Next Issue
Volume 9, June
Previous Issue
Volume 9, April
 
 

Fluids, Volume 9, Issue 5 (May 2024) – 20 articles

Cover Story (view full-size image): This study explores how modern lightbars affect vehicle fuel efficiency, focusing on their impact on fuel consumption and strategies for improving aerodynamic performance. Simulations showed an 8–11% increase in drag for square-back vehicles, with greater penalties outlined for vehicles with rear-slanting roofs. Given the moderate drag increase, the impact on the driving range, especially for electric vehicles, remains minimal, supporting the continued use of external lightbars. Noise analysis identified that the lightbar’s wake and rear surfaces were responsible for the largest production of noise. Appendable clip-on devices for the lightbar, particularly rear clip-ons, demonstrated appreciable drag reductions of up to 2.5%. A final optimised lightbar design produced a three-fold drag improvement in the current generation of lightbars. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 5184 KiB  
Article
Circular Fluid Heating—Transient Entropy Generation
by Fikret Alic
Fluids 2024, 9(5), 119; https://doi.org/10.3390/fluids9050119 - 18 May 2024
Viewed by 392
Abstract
A technical issue with fluid flow heating is the relatively small temperature increase as the fluid passes through the heating surface. The fluid does not spend enough time inside the heating source to significantly raise its temperature, despite the heating source itself experiencing [...] Read more.
A technical issue with fluid flow heating is the relatively small temperature increase as the fluid passes through the heating surface. The fluid does not spend enough time inside the heating source to significantly raise its temperature, despite the heating source itself experiencing a substantial increase. To address this challenge, the concept of the multiple circular heating of air was developed, forming the basis of this work. Two PTC heaters with longitudinal fins are located within a closed channel inside housing composed of a thermal insulation material. Air flows circularly from one finned surface to another. Analytical modeling and experimental testing were used in the analysis, with established restrictions and boundary conditions. An important outcome of the analysis was the methodology established for the optimization of the geometric and process parameters based on minimizing the transient thermal entropy. In conducting the analytical modeling, the temperature of the PTC heater was assumed to be constant at 150 °C and 200 °C. By removing the restrictions and adjusting the boundary conditions, the established methodology for the analysis and optimization of various thermally transient industrial processes can be applied more widely. The experimental determination of the transient thermal entropy was performed at a much higher air flow rate of 0.005 m3s−1 inside the closed channel. The minimum transient entropy also indicates the optimal time for the opening of the channel, allowing the heated air to exit. The novelty of this work lies in the controlled circular heating of the fluid and the establishment of the minimum transient thermal entropy as an optimization criterion. Full article
(This article belongs to the Special Issue Evaporation, Condensation and Heat Transfer)
Show Figures

Figure 1

23 pages, 1473 KiB  
Article
A Variational Surface-Evolution Approach to Optimal Transport over Transitioning Compact Supports with Domain Constraints
by Anthony Yezzi
Fluids 2024, 9(5), 118; https://doi.org/10.3390/fluids9050118 - 16 May 2024
Viewed by 436
Abstract
We examine the optimal mass transport problem in Rn between densities with transitioning compact support by considering the geometry of a continuous interpolating support boundary Γ in space-time within which the mass density evolves according to the fluid dynamical framework of Benamou [...] Read more.
We examine the optimal mass transport problem in Rn between densities with transitioning compact support by considering the geometry of a continuous interpolating support boundary Γ in space-time within which the mass density evolves according to the fluid dynamical framework of Benamou and Brenier. We treat the geometry of this space-time embedding in terms of points, vectors, and sets in Rn+1=R×Rn and blend the mass density and velocity as well into a space-time solenoidal vector field W|ΩRn+1 over a compact set ΩRn+1. We then formulate a joint optimization for W and its support using the shaped gradient of the space-time surface Γ outlining the support boundary Ω. This easily accommodates spatiotemporal constraints, including obstacles or mandatory regions to visit. Full article
Show Figures

Figure 1

22 pages, 36248 KiB  
Article
Physical and Numerical Experimentation of Water Droplet Collision on a Wall: A Comparison between PLIC and HRIC Schemes for the VOF Transport Equation with High-Speed Imaging
by Bruno Silva de Lima, Martin Sommerfeld and Francisco José de Souza
Fluids 2024, 9(5), 117; https://doi.org/10.3390/fluids9050117 - 16 May 2024
Viewed by 354
Abstract
Liquid films are often found in engineering applications with thicknesses ranging from micrometer scales to large scales with a wide range of applications. To optimize such systems, researchers have dedicated themselves to the development of new techniques. To further contribute to this development, [...] Read more.
Liquid films are often found in engineering applications with thicknesses ranging from micrometer scales to large scales with a wide range of applications. To optimize such systems, researchers have dedicated themselves to the development of new techniques. To further contribute to this development, the objective of this work is to present the results of the collision of water droplets on a wall by means of experimentation and numerical simulations. For physical experimentation, an injector is used to generate a chain of water droplets that collide with the opposite wall, forming a liquid film. Images of the droplets were obtained using two high-speed recording cameras. The results for different droplet sizes and impact angles are presented and the relationship between the momentum parameter and non-dimensional pool size was established. Modeling such processes is a common challenge in engineering, with different techniques having their advantages and limitations. The simulations in this work were run using the volume of fluid method, which consists of solving a transport equation for the volume fraction of each considered fluid. A correlation was found between the surface tension to momentum transport ratio, Scd, and the non-dimensional pool size for different droplet sizes and impact angles. Regions where partial depositions were most likely to occur were found via physical experiments. Full article
(This article belongs to the Special Issue Multiphase Flow and Granular Mechanics)
Show Figures

