationship remains unclear. Purpose: To investigate the potential causal relationship between the gut microbiota and ESCA with Mendelian randomization (MR) analysis. Methods: [...] Read more.
Background: Unbalances in the gut microbiota have been proposed as a possible cause of esophageal cancer (ESCA), yet the exact causal relationship remains unclear. Purpose: To investigate the potential causal relationship between the gut microbiota and ESCA with Mendelian randomization (MR) analysis. Methods: Genome-wide association studies (GWASs) of 207 gut microbial taxa (5 phyla, 10 classes, 13 orders, 26 families, 48 genera, and 105 species) and 205 gut microbiota metabolic pathways conducted by the Dutch Microbiome Project (DMP) and a FinnGen cohort GWAS of esophageal cancer specified the summary statistics. To investigate the possibility of a mediation effect between the gut microbiota and ESCA, mediation MR analyses were performed for 1091 blood metabolites and 309 metabolite ratios. Results: MR analysis indicated that the relative abundance of 10 gut microbial taxa was associated with ESCA but all the 12 gut microbiota metabolic pathways with ESCA indicated no statistically significant association existing. Two blood metabolites and a metabolite ratio were discovered to be mediating factors in the pathway from gut microbiota to ESCA. Conclusion: This research indicated the potential mediating effects of blood metabolites and offered genetic evidence in favor of a causal correlation between gut microbiota and ESCA. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

17 pages, 6409 KiB  
Article
Knockout of the Chlorophyll a Oxygenase Gene OsCAO1 Reduces Chilling Tolerance in Rice Seedlings
by Jiayi Xiong, Genping Wen, Jin Song, Xiaoyi Liu, Qiuhong Chen, Guilian Zhang, Yunhua Xiao, Xiong Liu, Huabing Deng, Wenbang Tang, Feng Wang and Xuedan Lu
Genes 2024, 15(6), 721; https://doi.org/10.3390/genes15060721 (registering DOI) - 2 Jun 2024
Abstract
Chilling stress is one of the main abiotic factors affecting rice growth and yield. In rice, chlorophyllide a oxygenase encoded by OsCAO1 is responsible for converting chlorophyllide a to chlorophyllide b, playing a crucial role in photosynthesis and thus rice growth. However, [...] Read more.
Chilling stress is one of the main abiotic factors affecting rice growth and yield. In rice, chlorophyllide a oxygenase encoded by OsCAO1 is responsible for converting chlorophyllide a to chlorophyllide b, playing a crucial role in photosynthesis and thus rice growth. However, little is known about the function of OsCAO1 in chilling stress responses. The presence of the cis-acting element involved in low-temperature responsiveness (LTR) in the OsCAO1 promoter implied that OsCAO1 probably is a cold-responsive gene. The gene expression level of OsCAO1 was usually inhibited by low temperatures during the day and promoted by low temperatures at night. The OsCAO1 knockout mutants generated by the CRISPR-Cas9 technology in rice (Oryza sativa L.) exhibited significantly weakened chilling tolerance at the seedling stage. OsCAO1 dysfunction led to the accumulation of reactive oxygen species and malondialdehyde, an increase in relative electrolyte leakage, and a reduction in antioxidant gene expression under chilling stress. In addition, the functional deficiency of OsCAO1 resulted in more severe damage to chloroplast morphology, such as abnormal grana thylakoid stacking, caused by low temperatures. Moreover, the rice yield was reduced in OsCAO1 knockout mutants. Therefore, the elevated expression of OsCAO1 probably has the potential to increase both rice yield and chilling tolerance simultaneously, providing a strategy to cultivate chilling-tolerant rice varieties with high yields. Full article
(This article belongs to the Special Issue Genetic Research and Plant Breeding 2.0)
Show Figures

Figure 1

17 pages, 4566 KiB  
Article
Construction of a Full-Length Transcriptome of Western Honeybee Midgut Tissue and Improved Genome Annotation
by He Zang, Sijia Guo, Shunan Dong, Yuxuan Song, Kunze Li, Xiaoxue Fan, Jianfeng Qiu, Yidi Zheng, Haibin Jiang, Ying Wu, Yang Lü, Dafu Chen and Rui Guo
Genes 2024, 15(6), 728; https://doi.org/10.3390/genes15060728 (registering DOI) - 1 Jun 2024
Abstract
Honeybees are an indispensable pollinator in nature with pivotal ecological, economic, and scientific value. However, a full-length transcriptome for Apis mellifera, assembled with the advanced third-generation nanopore sequencing technology, has yet to be reported. Here, nanopore sequencing of the midgut tissues of [...] Read more.
Honeybees are an indispensable pollinator in nature with pivotal ecological, economic, and scientific value. However, a full-length transcriptome for Apis mellifera, assembled with the advanced third-generation nanopore sequencing technology, has yet to be reported. Here, nanopore sequencing of the midgut tissues of uninoculated and Nosema ceranae-inoculated A. mellifera workers was conducted, and the full-length transcriptome was then constructed and annotated based on high-quality long reads. Next followed improvement of sequences and annotations of the current reference genome of A. mellifera. A total of 5,942,745 and 6,664,923 raw reads were produced from midguts of workers at 7 days post-inoculation (dpi) with N. ceranae and 10 dpi, while 7,100,161 and 6,506,665 raw reads were generated from the midguts of corresponding uninoculated workers. After strict quality control, 6,928,170, 6,353,066, 5,745,048, and 6,416,987 clean reads were obtained, with a length distribution ranging from 1 kb to 10 kb. Additionally, 16,824, 17,708, 15,744, and 18,246 full-length transcripts were respectively detected, including 28,019 nonredundant ones. Among these, 43,666, 30,945, 41,771, 26,442, and 24,532 full-length transcripts could be annotated to the Nr, KOG, eggNOG, GO, and KEGG databases, respectively. Additionally, 501 novel genes (20,326 novel transcripts) were identified for the first time, among which 401 (20,255), 193 (13,365), 414 (19,186), 228 (12,093), and 202 (11,703) were respectively annotated to each of the aforementioned five databases. The expression and sequences of three randomly selected novel transcripts were confirmed by RT-PCR and Sanger sequencing. The 5′ UTR of 2082 genes, the 3′ UTR of 2029 genes, and both the 5′ and 3′ UTRs of 730 genes were extended. Moreover, 17,345 SSRs, 14,789 complete ORFs, 1224 long non-coding RNAs (lncRNAs), and 650 transcription factors (TFs) from 37 families were detected. Findings from this work not only refine the annotation of the A. mellifera reference genome, but also provide a valuable resource and basis for relevant molecular and -omics studies. Full article
(This article belongs to the Special Issue Genomics, Transcriptomics, and Proteomics of Bees)
Show Figures

