ijms-logo

Journal Browser

Journal Browser

New Perspective in the Molecular Pathways Involved in Acute and Chronic Lung Injury

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (31 May 2024) | Viewed by 1835

Special Issue Editor

Special Issue Information

Dear Colleagues,

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) describe clinical syndromes of acute respiratory failure with substantial morbidity and mortality. Even in patients who survive ALI, there is evidence that their long-term quality of life is adversely affected. Recent advances have been made in the understanding of the epidemiology, pathogenesis, and treatment of this disease. However, more progress is needed to further reduce mortality and morbidity from ALI and ARDS. Because this syndrome of acute respiratory failure is so common both in the United States and worldwide, it is fair to say that ALI/ARDS is an unmet medical need. In other words, novel therapies need to be developed to further improve clinical outcomes. This Special Issue aims to provide an overview of the current and future definitions, pathogenesis, and treatment of acute lung injury. Original articles/reviews on natural or synthetic compounds as new treatments for respiratory disease and on the effects of environmental pollutants (such as endocrine disruption) that explore the molecular pathways involved during ALI/ARDS are welcome.

Dr. Marika Cordaro
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • acute lung injury
  • chronic lung injury
  • molecular pathways
  • treatment
  • therapeutic targets
  • inflammation
  • oxidative stress
  • respiratory disease

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 2060 KiB  
Article
Dual Exposure to E-Cigarette Vapour and Cigarette Smoke Results in Poorer Airway Cell, Monocyte, and Macrophage Function Than Single Exposure
by Rhys Hamon, Leigh Thredgold, Asiri Wijenayaka, Nicole Anne Bastian and Miranda P. Ween
Int. J. Mol. Sci. 2024, 25(11), 6071; https://doi.org/10.3390/ijms25116071 - 31 May 2024
Abstract
E-cigarette users predominantly also continue to smoke cigarettes. These Dual Users either consume e-cigarettes in locations where smoking is not allowed, but vaping is, or to reduce their consumption of cigarettes, believing it will lead to harm reduction. Whilst it is known that [...] Read more.
E-cigarette users predominantly also continue to smoke cigarettes. These Dual Users either consume e-cigarettes in locations where smoking is not allowed, but vaping is, or to reduce their consumption of cigarettes, believing it will lead to harm reduction. Whilst it is known that e-cigarette vapour is chemically less complex than cigarette smoke, it has a distinct chemical profile, and very little is known about the health impacts of exposure to both chemical profiles vs. either alone. We simultaneously exposed cells in vitro to non-toxic levels of e-cigarette vapour extract (EVE) and cigarette smoke extract (CSE) to determine their effects on 16HBE14o- airway epithelial cell metabolism and inflammatory response, as well as immune cell (THP-1 cells and monocyte-derived macrophages (MDM) from healthy volunteers) migration, phagocytosis, and inflammatory response. We observed increased toxicity, reduced metabolism (a marker of proliferation) in airway epithelial cells, and reduced monocyte migration, macrophage phagocytosis, and altered chemokine production after exposure to either CSE or EVE. These cellular responses were greater after dual exposure to CSE and EVE. The airway epithelial cells from smokers showed reduced metabolism after EVE (the Switcher model) and dual CSE and EVE exposure. When EVE and CSE were allowed to interact, the chemicals were found to be altered, and new chemicals were also found compared to the CSE and EVE profiles. Dual exposure to e-cigarette vapour and cigarette smoke led to worse functional outcomes in cells compared to either single exposure alone, adding to limited data that dual use may be more dangerous than smoking only. Full article
Show Figures

Figure 1

15 pages, 9713 KiB  
Article
Inhibition of Fatty Acid Amide Hydrolase (FAAH) Regulates NF-kb Pathways Reducing Bleomycin-Induced Chronic Lung Inflammation and Pulmonary Fibrosis
by Tiziana Genovese, Andrea Duranti, Francesco Monaco, Rosalba Siracusa, Roberta Fusco, Daniela Impellizzeri, Ramona D’Amico, Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola
Int. J. Mol. Sci. 2023, 24(12), 10125; https://doi.org/10.3390/ijms241210125 - 14 Jun 2023
Cited by 2 | Viewed by 1250
Abstract
The deadly interstitial lung condition known as idiopathic pulmonary fibrosis (IPF) worsens over time and for no apparent reason. The traditional therapy approaches for IPF, which include corticosteroids and immunomodulatory drugs, are often ineffective and can have noticeable side effects. The endocannabinoids are [...] Read more.
The deadly interstitial lung condition known as idiopathic pulmonary fibrosis (IPF) worsens over time and for no apparent reason. The traditional therapy approaches for IPF, which include corticosteroids and immunomodulatory drugs, are often ineffective and can have noticeable side effects. The endocannabinoids are hydrolyzed by a membrane protein called fatty acid amide hydrolase (FAAH). Increasing endogenous levels of endocannabinoid by pharmacologically inhibiting FAAH results in numerous analgesic advantages in a variety of experimental models for pre-clinical pain and inflammation. In our study, we mimicked IPF by administering intratracheal bleomycin, and we administered oral URB878 at a dose of 5 mg/kg. The histological changes, cell infiltration, pro-inflammatory cytokine production, inflammation, and nitrosative stress caused by bleomycin were all reduced by URB878. Our data clearly demonstrate for the first time that the inhibition of FAAH activity was able to counteract not only the histological alteration bleomycin-induced but also the cascade of related inflammatory events. Full article
Show Figures

Graphical abstract

Back to TopTop