Figure 1

28 pages, 2715 KiB  
Article
Turbulence and Rossby Wave Dynamics with Realizable Eddy Damped Markovian Anisotropic Closure
by Jorgen S. Frederiksen and Terence J. O’Kane
Fluids 2024, 9(5), 116; https://doi.org/10.3390/fluids9050116 - 16 May 2024
Viewed by 390
Abstract
The theoretical basis for the Eddy Damped Markovian Anisotropic Closure (EDMAC) is formulated for two-dimensional anisotropic turbulence interacting with Rossby waves in the presence of advection by a large-scale mean flow. The EDMAC is as computationally efficient as the Eddy Damped Quasi Normal [...] Read more.
The theoretical basis for the Eddy Damped Markovian Anisotropic Closure (EDMAC) is formulated for two-dimensional anisotropic turbulence interacting with Rossby waves in the presence of advection by a large-scale mean flow. The EDMAC is as computationally efficient as the Eddy Damped Quasi Normal Markovian (EDQNM) closure, but, in contrast, is realizable in the presence of transient waves. The EDMAC is arrived at through systematic simplification of a generalization of the non-Markovian Direct Interaction Approximation (DIA) closure that has its origin in renormalized perturbation theory. Markovian Anisotropic Closures (MACs) are obtained from the DIA by using three variants of the Fluctuation Dissipation Theorem (FDT) with the information in the time history integrals instead carried by Markovian differential equations for two relaxation functions. One of the MACs is simplified to the EDMAC with analytical relaxation functions and high numerical efficiency, like te EDQNM. Sufficient conditions for the EDMAC to be realizable in the presence of Rossby waves are determined. Examples of the numerical integration of the EDMAC compared with the EDQNM are presented for two-dimensional isotropic and anisotropic turbulence, at moderate Reynolds numbers, possibly interacting with Rossby waves and large-scale mean flow. The generalization of the EDMAC for the statistical dynamics of other physical systems to higher dimension and higher order nonlinearity is considered. Full article
Show Figures

Figure 1

13 pages, 4017 KiB  
Article
Characterization Data for the Establishment of Scale-Up and Process Transfer Strategies between Stainless Steel and Single-Use Bioreactors
by Vincent Bernemann, Jürgen Fitschen, Marco Leupold, Karl-Heinz Scheibenbogen, Marc Maly, Marko Hoffmann, Thomas Wucherpfennig and Michael Schlüter
Fluids 2024, 9(5), 115; https://doi.org/10.3390/fluids9050115 - 16 May 2024
Viewed by 433
Abstract
The reliable transfer of bioprocesses from single-use bioreactors (SUBs) of different scales to conventional stainless steel stirred-tank bioreactors is of steadily growing interest. In this publication, a scale-up study for SUBs with volumes of 200 L and 2000 L and the transfer to [...] Read more.
The reliable transfer of bioprocesses from single-use bioreactors (SUBs) of different scales to conventional stainless steel stirred-tank bioreactors is of steadily growing interest. In this publication, a scale-up study for SUBs with volumes of 200 L and 2000 L and the transfer to an industrial-scale conventional stainless steel stirred-tank bioreactor with a volume of 15,000 L is presented. The scale-up and transfer are based on a comparison of mixing times and the modeling of volumetric mass transfer coefficients kLa, measured in all three reactors in aqueous PBS/Kolliphor solution. The mass transfer coefficients are compared with the widely used correlation of van’t Riet at constant stirrer tip speeds. It can be shown that a van’t Riet correlation enables a robust and reliable prediction of mass transfer coefficients on each scale for a wide range of stirrer tip speeds and aeration rates. The process transfer from single-use bioreactors to conventional stainless steel stirred-tank bioreactors is proven to be uncritical concerning mass transfer performance. This provides higher flexibility with respect to bioreactor equipment considered for specific processes. Full article
(This article belongs to the Special Issue Mass Transfer in Multiphase Reactors)
Show Figures