Figure 1

20 pages, 2274 KiB  
Review
Molecular Mechanisms Governing Sight Loss in Inherited Cone Disorders
by Chloe Brotherton and Roly Megaw
Genes 2024, 15(6), 727; https://doi.org/10.3390/genes15060727 (registering DOI) - 1 Jun 2024
Abstract
Inherited cone disorders (ICDs) are a heterogeneous sub-group of inherited retinal disorders (IRDs), the leading cause of sight loss in children and working-age adults. ICDs result from the dysfunction of the cone photoreceptors in the macula and manifest as the loss of colour [...] Read more.
Inherited cone disorders (ICDs) are a heterogeneous sub-group of inherited retinal disorders (IRDs), the leading cause of sight loss in children and working-age adults. ICDs result from the dysfunction of the cone photoreceptors in the macula and manifest as the loss of colour vision and reduced visual acuity. Currently, 37 genes are associated with varying forms of ICD; however, almost half of all patients receive no molecular diagnosis. This review will discuss the known ICD genes, their molecular function, and the diseases they cause, with a focus on the most common forms of ICDs, including achromatopsia, progressive cone dystrophies (CODs), and cone–rod dystrophies (CORDs). It will discuss the gene-specific therapies that have emerged in recent years in order to treat patients with some of the more common ICDs. Full article
(This article belongs to the Special Issue Genetics in Retinal Diseases)
Show Figures

Figure 1

28 pages, 812 KiB  
Review
In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species
by Svetlana Yu. Orlova, Maria N. Ruzina, Olga R. Emelianova, Alexey A. Sergeev, Evgeniya A. Chikurova, Alexei M. Orlov and Nikolai S. Mugue
Genes 2024, 15(6), 726; https://doi.org/10.3390/genes15060726 (registering DOI) - 1 Jun 2024
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a [...] Read more.
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use. Full article
(This article belongs to the Special Issue Genetic Studies of Fish)
Show Figures

Figure 1

11 pages, 1230 KiB  
Review
RNF213 Polymorphisms in Intracranial Artery Dissection
by Marialuisa Zedde, Ilaria Grisendi, Federica Assenza, Manuela Napoli, Claudio Moratti, Claudio Pavone, Lara Bonacini, Giovanna Di Cecco, Serena D’Aniello, Maria Simona Stoenoiu, Alexandre Persu, Franco Valzania and Rosario Pascarella
Genes 2024, 15(6), 725; https://doi.org/10.3390/genes15060725 (registering DOI) - 1 Jun 2024
Abstract
The ring finger protein 213 gene (RNF213) is involved in several vascular diseases, both intracranial and systemic ones. Some variants are common in the Asian population and are reported as a risk factor for moyamoya disease, intracranial stenosis and intracranial aneurysms. Among intracranial [...] Read more.
The ring finger protein 213 gene (RNF213) is involved in several vascular diseases, both intracranial and systemic ones. Some variants are common in the Asian population and are reported as a risk factor for moyamoya disease, intracranial stenosis and intracranial aneurysms. Among intracranial vascular diseases, both moyamoya disease and intracranial artery dissection are more prevalent in the Asian population. We performed a systematic review of the literature, aiming to assess the rate of RNF213 variants in patients with spontaneous intracranial dissections. Four papers were identified, providing data on 53 patients with intracranial artery dissection. The rate of RNF213 variants is 10/53 (18.9%) and it increases to 10/29 (34.5%), excluding patients with vertebral artery dissection. All patients had the RNF213 p.Arg4810Lys variant. RNF213 variants seems to be involved in intracranial dissections in Asian cohorts. The small number of patients, the inclusion of only patients of Asian descent and the small but non-negligible coexistence with moyamoya disease familiarity might be limiting factors, requiring further studies to confirm these preliminary findings and the embryological interpretation. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Figure 1

16 pages, 1760 KiB  
Article
Cosmic Whirl: Navigating the Comet Trail in DNA: H2AX Phosphorylation and the Enigma of Uncertain Significance Variants
by Sevdican Ustun Yilmaz, Nihat Bugra Agaoglu, Karin Manto, Meltem Muftuoglu and Ugur Özbek
Genes 2024, 15(6), 724; https://doi.org/10.3390/genes15060724 (registering DOI) - 1 Jun 2024
Abstract
Pathogenic variations in the BRCA2 gene have been detected with the development of next-generation sequencing (NGS)-based hereditary cancer panel testing technology. It also reveals an increasing number of variants of uncertain significance (VUSs). Well-established functional tests are crucial to accurately reclassifying VUSs for [...] Read more.
Pathogenic variations in the BRCA2 gene have been detected with the development of next-generation sequencing (NGS)-based hereditary cancer panel testing technology. It also reveals an increasing number of variants of uncertain significance (VUSs). Well-established functional tests are crucial to accurately reclassifying VUSs for effective diagnosis and treatment. We retrospectively analyzed the multi-gene cancer panel results of 922 individuals and performed in silico analysis following ClinVar classification. Then, we selected five breast cancer-diagnosed patients’ missense BRCA2 VUSs (T1011R, T1104P/M1168K, R2027K, G2044A, and D2819) for reclassification. The effects of VUSs on BRCA2 function were analyzed using comet and H2AX phosphorylation (γH2AX) assays before and after the treatment of peripheral blood mononuclear cells (PBMCs) of subjects with the double-strand break (DSB) agent doxorubicin (Dox). Before and after Dox-induction, the amount of DNA in the comet tails was similar in VUS carriers; however, notable variations in γH2AX were observed, and according to combined computational and functional analyses, we reclassified T1001R as VUS-intermediate, T1104P/M1168K and D2819V as VUS (+), and R2027K and G2044A as likely benign. These findings highlight the importance of the variability of VUSs in response to DNA damage before and after Dox-induction and suggest that further investigation is needed to understand the underlying mechanisms. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

