Parallel Computing and Grid Computing: Technologies and Applications

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Computing and Artificial Intelligence".

Deadline for manuscript submissions: 20 October 2024 | Viewed by 1038

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049, China
Interests: parallel computing and grid computing

Special Issue Information

Dear Colleagues,

Parallel computing and grid computing have been widely used to solve computational problems, especially in optimization. And more and more algorithms and methods have been developed and applied to massive computing structures and systems. 
This Special Issue is devoted to topics in parallel computing and grid computing, including theory and applications. The focus will be on applications involving parallel and grid methods of solving hard computational problems.

Prof. Dr. Huai Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • parallel computing
  • parallel solvers
  • high-performance computing
  • sparse matrices
  • interconnection networks
  • grid computing

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 8672 KiB  
Article
Efficient Parallel FDTD Method Based on Non-Uniform Conformal Mesh
by Kaihui Liu, Tao Huang, Liang Zheng, Xiaolin Jin, Guanjie Lin, Luo Huang, Wenjing Cai, Dapeng Gong and Chunwang Fang
Appl. Sci. 2024, 14(11), 4364; https://doi.org/10.3390/app14114364 - 21 May 2024
Viewed by 453
Abstract
The finite-difference time-domain (FDTD) method is a versatile electromagnetic simulation technique, widely used for solving various broadband problems. However, when dealing with complex structures and large dimensions, especially when applying perfectly matched layer (PML) absorbing boundaries, tremendous computational burdens will occur. To reduce [...] Read more.
The finite-difference time-domain (FDTD) method is a versatile electromagnetic simulation technique, widely used for solving various broadband problems. However, when dealing with complex structures and large dimensions, especially when applying perfectly matched layer (PML) absorbing boundaries, tremendous computational burdens will occur. To reduce the computational time and memory, this paper presents a Message Passing Interface (MPI) parallel scheme based on non-uniform conformal FDTD, which is suitable for convolutional perfectly matched layer (CPML) absorbing boundaries, and adopts a domain decomposition approach, dividing the entire computational domain into several subdomains. More importantly, only one magnetic field exchange is required during the iterations, and the electric field update is divided into internal and external parts, facilitating the synchronous communication of magnetic fields between adjacent subdomains and internal electric field updates. Finally, unmanned helicopters, helical antennas, 100-period folded waveguides, and 16 × 16 phased array antennas are designed to verify the accuracy and efficiency of the algorithm. Moreover, we conducted parallel tests on a supercomputing platform, showing its satisfactory reduction in computational time and excellent parallel efficiency. Full article
(This article belongs to the Special Issue Parallel Computing and Grid Computing: Technologies and Applications)
Show Figures

Figure 1

Back to TopTop