Figure 1

17 pages, 3635 KiB  
Article
Impact of Convection Regime on Temperature Distribution in Food Distribution Storage Box
by Fabien Beaumont, Sébastien Murer, Fabien Bogard and Guillaume Polidori
Fluids 2024, 9(5), 114; https://doi.org/10.3390/fluids9050114 - 14 May 2024
Viewed by 483
Abstract
This study aims to optimize the thermodynamic performance of a cold storage distribution box through the integration of a ventilation system. To achieve this goal, a prototype constructed from expanded polystyrene is developed, incorporating an active ventilation system to ensure cold temperature uniformity. [...] Read more.
This study aims to optimize the thermodynamic performance of a cold storage distribution box through the integration of a ventilation system. To achieve this goal, a prototype constructed from expanded polystyrene is developed, incorporating an active ventilation system to ensure cold temperature uniformity. Thermocouples are integrated into the device to monitor the temporal temperature evolution with and without ventilation. Concurrently, a 2D thermo-aerodynamic investigation is conducted using computational fluid dynamics (CFD). The numerical modeling of the thermodynamic behavior of the cold source employs polynomial laws as input data for the computational code (UDF functions). A comparison between experimental and numerical results reveals the computational code’s accurate prediction of the temporal temperature evolution in the cold storage distribution box, particularly under forced convection conditions. The findings indicate that in the absence of ventilation, thermal exchanges primarily occur through air conduction, whereas with ventilation, exchanges are facilitated by convection. Overall, forced convection induced by the inclusion of a ventilation device enhances thermal transfers and the thermodynamic performance of the cold storage distribution box. Furthermore, air mixing limits thermal stratification, thereby facilitating temperature homogenization. Full article
Show Figures

Figure 1

23 pages, 40945 KiB  
Article
Reducing Aerodynamic Drag on Roof-Mounted Lightbars for Emergency Vehicles
by Michael Gerard Connolly, Malachy J. O’Rourke and Alojz Ivankovic
Fluids 2024, 9(5), 113; https://doi.org/10.3390/fluids9050113 - 11 May 2024
Viewed by 385
Abstract
This paper investigates the impact of contemporary lightbars on vehicle fuel efficiency with a focus on quantifying their effects on fuel consumption and exploring strategies to improve drag performance through modifications. Simulations showed an 8–11% increase in drag for square-back vehicles, with greater [...] Read more.
This paper investigates the impact of contemporary lightbars on vehicle fuel efficiency with a focus on quantifying their effects on fuel consumption and exploring strategies to improve drag performance through modifications. Simulations showed an 8–11% increase in drag for square-back vehicles, with greater penalties outlined for vehicles with rear-slanting roofs. Given the moderate drag increase, the impact on the driving range, especially for electric vehicles, remains minimal, supporting the continued use of external lightbars. Positioning experiments suggest marginal drag reductions when lowering the lightbar to its lowest position due to additional drag effects that can be caused by the mounting mechanism in its condensed form. Angling the lightbar showed negligible drag increases up to an angle of 2.5 degrees, but beyond that, a 4% increase in drag was observed for every additional 2.5 degrees. Additionally, fitting drag-reducing ramps ahead of the lightbar yielded no significant drag savings. Noise analysis identified that the lightbar’s wake and rear surfaces were responsible for the largest production of noise. The optimal lightbar design was found to incorporate overflow rather than underflow and rear tapering in sync with roof curvature. Appendable clip-on devices for the lightbar, particularly rear clip-ons, demonstrated appreciable drag reductions of up to 2.5%. A final optimised lightbar design produced a minimal 2.8% drag increase when fitted onto an unmarked vehicle, representing a threefold improvement compared with the current generation of lightbars. This study advances the field of lightbar aerodynamics by precisely quantifying drag effects by using highly detailed geometry and examines the significance of optimal positioning, angle adjustment, and appendable clip-on devices in greater depth than any existing published work. Full article
(This article belongs to the Special Issue Drag Reduction in Turbulent Flows, 2nd Edition)
Show Figures

Figure 1

12 pages, 5270 KiB  
Brief Report
Gauging Centrifugal Instabilities in Compressible Free-Shear Layers via Nonlinear Boundary Region Equations
by Omar Es-Sahli, Adrian Sescu and Yuji Hattori
Fluids 2024, 9(5), 112; https://doi.org/10.3390/fluids9050112 - 11 May 2024
Viewed by 330
Abstract
Curved free shear layers emerge in many engineering problems involving complex flow geometries, such as the flow over a backward-facing step, flows with wall injection in a boundary layer, the flow inside side-dump combustors, or wakes generated by vertical axis wind turbines, among [...] Read more.
Curved free shear layers emerge in many engineering problems involving complex flow geometries, such as the flow over a backward-facing step, flows with wall injection in a boundary layer, the flow inside side-dump combustors, or wakes generated by vertical axis wind turbines, among others. Previous studies involving centrifugal instabilities have mainly focused on wall-flows where Taylor instabilities between two rotating concentric cylinders or Görtler vortices in boundary layers are generated. Curved free shear layer flows, however, have not received sufficient attention, especially in the nonlinear regime. The present work investigates the development of centrifugal instabilities in a curved free shear layer flow in the nonlinear compressible regime. The compressible Navier–Stokes equations are reduced to the nonlinear boundary region equations (BREs) in a high Reynolds number asymptotic framework, wherein the streamwise wavelength of the disturbances is assumed to be much larger than the spanwise and wall-normal counterparts. We study the effect of the freestream Mach number M, the shear layer thickness δ, the amplitude of the incoming disturbance A, and the relative velocity difference across the shear layer ΔV on the development of these centrifugal instabilities. Our parametric study shows that, among other things, the kinetic energy of the curved shear layer flow increases with increasing ΔV and A decreases with increasing delta. It was also found that increasing the disturbance amplitude of the incoming disturbance leads to significant growth in the mushroom-like structure’s amplitude and renders the secondary instability structures more prominent, indicating increased mixing for all Mach numbers under consideration. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