15 pages, 1065 KiB  
Article
Comparative Analysis of Shapley Values Enhances Transcriptomics Insights across Some Common Uterine Pathologies
by José A. Castro-Martínez, Eva Vargas, Leticia Díaz-Beltrán and Francisco J. Esteban
Genes 2024, 15(6), 723; https://doi.org/10.3390/genes15060723 (registering DOI) - 1 Jun 2024
Abstract
Uterine pathologies pose a challenge to women’s health on a global scale. Despite extensive research, the causes and origin of some of these common disorders are not well defined yet. This study presents a comprehensive analysis of transcriptome data from diverse datasets encompassing [...] Read more.
Uterine pathologies pose a challenge to women’s health on a global scale. Despite extensive research, the causes and origin of some of these common disorders are not well defined yet. This study presents a comprehensive analysis of transcriptome data from diverse datasets encompassing relevant uterine pathologies such as endometriosis, endometrial cancer and uterine leiomyomas. Leveraging the Comparative Analysis of Shapley values (CASh) technique, we demonstrate its efficacy in improving the outcomes of the classical differential expression analysis on transcriptomic data derived from microarray experiments. CASh integrates the microarray game algorithm with Bootstrap resampling, offering a robust statistical framework to mitigate the impact of potential outliers in the expression data. Our findings unveil novel insights into the molecular signatures underlying these gynecological disorders, highlighting CASh as a valuable tool for enhancing the precision of transcriptomics analyses in complex biological contexts. This research contributes to a deeper understanding of gene expression patterns and potential biomarkers associated with these pathologies, offering implications for future diagnostic and therapeutic strategies. Full article
(This article belongs to the Special Issue Genetic Causes of Human Infertility)
Show Figures

Figure 1

14 pages, 5621 KiB  
Article
Robertsonian Translocation between Human Chromosomes 21 and 22, Inherited across Three Generations, without Any Phenotypic Effect
by Concetta Federico, Desiree Brancato, Francesca Bruno, Daiana Galvano, Mariella Caruso and Salvatore Saccone
Genes 2024, 15(6), 722; https://doi.org/10.3390/genes15060722 (registering DOI) - 1 Jun 2024
Abstract
Chromosomal translocations can result in phenotypic effects of varying severity, depending on the position of the breakpoints and the rearrangement of genes within the interphase nucleus of the translocated chromosome regions. Balanced translocations are often asymptomatic phenotypically and are typically detected due to [...] Read more.
Chromosomal translocations can result in phenotypic effects of varying severity, depending on the position of the breakpoints and the rearrangement of genes within the interphase nucleus of the translocated chromosome regions. Balanced translocations are often asymptomatic phenotypically and are typically detected due to a decrease in fertility resulting from issues during meiosis. Robertsonian translocations are among the most common chromosomal abnormalities, often asymptomatic, and can persist in the population as a normal polymorphism. We serendipitously discovered a Robertsonian translocation between chromosome 21 and chromosome 22, which is inherited across three generations without any phenotypic effect, notably only in females. In situ hybridization with alpha-satellite DNAs revealed the presence of both centromeric sequences in the translocated chromosome. The reciprocal translocation resulted in a partial deletion of the short arm of both chromosomes 21, and 22, with the ribosomal RNA genes remaining present in the middle part of the new metacentric chromosome. The rearrangement did not cause alterations to the long arm. The spread of an asymptomatic heterozygous chromosomal polymorphism in a population can lead to mating between heterozygous individuals, potentially resulting in offspring with a homozygous chromosomal configuration for the anomaly they carry. This new karyotype may not produce phenotypic effects in the individual who presents it. The frequency of karyotypes with chromosomal rearrangements in asymptomatic heterozygous form in human populations is likely underestimated, and molecular karyotype by array Comparative Genomic Hybridization (array-CGH) analysis does not allow for the identification of this type of chromosomal anomaly, making classical cytogenetic analysis the preferred method for obtaining clear results on a karyotype carrying a balanced rearrangement. Full article
(This article belongs to the Special Issue Chromosomal Rearrangements in the Light of Evolutionary Genomics)
Show Figures

Figure 1

18 pages, 1617 KiB  
Review
Gene Therapy for Non-Hereditary Retinal Disease: Age-Related Macular Degeneration, Diabetic Retinopathy, and Beyond
by Lucas W. Rowe and Thomas A. Ciulla
Genes 2024, 15(6), 720; https://doi.org/10.3390/genes15060720 (registering DOI) - 1 Jun 2024
Abstract
Gene therapy holds promise as a transformative approach in the treatment landscape of age-related macular degeneration (AMD), diabetic retinopathy (DR), and diabetic macular edema (DME), aiming to address the challenges of frequent intravitreal anti-vascular endothelial growth factor (VEGF) injections. This manuscript reviews ongoing [...] Read more.
Gene therapy holds promise as a transformative approach in the treatment landscape of age-related macular degeneration (AMD), diabetic retinopathy (DR), and diabetic macular edema (DME), aiming to address the challenges of frequent intravitreal anti-vascular endothelial growth factor (VEGF) injections. This manuscript reviews ongoing gene therapy clinical trials for these disorders, including ABBV-RGX-314, ixoberogene soroparvovec (ixo-vec), and 4D-150. ABBV-RGX-314 utilizes an adeno-associated virus (AAV) vector to deliver a transgene encoding a ranibizumab-like anti-VEGF antibody fragment, demonstrating promising results in Phase 1/2a and ongoing Phase 2b/3 trials. Ixo-vec employs an AAV2.7m8 capsid for intravitreal delivery of a transgene expressing aflibercept, showing encouraging outcomes in Phase 1 and ongoing Phase 2 trials. 4D-150 utilizes an evolved vector to express both aflibercept and a VEGF-C inhibitory RNAi, exhibiting positive interim results in Phase 1/2 studies. Other therapies reviewed include EXG102-031, FT-003, KH631, OLX10212, JNJ-1887, 4D-175, and OCU410. These therapies offer potential advantages of reduced treatment frequency and enhanced safety profiles, representing a paradigm shift in management towards durable and efficacious cellular-based biofactories. These advancements in gene therapy hold promise for improving outcomes in AMD and addressing the complex challenges of DME and DR, providing new avenues for the treatment of diabetic eye diseases. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 6285 KiB  
Article
Genetic Identification of Medicinal Citrus Cultivar ‘Local Juhong’ Using Molecular Markers and Genomics
by Peng Chen, Jingbo Liu, Qi Tang, Tie Zhou, Lingxia Guo, Yuanyuan Xu, Lijun Chai, Qiang Xu, Ziniu Deng and Xianxin Li
Genes 2024, 15(6), 719; https://doi.org/10.3390/genes15060719 (registering DOI) - 1 Jun 2024
Abstract
The citrus cultivar ‘Local Juhong’, which has historically been used as a traditional Chinese medicinal material, originated in Yuanjiang County, Hunan Province.Its parental type and genetic background are indistinct as of yet. Morphological observation shows that ‘Local Juhong’ has a slight oblateness in [...] Read more.
The citrus cultivar ‘Local Juhong’, which has historically been used as a traditional Chinese medicinal material, originated in Yuanjiang County, Hunan Province.Its parental type and genetic background are indistinct as of yet. Morphological observation shows that ‘Local Juhong’ has a slight oblateness in fruit shape, a relatively smooth pericarp, a fine and slightly raised oil vacuole, and an inward concave at the blossom end. The tree form and fruit and leaf morphology of ‘Local Juhong’ are similar to those of ‘Huangpi’ sour orange. To reveal the genetic background of ‘Local Juhong’, 21 citrus accessions were evaluated using nuclear and chloroplast SSR markers and whole-genome SNP information. ‘Local Juhong’ was grouped with mandarins and sub-grouped with ‘Miyagawa Wase’ and ‘Yanxi Wanlu’ in a nuclear SSR analysis, which indicated that its pollen parent might be mandarins. It was closely clustered with orange and pummelo in the chloroplast SSR analysis. The genomic sequence similarity rate of ‘Local Juhong’ with mandarin and pummelo heterozygosity was 70.88%; the main part was the heterozygosity, except for the unknown (19.66%), mandarin (8.73%), and pummelo (3.9%) parts. Thus, ‘Local Juhong’ may be an F1 hybrid with pummelo as the female parent and mandarin as the male parent, sharing sisterhood with ‘Huangpi’ sour orange. Full article
(This article belongs to the Special Issue Genomics and Genetics of Medicinal Plants)
Show Figures