24 pages, 26677 KiB  
Article
Wind Tunnel Experiments on Parallel Blade–Vortex Interaction with Static and Oscillating Airfoil
by Andrea Colli, Alex Zanotti and Giuseppe Gibertini
Fluids 2024, 9(5), 111; https://doi.org/10.3390/fluids9050111 - 10 May 2024
Viewed by 471
Abstract
This study aims to experimentally investigate the effects of parallel blade–vortex interaction (BVI) on the aerodynamic performances of an airfoil, in particular as a possible cause of blade stall, since similar effects have been observed in literature in the case of perpendicular BVI. [...] Read more.
This study aims to experimentally investigate the effects of parallel blade–vortex interaction (BVI) on the aerodynamic performances of an airfoil, in particular as a possible cause of blade stall, since similar effects have been observed in literature in the case of perpendicular BVI. A wind tunnel test campaign was conducted reproducing parallel BVI on a NACA 23012 blade model at a Reynolds number of 300,000. The vortex was generated by impulsively pitching a second airfoil model, placed upstream. Measurements of the aerodynamic loads acting on the blade were performed by means of unsteady Kulite pressure transducers, while particle image velocimetry (PIV) techniques were employed to study the flow field over the blade model. After a first phase of vortex characterisation, different test cases were investigated with the blade model both kept fixed at different incidences and oscillating sinusoidally in pitch, with the latter case, a novelty in available research on parallel BVI, representing the pitching motion of a helicopter main rotor blade. The results show that parallel BVI produces a thickening of the boundary layer and can induce local flow separation at incidences close to the stall condition of the airfoil. The aerodynamic loads, both lift and drag, suffer important impulsive variations, in agreement with literature on BVI, the effects of which are extended in time. In the case of the oscillating airfoil, BVI introduces hysteresis cycles in the loads, which are generally reduced. In conclusion, parallel BVI can have a detrimental impact on the aerodynamic performances of the blade and even cause flow separation, which, while not being as catastrophic as in the case of dynamic stall, has relatively long-lasting effects. Full article
(This article belongs to the Special Issue Flow Visualization: Experiments and Techniques)
Show Figures

Figure 1

16 pages, 4567 KiB  
Article
Experimental Investigation of the Effects of Grooves in Fe2O4/Water Nanofluid Pool Boiling
by Marwa khaleel Rashid, Bashar Mahmood Ali, Mohammed Zorah and Tariq J. Al-Musawi
Fluids 2024, 9(5), 110; https://doi.org/10.3390/fluids9050110 - 8 May 2024
Viewed by 539
Abstract
In this study, we systematically explored how changing groove surfaces of iron oxide/water nanofluid could affect the pool boiling heat transfer. We aimed to investigate the effect of three types of grooves, namely rectangular, circular, and triangular, on the boiling heat transfer. The [...] Read more.
In this study, we systematically explored how changing groove surfaces of iron oxide/water nanofluid could affect the pool boiling heat transfer. We aimed to investigate the effect of three types of grooves, namely rectangular, circular, and triangular, on the boiling heat transfer. The goal was to improve heat transfer performance by consciously changing surface structure. Comparative analyses were conducted with deionized water to provide valuable insights. Notably, the heat transfer coefficient (HTC) exhibited a significant increase in the presence of grooves. For deionized water, the HTC rose by 91.7% and 48.7% on circular and rectangular grooved surfaces, respectively. Surprisingly, the triangular-grooved surface showed a decrease of 32.9% in HTC compared to the flat surface. On the other hand, the performance of the nanofluid displayed intriguing trends. The HTC for the nanofluid diminished by 89.2% and 22.3% on rectangular and triangular grooved surfaces, while the circular-grooved surface exhibited a notable 41.2% increase in HTC. These results underscore the complex interplay between groove geometry, fluid properties, and heat transfer enhancement in nanofluid-based boiling. Hence, we thoroughly examine the underlying mechanisms and elements influencing these observed patterns in this research. The results provide important insights for further developments in this area by shedding light on how surface changes and groove geometry may greatly affect heat transfer in nanofluid-based pool boiling systems. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