Figure 1

18 pages, 2694 KiB  
Article
Radiogenomics-Based Risk Prediction of Glioblastoma Multiforme with Clinical Relevance
by Xiaohua Qian, Hua Tan, Xiaona Liu, Weiling Zhao, Michael D. Chan, Pora Kim and Xiaobo Zhou
Genes 2024, 15(6), 718; https://doi.org/10.3390/genes15060718 (registering DOI) - 1 Jun 2024
Abstract
Glioblastoma multiforme (GBM)is the most common and aggressive primary brain tumor. Although temozolomide (TMZ)-based radiochemotherapy improves overall GBM patients’ survival, it also increases the frequency of false positive post-treatment magnetic resonance imaging (MRI) assessments for tumor progression. Pseudo-progression (PsP) is a treatment-related reaction [...] Read more.
Glioblastoma multiforme (GBM)is the most common and aggressive primary brain tumor. Although temozolomide (TMZ)-based radiochemotherapy improves overall GBM patients’ survival, it also increases the frequency of false positive post-treatment magnetic resonance imaging (MRI) assessments for tumor progression. Pseudo-progression (PsP) is a treatment-related reaction with an increased contrast-enhancing lesion size at the tumor site or resection margins miming tumor recurrence on MRI. The accurate and reliable prognostication of GBM progression is urgently needed in the clinical management of GBM patients. Clinical data analysis indicates that the patients with PsP had superior overall and progression-free survival rates. In this study, we aimed to develop a prognostic model to evaluate the tumor progression potential of GBM patients following standard therapies. We applied a dictionary learning scheme to obtain imaging features of GBM patients with PsP or true tumor progression (TTP) from the Wake dataset. Based on these radiographic features, we conducted a radiogenomics analysis to identify the significantly associated genes. These significantly associated genes were used as features to construct a 2YS (2-year survival rate) logistic regression model. GBM patients were classified into low- and high-survival risk groups based on the individual 2YS scores derived from this model. We tested our model using an independent The Cancer Genome Atlas Program (TCGA) dataset and found that 2YS scores were significantly associated with the patient’s overall survival. We used two cohorts of the TCGA data to train and test our model. Our results show that the 2YS scores-based classification results from the training and testing TCGA datasets were significantly associated with the overall survival of patients. We also analyzed the survival prediction ability of other clinical factors (gender, age, KPS (Karnofsky performance status), normal cell ratio) and found that these factors were unrelated or weakly correlated with patients’ survival. Overall, our studies have demonstrated the effectiveness and robustness of the 2YS model in predicting the clinical outcomes of GBM patients after standard therapies. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Figure 1

18 pages, 379 KiB  
Review
Theory of Mind: A Brief Review of Candidate Genes
by Corrado Silvestri, Simona Scaini, Ludovica Giani, Mattia Ferro, Maria Nobile and Marcella Caputi
Genes 2024, 15(6), 717; https://doi.org/10.3390/genes15060717 (registering DOI) - 31 May 2024
Abstract
Deficits in theory of mind (ToM), known as the ability to understand the other’s mind, have been associated with several psychopathological outcomes. The present systematic review aims to summarize the results of genetic studies that investigated gene polymorphisms associated with mentalization performance tasks [...] Read more.
Deficits in theory of mind (ToM), known as the ability to understand the other’s mind, have been associated with several psychopathological outcomes. The present systematic review aims to summarize the results of genetic studies that investigated gene polymorphisms associated with mentalization performance tasks in children and adults. The systematic review was carried out following PRISMA guidelines, and the literature search was conducted in PubMed and EBSCOhost using the following keywords: ‘theory of mind, mentalizing, mindreading’ and ‘gene, genetic basis’. Nineteen studies met the eligibility criteria for inclusion. Most of the literature focused on the role of DRD4, DAT1, OXTR, OXT, COMT, ZNF804A, AVP, AVPR, SCL6A4, EFHC2, MAO-A, and the family of GTF2I genes in influencing ToM. However, controversial results emerged in sustaining the link between specific genetic polymorphisms and mentalization abilities in children and adults. Available data show heterogeneous outcomes, with studies reporting an association between the same family genes in subjects of the same age and other studies reporting no correlation. This does not allow us to draw any solid conclusions but paves the way for exploring genes involved in ToM tasks. Full article
(This article belongs to the Special Issue Genetics of Complex Human Disease 2024)
Show Figures

Figure 1

16 pages, 6292 KiB  
Article
Comparative Analysis of Complete Chloroplast Genomes of Rubus in China: Hypervariable Regions and Phylogenetic Relationships
by Yufen Xu, Yongquan Li, Yanzhao Chen, Longyuan Wang, Bine Xue, Xianzhi Zhang, Wenpei Song, Wei Guo and Wei Wu
Genes 2024, 15(6), 716; https://doi.org/10.3390/genes15060716 (registering DOI) - 31 May 2024
Abstract
With more than 200 species of native Rubus, China is considered a center of diversity for this genus. Due to a paucity of molecular markers, the phylogenetic relationships for this genus are poorly understood. In this study, we sequenced and assembled the [...] Read more.
With more than 200 species of native Rubus, China is considered a center of diversity for this genus. Due to a paucity of molecular markers, the phylogenetic relationships for this genus are poorly understood. In this study, we sequenced and assembled the plastomes of 22 out of 204 Chinese Rubus species (including varieties) from three of the eight sections reported in China, i.e., the sections Chamaebatus, Idaeobatus, and Malachobatus. Plastomes were annotated and comparatively analyzed with the inclusion of two published plastomes. The plastomes of all 24 Rubus species were composed of a large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs), and ranged in length from 155,464 to 156,506 bp. We identified 112 unique genes, including 79 protein-coding genes, 29 transfer RNAs, and four ribosomal RNAs. With highly consistent gene order, these Rubus plastomes showed strong collinearity, and no significant changes in IR boundaries were noted. Nine divergent hotspots were identified based on nucleotide polymorphism analysis: trnH-psbA, trnK-rps16, rps16-trnQ-psbK, petN-psbM, trnT-trnL, petA-psbJ, rpl16 intron, ndhF-trnL, and ycf1. Based on whole plastome sequences, we obtained a clearer phylogenetic understanding of these Rubus species. All sampled Rubus species formed a monophyletic group; however, sections Idaeobatus and Malachobatus were polyphyletic. These data and analyses demonstrate the phylogenetic utility of plastomes for systematic research within Rubus. Full article
(This article belongs to the Special Issue Advances in Evolution of Plant Organelle Genome (Volume II))
Show Figures

Figure 1

4 pages, 1255 KiB  
Editorial
Innovations in Phenotyping and Diagnostics Create Opportunities for Improved Treatment and Genetic Counseling for Rare Diseases
by Miles D. Thompson
Genes 2024, 15(6), 715; https://doi.org/10.3390/genes15060715 (registering DOI) - 31 May 2024
Abstract
Genetic counseling and treatment options for rare developmental disabilities (DDs) have been revolutionized by the opportunities made possible by using massively parallel sequencing for diagnostic purposes [...] Full article
Show Figures

Figure 1

4 pages, 154 KiB  
Editorial
Pharmacogenomics: Challenges and Future
by Mariamena Arbitrio
Genes 2024, 15(6), 714; https://doi.org/10.3390/genes15060714 (registering DOI) - 30 May 2024
Viewed by 13
Abstract
Over the last few decades, the implementation of pharmacogenomics (PGx) in clinical practice has improved tailored drug prescriptions [...] Full article
(This article belongs to the Special Issue Pharmacogenomics: Challenges and Future)
22 pages, 3101 KiB  
Article
Characterization of the Hepatic Transcriptome for Divergent Immune-Responding Sheep Following Natural Exposure to Gastrointestinal Nematodes
by Olivia Willoughby, Niel A. Karrow, Samla Marques Freire Cunha, Victoria Asselstine, Bonnie A. Mallard and Ángela Cánovas
Genes 2024, 15(6), 713; https://doi.org/10.3390/genes15060713 (registering DOI) - 30 May 2024
Viewed by 104
Abstract
Infections with gastrointestinal nematodes (GINs) reduce the economic efficiency of sheep operations and compromise animal welfare. Understanding the host’s response to GIN infection can help producers identify animals that are naturally resistant to infection. The objective of this study was to characterize the [...] Read more.
Infections with gastrointestinal nematodes (GINs) reduce the economic efficiency of sheep operations and compromise animal welfare. Understanding the host’s response to GIN infection can help producers identify animals that are naturally resistant to infection. The objective of this study was to characterize the hepatic transcriptome of sheep that had been naturally exposed to GIN parasites. The hepatic transcriptome was studied using RNA-Sequencing technology in animals characterized as high (n = 5) or medium (n = 6) based on their innate immune acute-phase (AP) response phenotype compared with uninfected controls (n = 4), and with biased antibody-mediated (AbMR, n = 5) or cell-mediated (CMR, n = 5) adaptive immune responsiveness compared to uninfected controls (n = 3). Following the assessment of sheep selected for innate responses, 0, 136, and 167 genes were differentially expressed (DE) between high- and medium-responding animals, high-responding and uninfected control animals, and medium-responding and uninfected control animals, respectively (false discovery rate (FDR) < 0.05, and fold change |FC| > 2). When adaptive immune responses were assessed, 0, 53, and 57 genes were DE between antibody- and cell-biased animals, antibody-biased and uninfected control animals, and cell-biased and uninfected control animals, respectively (FDR < 0.05, |FC| > 2). Functional analyses identified enriched gene ontology (GO) terms and metabolic pathways related to the innate immune response and energy metabolism. Six functional candidate genes were identified for further functional and validation studies to better understand the underlying biological mechanisms of host responses to GINs. These, in turn, can potentially help improve decision making and management practices to increase the overall host immune response to GIN infection. Full article
(This article belongs to the Special Issue Genetics and Genomics of Sheep and Goat)
Show Figures