25 pages, 5862 KiB  
Article
A Numerical Study on the Influence of Riparian Vegetation Patch on the Transportation of Suspended Sediment in a U-Bend Channel Flow
by Mingyang Wang, Qian Yu, Yuan Xu, Na Li, Jing Wang, Bo Cao, Lu Wang and Eldad J. Avital
Fluids 2024, 9(5), 109; https://doi.org/10.3390/fluids9050109 - 7 May 2024
Viewed by 461
Abstract
Bend sections are ubiquitous in natural sandy river systems. This study employs Computational Fluid Dynamics–Discrete Phase Model (CFD-DPM) methodology to analyze particle transport dynamics in U-bend channel flows, focusing on the distinctions between partially vegetated (Case No.1) and non-vegetated (Case No.2) scenarios. The [...] Read more.
Bend sections are ubiquitous in natural sandy river systems. This study employs Computational Fluid Dynamics–Discrete Phase Model (CFD-DPM) methodology to analyze particle transport dynamics in U-bend channel flows, focusing on the distinctions between partially vegetated (Case No.1) and non-vegetated (Case No.2) scenarios. The research aims to unravel the intricate relationships among bending channel-induced secondary flow, vegetation blockage, and particle aggregation, employing both quantitative and qualitative approaches. (I) The key findings reveal that vegetation near the inner walls of curved channels markedly diminishes the intensity of secondary circulation. This reduction in circulation intensity is observed not only within vegetated areas but also extends to adjacent non-vegetated zones. Additionally, the study identifies a close correlation between vertical vortices and particle distribution near the channel bed. While particle distribution generally aligns with the vortices’ margin, dynamic patch-scale eddies near vegetation patches induce deviations, creating wave-like patterns in particle distribution. (II) The application of the Probability Density Function (PDF) provides insights into the radius-wise particle distribution. In non-vegetated channels, particle distribution is primarily influenced by secondary flow and boundary layers. In contrast, the presence of vegetation leads to a complex mixing layer, altering the particle distribution pattern and maximizing PDF values in non-vegetated free flow subzones. (III) Furthermore, the research quantifies spatial–temporal sediment heterogeneity through PDF variance. The findings demonstrate that variance in non-vegetated channels increases towards the outer wall in bending regions. Vegetation-induced turbulence causes higher variance, particularly in the mixing layer subzone, underscoring the significance of eddy size in sediment redistribution. (IV) The study of vertical concentration profiles in vegetated U-bend channels offers additional insights, while secondary flow in non-vegetated channels facilitates upward sediment transport and vegetation presence, although increasing the Turbulent Kinetic Energy (TKE), restricts channel space, and impedes secondary flow, thereby reducing vertical particle suspension. Sediment concentrations are found to be higher in the lower layers of vegetated bends, contrary to the pattern in non-vegetated bends. These findings highlight the complex interplay between vegetation, secondary flow, and sediment transport, illustrating the reduced effectiveness of secondary flow in promoting vertical particle transportation in bending channels due to the vegetation obstruction. Full article
Show Figures

Figure 1

15 pages, 28320 KiB  
Article
Study of Orifice Design on Oleo-Pneumatic Shock Absorber
by Paulo A. S. F. Silva, Ahmed A. Sheikh Al-Shabab, Panagiotis Tsoutsanis and Martin Skote
Fluids 2024, 9(5), 108; https://doi.org/10.3390/fluids9050108 - 3 May 2024
Viewed by 648
Abstract
Aircraft oil-strut shock absorbers rely on orifice designs to control fluid flow and optimize damping performance. However, the complex nature of cavitating flows poses significant challenges in predicting the influence of orifice geometry on energy dissipation and system reliability. This study presents a [...] Read more.
Aircraft oil-strut shock absorbers rely on orifice designs to control fluid flow and optimize damping performance. However, the complex nature of cavitating flows poses significant challenges in predicting the influence of orifice geometry on energy dissipation and system reliability. This study presents a comprehensive computational fluid dynamics (CFD) analysis of the effects of circular, rectangular, semicircular, and cutback orifice profiles on the internal flow characteristics and damping behavior of oleo-pneumatic shock absorbers. High-fidelity simulations reveal that the rectangular orifice generates higher damping pressures and velocity magnitude than those generated by others designs, while the semicircular shape reduces cavitation inception and exhibits a more gradual pressure recovery. Furthermore, the study highlights the importance of considering both geometric and thermodynamic factors in the design and analysis of cavitating flow systems, as liquid properties and vapor pressure significantly impact bubble growth and collapse behavior. Increasing the orifice length had a negligible impact on damping but moderately raised orifice velocities. This research provides valuable insights for optimizing shock absorber performance across a range of operating conditions, ultimately enhancing vehicle safety and passenger comfort. Full article
(This article belongs to the Special Issue Turbulent Flow, 2nd Edition)
Show Figures