Figure 1

16 pages, 498 KiB  
Article
PON1, APOE and SDF-1 Gene Polymorphisms and Risk of Retinal Vein Occlusion: A Case-Control Study
by Antonios Ragkousis, Dimitrios Kazantzis, Ilias Georgalas, Panagiotis Theodossiadis, Christos Kroupis and Irini Chatziralli
Genes 2024, 15(6), 712; https://doi.org/10.3390/genes15060712 (registering DOI) - 30 May 2024
Viewed by 92
Abstract
Numerous studies have tried to evaluate the potential role of thrombophilia-related genes in retinal vein occlusion (RVO); however, there is limited research on genes related to different pathophysiological mechanisms involved in RVO. In view of the strong contribution of oxidative stress and inflammation [...] Read more.
Numerous studies have tried to evaluate the potential role of thrombophilia-related genes in retinal vein occlusion (RVO); however, there is limited research on genes related to different pathophysiological mechanisms involved in RVO. In view of the strong contribution of oxidative stress and inflammation to the pathogenesis of RVO, the purpose of the present study was to investigate the association of inflammation- and oxidative-stress-related polymorphisms from three different genes [apolipoprotein E (APOE), paraoxonase 1 (PON1) and stromal cell-derived factor 1 (SDF-1)] and the risk of RVO in a Greek population. Participants in this case-control study were 50 RVO patients (RVO group) and 50 healthy volunteers (control group). Blood samples were collected on EDTA tubes and genomic DNA was extracted. Genotyping of rs854560 (L55M) and rs662 (Q192R) for the PON1 gene, rs429358 and rs7412 for the APOE gene and rs1801157 [SDF1-3′G(801)A] for SDF-1 gene was performed using the polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) method. Multiple genetic models (codominant, dominant, recessive, overdominant and log-additive) and haplotype analyses were performed using the SNPStats web tool to assess the correlation between the genetic polymorphisms and the risk of RVO. Binary logistic regression analysis was used for the association analysis between APOE gene variants and RVO. Given the multifactorial nature of the disease, our statistical analysis was adjusted for the most important systemic risk factors (age, hypertension and diabetes mellitus). The dominant genetic model for the PON1 Q192R single nucleotide polymorphism (SNP) of the association analysis revealed that there was a statistically significant difference between the RVO group and the control group. Specifically, after adjusting for age and hypertension, the PON1 192 R allele (QR + RR) was found to be associated with a statistically significantly higher risk of RVO compared to the QQ genotype (OR = 2.51; 95% CI = 1.02–6.14, p = 0.04). The statistically significant results were maintained after including diabetes in the multivariate model in addition to age and hypertension (OR = 2.83; 95% CI = 1.01–7.97, p = 0.042). No statistically significant association was revealed between the other studied polymorphisms and the risk of RVO. Haplotype analysis for PON1 SNPs, L55M and Q192R, revealed no statistically significant correlation. In conclusion, PON1 192 R allele carriers (QR + RR) were associated with a statistically significantly increased risk of RVO compared to the QQ homozygotes. These findings suggest that the R allele of the PON1 Q192R is likely to play a role as a risk factor for retinal vein occlusion. Full article
(This article belongs to the Special Issue Genetic Research of Retinal Diseases)
Show Figures

Figure 1

14 pages, 1691 KiB  
Article
Genome Size Variation in Sesamum indicum L. Germplasm from Niger
by Najat Takvorian, Hamissou Zangui, Abdel Kader Naino Jika, Aïda Alouane and Sonja Siljak-Yakovlev
Genes 2024, 15(6), 711; https://doi.org/10.3390/genes15060711 (registering DOI) - 29 May 2024
Viewed by 155
Abstract
Sesamum indicum L. (Pedaliaceae) is one of the most economically important oil crops in the world, thanks to the high oil content of its seeds and its nutritional value. It is cultivated all over the world, mainly in Asia and Africa. Well adapted [...] Read more.
Sesamum indicum L. (Pedaliaceae) is one of the most economically important oil crops in the world, thanks to the high oil content of its seeds and its nutritional value. It is cultivated all over the world, mainly in Asia and Africa. Well adapted to arid environments, sesame offers a good opportunity as an alternative subsistence crop for farmers in Africa, particularly Niger, to cope with climate change. For the first time, the variation in genome size among 75 accessions of the Nigerien germplasm was studied. The sample was collected throughout Niger, revealing various morphological, biochemical and phenological traits. For comparison, an additional accession from Thailand was evaluated as an available Asian representative. In the Niger sample, the 2C DNA value ranged from 0.77 to 1 pg (753 to 978 Mbp), with an average of 0.85 ± 0.037 pg (831 Mbp). Statistical analysis showed a significant difference in 2C DNA values among 58 pairs of Niger accessions (p-value < 0.05). This significant variation indicates the likely genetic diversity of sesame germplasm, offering valuable insights into its possible potential for climate-resilient agriculture. Our results therefore raise a fundamental question: is intraspecific variability in the genome size of Nigerien sesame correlated with specific morphological and physiological traits? Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Cytogenomics")
Show Figures

Figure 1

25 pages, 3165 KiB  
Review
Determinants of Chromatin Organization in Aging and Cancer—Emerging Opportunities for Epigenetic Therapies and AI Technology
by Rogerio M. Castilho, Leonard S. Castilho, Bruna H. Palomares and Cristiane H. Squarize
Genes 2024, 15(6), 710; https://doi.org/10.3390/genes15060710 (registering DOI) - 29 May 2024
Viewed by 214
Abstract
This review article critically examines the pivotal role of chromatin organization in gene regulation, cellular differentiation, disease progression and aging. It explores the dynamic between the euchromatin and heterochromatin, coded by a complex array of histone modifications that orchestrate essential cellular processes. We [...] Read more.
This review article critically examines the pivotal role of chromatin organization in gene regulation, cellular differentiation, disease progression and aging. It explores the dynamic between the euchromatin and heterochromatin, coded by a complex array of histone modifications that orchestrate essential cellular processes. We discuss the pathological impacts of chromatin state misregulation, particularly in cancer and accelerated aging conditions such as progeroid syndromes, and highlight the innovative role of epigenetic therapies and artificial intelligence (AI) in comprehending and harnessing the histone code toward personalized medicine. In the context of aging, this review explores the use of AI and advanced machine learning (ML) algorithms to parse vast biological datasets, leading to the development of predictive models for epigenetic modifications and providing a framework for understanding complex regulatory mechanisms, such as those governing cell identity genes. It supports innovative platforms like CEFCIG for high-accuracy predictions and tools like GridGO for tailored ChIP-Seq analysis, which are vital for deciphering the epigenetic landscape. The review also casts a vision on the prospects of AI and ML in oncology, particularly in the personalization of cancer therapy, including early diagnostics and treatment optimization for diseases like head and neck and colorectal cancers by harnessing computational methods, AI advancements and integrated clinical data for a transformative impact on healthcare outcomes. Full article
(This article belongs to the Section Epigenomics)
Show Figures