Figure 1

12 pages, 2027 KiB  
Article
Are Local Heat Transfer Quantities Useful for Predicting the Working Behavior of Different Pulsating Heat Pipe Layouts? A Comparative Study
by Luca Pagliarini and Fabio Bozzoli
Fluids 2024, 9(5), 107; https://doi.org/10.3390/fluids9050107 - 30 Apr 2024
Viewed by 604
Abstract
Despite a continuous effort devoted by the scientific community, a large-scale employment of Pulsating Heat Pipes for thermal management applications is still nowadays undermined by the low reliability of such heat transfer systems. The main reason underlying this critical issue is linked to [...] Read more.
Despite a continuous effort devoted by the scientific community, a large-scale employment of Pulsating Heat Pipes for thermal management applications is still nowadays undermined by the low reliability of such heat transfer systems. The main reason underlying this critical issue is linked to the strongly chaotic thermofluidic behavior of these devices, which prevents a robust prediction of their working behavior for different geometries and operating conditions, consequently hampering proper industrial design. The present work proposes to thoroughly compare data referring to previous infrared investigations on different Pulsating Heat Pipe layouts, which have focused on the estimation of heat fluxes locally exchanged at the wall–fluid interfaces. The aim is to understand the beneficial contribution of local heat transfer quantities in the prediction of the complex physics underlying such heat transfer systems. The results have highlighted that, regardless of the considered geometry and working conditions, wall-to-fluid heat fluxes are able to provide useful quantities to be employed, to some extent, to generalize Pulsating Heat Pipe operation and to improve their existing numerical models. Full article
(This article belongs to the Collection Challenges and Advances in Heat and Mass Transfer)
Show Figures

Figure 1

13 pages, 714 KiB  
Article
Energy Budget Characterisation of the Optimal Disturbance in Stratified Shear Flow
by Larry E. Godwin, Philip M. J. Trevelyan, Takeshi Akinaga and Sotos C. Generalis
Fluids 2024, 9(5), 106; https://doi.org/10.3390/fluids9050106 - 29 Apr 2024
Viewed by 555
Abstract
Stratified Taylor–Couette flow (STCF) undergoes transient growth. Recent studies have shown that there exists transient amplification in the linear regime of counter-rotating STCF. The kinetic budget of the optimal transient perturbation is analysed numerically to simulate the interaction of the shear production (SP), [...] Read more.
Stratified Taylor–Couette flow (STCF) undergoes transient growth. Recent studies have shown that there exists transient amplification in the linear regime of counter-rotating STCF. The kinetic budget of the optimal transient perturbation is analysed numerically to simulate the interaction of the shear production (SP), buoyancy flux (BP), and other energy components that contributes to the total optimal transient kinetic energy. These contributions affect the total energy by influencing the perturbation to extract kinetic energy (KE) from the mean flow. The decay of the amplification factor resulted from the positive amplification of both BP and SP, while the growth is attributed to the negative and positive amplification of BP and SP, respectively. The optimal SP is positively amplified, implying that there is the possibility of constant linear growth. These findings agree with the linear growth rate for increasing values of Grashof number. Full article
(This article belongs to the Collection Challenges and Advances in Heat and Mass Transfer)
Show Figures

Figure 1

44 pages, 57341 KiB  
Article
Multi-Objective Topology Optimization of Conjugate Heat Transfer Using Level Sets and Anisotropic Mesh Adaptation
by Philippe Meliga, Wassim Abdel Nour, Delphine Laboureur, Damien Serret and Elie Hachem
Fluids 2024, 9(5), 105; https://doi.org/10.3390/fluids9050105 - 28 Apr 2024
Viewed by 623
Abstract
This study proposes a new computational framework for the multi-objective topology optimization of conjugate heat transfer systems using a continuous adjoint approach. It relies on a monolithic solver for the coupled steady-state Navier–Stokes and heat equations, which combines finite elements stabilized by the [...] Read more.
This study proposes a new computational framework for the multi-objective topology optimization of conjugate heat transfer systems using a continuous adjoint approach. It relies on a monolithic solver for the coupled steady-state Navier–Stokes and heat equations, which combines finite elements stabilized by the variational multi-scale method, level set representations of the fluid–solid interfaces and immersed modeling of heterogeneous materials (fluid–solid) to ensure that the proper amount of heat is exchanged to the ambient fluid by solid objects in arbitrary geometry. At each optimization iteration, anisotropic mesh adaptation is applied in near-wall regions automatically captured by the level set. This considerably cuts the computational effort associated with calling the finite element solver, in comparison to traditional topology optimization algorithms operating on isotropic grids with a comparable refinement level. Given that we operate within the constraint of a specified number of nodes in the mesh, this allows not only to improve the accuracy of interface representation and motion but also to retain the high fidelity of the numerical solutions at the grid points just adjacent to the interface. Finally, the remeshing and resolution steps both run within a highly parallel environment, which makes it possible for the proposed algorithm to tackle large-scale problems in three dimensions with several tens of millions of state degrees of freedom. The developed solver is validated first by minimizing dissipation in a flow splitter device, for which the method delivers relevant optimal designs over a wide range of volume constraints and flow rate distributions over the multiple outlet orifices but yields better accuracy compared to reference data from literature obtained using uniform meshes (in the sense that the layouts are more smooth, and the solutions are better resolved). The scheme is then applied to a two-dimensional heat transfer problem, using bi-objective cost functionals combining flow resistance and thermal recoverable power. A comprehensive parametric study reveals a complex arrangement of optimal solutions on the Pareto front, with multiple branches of symmetric and asymmetric designs, some of them previously unreported. Finally, the algorithmic developments are substantiated with several three-dimensional numerical examples tackled under fixed weights for heat transfer and flow resistance, for which we show that the optimal layouts computed at low Reynolds number, that are intrinsically relevant to a broad range of microfluidic application, can also serve as smooth solutions to high-Reynolds-number engineering problems of practical interest. Full article
Show Figures