Figure 1

15 pages, 4848 KiB  
Article
Detection Method for Gene Doping in a Mouse Model Expressing Human Erythropoietin from Adeno-Associated Virus Vector-9
by Takehito Sugasawa, Atsushi Hirokawa, Norihiro Otani, Yasuharu Kanki, Kieu DM Nguyen, Tohru Takemasa, Koichi Watanabe, Yoshinori Takeuchi, Naoya Yahagi and Yoichiro Takahashi
Genes 2024, 15(6), 709; https://doi.org/10.3390/genes15060709 - 29 May 2024
Viewed by 254
Abstract
With the rapid development of gene therapy technology in recent years, its abuse as a method of sports doping in athletics has become a concern. However, there is still room for improvement in gene-doping testing methods, and a robust animal model needs to [...] Read more.
With the rapid development of gene therapy technology in recent years, its abuse as a method of sports doping in athletics has become a concern. However, there is still room for improvement in gene-doping testing methods, and a robust animal model needs to be developed. Therefore, the purposes of this study were to establish a model of gene doping using recombinant adeno-associated virus vector-9, including the human erythropoietin gene (rAAV9-hEPO), and to establish a relevant testing method. First, it was attempted to establish the model using rAAV9-hEPO on mice. The results showed a significant increase in erythrocyte volume accompanied by an increase in spleen weight, confirming the validity of the model. Next, we attempted to detect proof of gene doping by targeting DNA and RNA. Direct proof of gene doping was detected using a TaqMan-qPCR assay with certain primers/probes. In addition, some indirect proof was identified in RNAs through the combination of a TB Green qPCR assay with RNA sequencing. Taken together, these results could provide the foundation for an effective test for gene doping in human athletes in the future. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

9 pages, 876 KiB  
Article
PC Gene Affects Milk Production Traits in Dairy Cattle
by Aixia Du, Zijiao Guo, Ao Chen, Lingna Xu, Dongxiao Sun and Bo Han
Genes 2024, 15(6), 708; https://doi.org/10.3390/genes15060708 - 29 May 2024
Viewed by 182
Abstract
In previous work, we found that PC was differentially expressed in cows at different lactation stages. Thus, we deemed that PC may be a candidate gene affecting milk production traits in dairy cattle. In this study, we found the polymorphisms of PC by [...] Read more.
In previous work, we found that PC was differentially expressed in cows at different lactation stages. Thus, we deemed that PC may be a candidate gene affecting milk production traits in dairy cattle. In this study, we found the polymorphisms of PC by resequencing and verified their genetic associations with milk production traits by using an animal model in a cattle population. In total, we detected six single-nucleotide polymorphisms (SNPs) in PC. The single marker association analysis showed that all SNPs were significantly associated with the five milk production traits (p < 0.05). Additionally, we predicted that allele G of 29:g.44965658 in the 5′ regulatory region created binding sites for TF GATA1 and verified that this allele inhibited the transcriptional activity of PC by the dual-luciferase reporter assay. In conclusion, we proved that PC had a prominent genetic effect on milk production traits, and six SNPs with prominent genetic effects could be used as markers for genomic selection (GS) in dairy cattle, which is beneficial for accelerating the improvement in milk yield and quality in Chinese Holstein cows. Full article
(This article belongs to the Special Issue Genetics and Breeding of Cattle Volume II)
Show Figures

Figure 1

12 pages, 1693 KiB  
Case Report
FANCM Gene Variants in a Male Diagnosed with Sertoli Cell-Only Syndrome and Diffuse Astrocytoma
by Monika Logara Klarić, Tihana Marić, Lucija Žunić, Lovro Trgovec-Greif, Filip Rokić, Ana Fiolić, Ana Merkler Šorgić, Davor Ježek, Oliver Vugrek, Antonia Jakovčević, Maja Barbalić, Robert Belužić and Ana Katušić Bojanac
Genes 2024, 15(6), 707; https://doi.org/10.3390/genes15060707 - 28 May 2024
Viewed by 194
Abstract
Azoospermia is a form of male infertility characterized by a complete lack of spermatozoa in the ejaculate. Sertoli cell-only syndrome (SCOS) is the most severe form of azoospermia, where no germ cells are found in the tubules. Recently, FANCM gene variants were reported [...] Read more.
Azoospermia is a form of male infertility characterized by a complete lack of spermatozoa in the ejaculate. Sertoli cell-only syndrome (SCOS) is the most severe form of azoospermia, where no germ cells are found in the tubules. Recently, FANCM gene variants were reported as novel genetic causes of spermatogenic failure. At the same time, FANCM variants are known to be associated with cancer predisposition. We performed whole-exome sequencing on a male patient diagnosed with SCOS and a healthy father. Two compound heterozygous missense mutations in the FANCM gene were found in the patient, both being inherited from his parents. After the infertility assessment, the patient was diagnosed with diffuse astrocytoma. Immunohistochemical analyses in the testicular and tumor tissues of the patient and adequate controls showed, for the first time, not only the existence of a cytoplasmic and not nuclear pattern of FANCM in astrocytoma but also in non-mitotic neurons. In the testicular tissue of the SCOS patient, cytoplasmic anti-FANCM staining intensity appeared lower than in the control. Our case report raises a novel possibility that the infertile carriers of FANCM gene missense variants could also be prone to cancer development. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 5121 KiB  
Article
A Mouse Model of X-Linked Chronic Granulomatous Disease for the Development of CRISPR/Cas9 Gene Therapy
by Seren Sevim-Wunderlich, Tu Dang, Jana Rossius, Frank Schnütgen and Ralf Kühn
Genes 2024, 15(6), 706; https://doi.org/10.3390/genes15060706 - 28 May 2024
Viewed by 240
Abstract
Chronic granulomatous disease (CGD) is an inherited immunodeficiency disease mainly caused by mutations in the X-linked CYBB gene that abrogate reactive oxygen species (ROS) production in phagocytes and microbial defense. Gene repair using the CRISPR/Cas9 system in hematopoietic stem and progenitor cells (HSPCs) [...] Read more.
Chronic granulomatous disease (CGD) is an inherited immunodeficiency disease mainly caused by mutations in the X-linked CYBB gene that abrogate reactive oxygen species (ROS) production in phagocytes and microbial defense. Gene repair using the CRISPR/Cas9 system in hematopoietic stem and progenitor cells (HSPCs) is a promising technology for therapy for CGD. To support the establishment of efficient and safe gene therapies for CGD, we generated a mouse model harboring a patient-derived mutation in the CYBB gene. Our CybbC517del mouse line shows the hallmarks of CGD and provides a source for Cybb-deficient HSPCs that can be used to evaluate gene-therapy approaches in vitro and in vivo. In a setup using Cas9 RNPs and an AAV repair vector in HSPCs, we show that the mutation can be repaired in 19% of treated cells and that treatment restores ROS production by macrophages. In conclusion, our CybbC517del mouse line provides a new platform for refining and evaluating novel gene therapies and studying X-CGD pathophysiology. Full article
(This article belongs to the Special Issue Rodent Genetic Models for Human Diseases)
Show Figures