Figure 1

17 pages, 6015 KiB  
Article
Adjoint Solver-Based Analysis of Mouth–Tongue Morphologies on Vapor Deposition in the Upper Airway
by Mohamed Talaat, Xiuhua Si and Jinxiang Xi
Fluids 2024, 9(5), 104; https://doi.org/10.3390/fluids9050104 - 27 Apr 2024
Viewed by 753
Abstract
Even though inhalation dosimetry is determined by three factors (i.e., breathing, aerosols, and the respiratory tract), the first two categories have been more widely studied than the last. Both breathing and aerosols are quantitative variables that can be easily changed, while respiratory airway [...] Read more.
Even though inhalation dosimetry is determined by three factors (i.e., breathing, aerosols, and the respiratory tract), the first two categories have been more widely studied than the last. Both breathing and aerosols are quantitative variables that can be easily changed, while respiratory airway morphologies are difficult to reconstruct, modify, and quantify. Although several methods are available for model reconstruction and modification, developing an anatomically accurate airway model and morphing it to various physiological conditions remains labor-intensive and technically challenging. The objective of this study is to explore the feasibility of using an adjoint–CFD model to understand airway shape effects on vapor deposition and control vapor flux into the lung. A mouth–throat model was used, with the shape of the mouth and tongue being automatically varied via adjoint morphing and the vapor transport being simulated using ANSYS Fluent coupled with a wall absorption model. Two chemicals with varying adsorption rates, Acetaldehyde and Benzene, were considered, which exhibited large differences in dosimetry sensitivity to airway shapes. For both chemicals, the maximal possible morphing was first identified and then morphology parametric studies were conducted. Results show that changing the mouth–tongue shape can alter the oral filtration by 3.2% for Acetaldehyde and 0.27% for Benzene under a given inhalation condition. The front tongue exerts a significant impact on all cases considered, while the impact of other regions varies among cases. This study demonstrates that the hybrid adjoint–CFD approach can be a practical and efficient method to investigate morphology-associated variability in the dosimetry of vapors and nanomedicines under steady inhalation. Full article
(This article belongs to the Special Issue Advances in Hemodynamics and Related Biological Flows)
Show Figures

Figure 1

25 pages, 23569 KiB  
Article
Analyzing the Influence of Dean Number on an Accelerated Toroidal: Insights from Particle Imaging Velocimetry Gyroscope (PIVG)
by Ramy Elaswad, Naser El-Sheimy and Abdulmajeed Mohamad
Fluids 2024, 9(5), 103; https://doi.org/10.3390/fluids9050103 - 25 Apr 2024
Viewed by 598
Abstract
Computational Fluid Dynamics (CFD) simulations were utilized in this study to comprehensively explore the fluid dynamics within an accelerated toroidal vessel, specifically those central to Particle Imaging Velocimetry Gyroscope (PIVG) technology. To ensure the robustness of our simulations, we systematically conducted grid convergence [...] Read more.
Computational Fluid Dynamics (CFD) simulations were utilized in this study to comprehensively explore the fluid dynamics within an accelerated toroidal vessel, specifically those central to Particle Imaging Velocimetry Gyroscope (PIVG) technology. To ensure the robustness of our simulations, we systematically conducted grid convergence studies and quantified uncertainties, affirming the stability, accuracy, and reliability of our computational grid and results. Comprehensive validation against experimental data further confirmed our simulations’ fidelity, emphasizing the model’s fidelity. As the PIVG is set up to address the primary flow through the toroidal pipe, we focused on the interaction between the primary and secondary flows to provide insights into the relevant dynamics of the fluid. In our investigation covering Dean numbers (De) from 10 to 70, we analyzed diverse aspects, including primary flow, secondary flow patterns, pressure distribution, and the interrelation between primary and secondary flows within toroidal structures, offering a comprehensive view across this range. Our research indicated stability and fully developed fluid dynamics within the toroidal pipe under accelerated angular velocity, particularly for low De. Furthermore, we identified an optimal Dean number of 11, which corresponded to ideal dimensions for the toroidal geometry with a curvature radius of 25 mm and a cross-sectional diameter of 5 mm. This study enhances our understanding of toroidal fluid dynamics and highlights the pivotal role of CFD in optimizing toroidal vessel design for advanced navigation technologies. Full article
(This article belongs to the Special Issue Flow Visualization: Experiments and Techniques)
Show Figures