Figure 1

17 pages, 1228 KiB  
Review
Inherited Retinal Diseases and Retinal Organoids as Preclinical Cell Models for Inherited Retinal Disease Research
by Kristen E. Ashworth, Jessica Weisbrod and Brian G. Ballios
Genes 2024, 15(6), 705; https://doi.org/10.3390/genes15060705 - 28 May 2024
Viewed by 255
Abstract
Inherited retinal diseases (IRDs) are a large group of genetically and clinically diverse blinding eye conditions that result in progressive and irreversible photoreceptor degeneration and vision loss. To date, no cures have been found, although strides toward treatments for specific IRDs have been [...] Read more.
Inherited retinal diseases (IRDs) are a large group of genetically and clinically diverse blinding eye conditions that result in progressive and irreversible photoreceptor degeneration and vision loss. To date, no cures have been found, although strides toward treatments for specific IRDs have been made in recent years. To accelerate treatment discovery, retinal organoids provide an ideal human IRD model. This review aims to give background on the development and importance of retinal organoids for the human-based in vitro study of the retina and human retinogenesis and retinal pathologies. From there, we explore retinal pathologies in the context of IRDs and the current landscape of IRD treatment discovery. We discuss the usefulness of retinal organoids in this context (as a patient-derived cell model for IRDs) to precisely understand the pathogenesis and potential mechanisms behind a specific IRD-causing variant of interest. Finally, we discuss the importance and promise of retinal organoids in treatment discovery for IRDs, now and in the future. Full article
(This article belongs to the Special Issue Genetics in Retinal Diseases)
Show Figures

Figure 1

18 pages, 7311 KiB  
Article
Transcriptomic Analysis of Newborn Hanwoo Calves: Effects of Maternal Overnutrition during Mid- to Late Pregnancy on Subcutaneous Adipose Tissue and Liver
by Borhan Shokrollahi, Hyun-Jeong Lee, Youl Chang Baek, Shil Jin, Gi-Suk Jang, Sung Jin Moon, Kyung-Hwan Um, Sun Sik Jang and Myung Sun Park
Genes 2024, 15(6), 704; https://doi.org/10.3390/genes15060704 - 28 May 2024
Viewed by 196
Abstract
This study investigated the transcriptomic responses of subcutaneous adipose tissue (SAT) and liver in newborn Hanwoo calves subjected to maternal overnutrition during mid- to late gestation. Eight Hanwoo cows were randomly assigned to control and treatment groups. The treatment group received a diet [...] Read more.
This study investigated the transcriptomic responses of subcutaneous adipose tissue (SAT) and liver in newborn Hanwoo calves subjected to maternal overnutrition during mid- to late gestation. Eight Hanwoo cows were randomly assigned to control and treatment groups. The treatment group received a diet of 4.5 kg of concentrate and 6.5 kg of rice straw daily, resulting in intake levels of 8.42 kg DMI, 5.69 kg TDN, and 0.93 kg CP—higher than the control group (6.07 kg DMI, 4.07 kg TDN, and 0.65 kg CP), with respective NEm values of 9.56 Mcal and 6.68 Mcal. Following birth, newly born calves were euthanized humanely as per ethical guidelines, and SAT and liver samples from newborn calves were collected for RNA extraction and analysis. RNA sequencing identified 192 genes that were differentially expressed in the SAT (17 downregulated and 175 upregulated); notably, HSPA6 emerged as the most significantly upregulated gene in the SAT and as the singular upregulated gene in the liver (adj-p value < 0.05). Additionally, differential gene expression analysis highlighted extensive changes across genes associated with adipogenesis, fibrogenesis, and stress response. The functional enrichment pathway and protein–protein interaction (PPI) unraveled the intricate networks and biological processes impacted by overnutrition, including extracellular matrix organization, cell surface receptor signaling, and the PI3K-Akt signaling pathway. These findings underscore maternal overnutrition’s substantial influence on developmental pathways, suggesting profound cellular modifications with potential lasting effects on health and productivity. Despite the robust insights that are provided, the study’s limitations (sample size) underscore the necessity for further research. Full article
(This article belongs to the Special Issue Breeding and Functional Genomics in Animals)
Show Figures

Figure 1

12 pages, 3745 KiB  
Article
Placental Transcriptome Analysis in Connection with Low Litter Birth Weight Phenotype (LBWP) Sows
by Julia Linck Moroni, Stephen Tsoi, Irene I. Wenger, Graham S. Plastow and Michael K. Dyck
Genes 2024, 15(6), 703; https://doi.org/10.3390/genes15060703 - 28 May 2024
Viewed by 269
Abstract
It is possible to identify sub-populations of sows in every pig herd that consistently give birth to low birth weight (BW) piglets, irrespective of the litter size. A previous study from our group demonstrated that placental development is a main factor affecting the [...] Read more.
It is possible to identify sub-populations of sows in every pig herd that consistently give birth to low birth weight (BW) piglets, irrespective of the litter size. A previous study from our group demonstrated that placental development is a main factor affecting the litter birth weight phenotype (LBWP) in sows, thereby impacting the BW of entire litters, but the biological and molecular pathways behind this phenomenon are largely unknown. The aim of this study was to investigate the differential gene expression in placental tissues at day 30 of gestation between low LBWP (LLBWP) vs. high LBWP (HLBWP) sows from a purebred Large White maternal line. Using mRNA sequencing, we found 45 differentially expressed genes (DEGs) in placental tissues of LLBWP and HLBWP sows. Furthermore, (GO) enrichment of upregulated DEGs predicted that there were two biological processes significantly related to cornification and regulation of cell population proliferation. To better understand the molecular interaction between cell proliferation and cornification, we conducted transcriptional factor binding site (TFBS) prediction analysis. The results indicated that a highly significant TFBS was located at the 5′ upstream of all four upregulated genes (CDSN, DSG3, KLK14, KRT17), recognized by transcription factors EGR4 and FOSL1. Our findings provide novel insight into how transcriptional regulation of two different biological processes interact in placental tissues of LLBWP sows. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

Previous Issue
Back to TopTop