Figure 1

67 pages, 22902 KiB  
Article
A New Non-Extensive Equation of State for the Fluid Phases of Argon, Including the Metastable States, from the Melting Line to 2300 K and 50 GPa
by Frédéric Aitken, André Denat and Ferdinand Volino
Fluids 2024, 9(5), 102; https://doi.org/10.3390/fluids9050102 - 24 Apr 2024
Viewed by 675
Abstract
A new equation of state for argon was developed with the view of extending the range of validity of the equation of state previously proposed by Tegeler et al. and obtaining a better physical description of the experimental thermodynamic data for the whole [...] Read more.
A new equation of state for argon was developed with the view of extending the range of validity of the equation of state previously proposed by Tegeler et al. and obtaining a better physical description of the experimental thermodynamic data for the whole fluid region (single-phase, metastable, and saturation states). As proposed by Tegeler et al., this equation is also based on a functional form of the residual part of the reduced Helmholtz free energy. However, in this work, the fundamental equation for Helmholtz free energy was derived from the measured quantities CV(ρ, T) and P(ρ, T). The empirical description of the isochoric heat capacity CV(ρ, T) was based on an original empirical description explicitly containing the metastable states. The thermodynamic properties (internal energy, entropy, and free energy) were then obtained by combining the integration of CV(ρ, T). The arbitrary functions introduced by the integration process were deduced from a comparison between calculated and experimental pressure P(ρ, T) data. The new formulation is valid for the whole fluid region from the melting line to 2300 K and for pressures up to 50 GPa. It also predicts the existence of a maximum of the isochoric heat capacity CV along isochors, as experimentally observed in several other fluids. For many applications, an approximate form of the equation of state for the liquid phase may be sufficient. A Tait–Tammann equation is therefore proposed between the triple-point temperature and 148 K. Full article
Show Figures

Figure 1

14 pages, 4108 KiB  
Article
Understanding the Influence of the Buoyancy Sign on Buoyancy-Driven Particle Clouds
by Ali O. Alnahit, Nigel Berkeley Kaye and Abdul A. Khan
Fluids 2024, 9(5), 101; https://doi.org/10.3390/fluids9050101 - 23 Apr 2024
Cited by 1 | Viewed by 638
Abstract
A numerical model was developed to investigate the behavior of round buoyancy-driven particle clouds in a quiescent ambient. The model was validated by comparing model simulations with prior experimental and numerical results and then applied the model to examine the difference between releases [...] Read more.
A numerical model was developed to investigate the behavior of round buoyancy-driven particle clouds in a quiescent ambient. The model was validated by comparing model simulations with prior experimental and numerical results and then applied the model to examine the difference between releases of positively and negatively buoyant particles. The particle cloud model used the entrainment assumption while approximating the flow field induced by the cloud as a Hill’s spherical vortex. The motion of individual particles was resolved using a particle tracking equation that considered the forces acting on them and the induced velocity field. The simulation results showed that clouds with the same initial buoyancy magnitude and particle Reynolds number behaved differently depending on whether the particles were more dense or less dense than the ambient fluid. This was found even for very low initial buoyancy releases, suggesting that the sign of the buoyancy is always important and that, therefore, the Boussinesq assumption is never fully appropriate for such flows. Full article
Show Figures

Figure 1

14 pages, 11770 KiB  
Article
Liquid-Solid Interaction to Evaluate Thermal Aging Effects on Carbon Fiber-Reinforced Composites
by Poom Narongdej, Jack Hanson, Ehsan Barjasteh and Sara Moghtadernejad
Fluids 2024, 9(5), 100; https://doi.org/10.3390/fluids9050100 - 23 Apr 2024
Viewed by 627
Abstract
This study investigated the thermally induced aging effects on a carbon fiber-reinforced composite (CFRP) comprising benzoxazine (BZ) and cycloaliphatic epoxy resin (CER). Herein, we employed various testing methodologies to assess the aging behavior of CFRP samples with differing CER and BZ ratios. Traditional [...] Read more.
This study investigated the thermally induced aging effects on a carbon fiber-reinforced composite (CFRP) comprising benzoxazine (BZ) and cycloaliphatic epoxy resin (CER). Herein, we employed various testing methodologies to assess the aging behavior of CFRP samples with differing CER and BZ ratios. Traditional techniques, including weight change quantification and qualitative analysis of surface morphology, reveal that higher CER content correlates with increased aging. Additionally, wettability analysis demonstrates that both BZ and BZ-CER composites exhibit heightened hydrophilicity with thermal aging, potentially exacerbating concerns such as icing and surface erosion. Notably, the BZ-CER composite displays greater hydrophilicity compared to the BZ composite, consistent with weight change trends. These findings underscore the utility of surface wettability analysis as a valuable tool for monitoring thermo-oxidative aging in polymers and their surface behavior in response to fluid interactions, particularly within high glass transition temperature (Tg) BZ-CER systems utilized in structural composite applications. Full article
(This article belongs to the Special Issue Advances in Multiphase Flow Science and Technology, 2nd Edition)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop