Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2612 KiB  
Article
Comparative Life Cycle Assessment of Conventional and Dry Stack Tailings Disposal Schemes: A Case Study in Northern China
by Kun Wang, Zheng Zhang, Liyi Zhu, Xiuzhi Yang, Miao Chen and Chao Yang
Minerals 2022, 12(12), 1603; https://doi.org/10.3390/min12121603 - 14 Dec 2022
Cited by 2 | Viewed by 1677
Abstract
Alternative tailings disposal technologies can be effective solutions to mining waste safety and environmental problems. The current decision-making processes for tailings disposal schemes lack consideration of environmental impacts. Based on a case study of an open-pit iron mine in northern China, this study [...] Read more.
Alternative tailings disposal technologies can be effective solutions to mining waste safety and environmental problems. The current decision-making processes for tailings disposal schemes lack consideration of environmental impacts. Based on a case study of an open-pit iron mine in northern China, this study adopted the life cycle assessment (LCA) method to compare the environmental impacts of three tailings disposal schemes of conventional slurry disposal technology (CSDT), dry stack disposal technology (DSDT) by belt conveyance and DSDT by truck transport. The results indicated that (1) the environmental impacts of the CSDT scheme were lowest under the premise that water consumption was ignored; (2) the environmental impacts of the DSDT scheme by belt conveyance mainly originated from its transport process, indicating that the tailings storage facilities (TSFs) site planning could be crucial in design decision making; (3) the environmental impacts of the DSDT scheme by truck transport mainly originated from the energy consumption of dry stacking equipment; and (4) the DSDT scheme by truck transport was eventually found to be preferable and implemented in the case study, after comprehensively considering the LCA results, TSF safety and remaining capacity, and social and policy uncertainties. It is therefore recommended to conduct LCA of environmental impacts in the decision-making process for the sustainable design of TSFs. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

29 pages, 10190 KiB  
Article
Exploring Platinum Speciation with X-ray Absorption Spectroscopy under High-Energy Resolution Fluorescence Detection Mode
by Clément Laskar, Elena F. Bazarkina, Maria A. Kokh, Jean-Louis Hazemann, Stéphane Foulon, Olivier Leynaud, Elsa Desmaele and Gleb S. Pokrovski
Minerals 2022, 12(12), 1602; https://doi.org/10.3390/min12121602 - 13 Dec 2022
Cited by 1 | Viewed by 2846
Abstract
Critical to interpreting platinum chemical speciation using X-ray absorption spectroscopy (XAS) is the availability of reference spectra of compounds with known Pt redox and coordination. Here we compare different techniques for Pt LIII-edge X-ray absorption near edge structure (XANES) and extended [...] Read more.
Critical to interpreting platinum chemical speciation using X-ray absorption spectroscopy (XAS) is the availability of reference spectra of compounds with known Pt redox and coordination. Here we compare different techniques for Pt LIII-edge X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectral regions for a large set of Pt-O-Cl-S reference compounds of known structures. The measurements were conducted in HERFD (high-energy resolution fluorescence detection, high-resolution or HR) mode, as well as in two conventional modes such as transmission (TR) and nominal-resolution total fluorescence yield (TFY or NR). Samples analyzed here included Pt0 (TR), PtIIS (HR), PtIVS2 (TR), K2PtIICl4 (HR + TR), K2PtIVCl6 (HR + TR), PtIVO2 (HR + TR), C6H12N2O4PtII (HR + TR), and aqueous solutions of K2PtIICl4 and H2PtIVCl6 (NR + TR), as well as (NH4)2PtIV(S5)3 (HR + TR). XANES spectra in HERFD mode offer a better energy resolution than in conventional modes, allowing a more accurate identification of Pt redox state and coordination geometry. EXAFS spectra in all three modes for a given compound yield identical within errors values of Pt-neighbor interatomic distances and mean square relative displacement (MSRD, σ2) parameters. In contrast, both TR and NR spectra on the one hand and HR spectra on the other hand yield distinct amplitude reduction factor (S02) values, 0.76 ± 0.04 and 0.99 ± 0.07 (1 standard error), respectively. This study contributes to the development of an open-access XAS database SSHADE. Full article
(This article belongs to the Special Issue Electron Microbeam and X-ray Techniques: Advances and Applications)
Show Figures

Figure 1

12 pages, 1997 KiB  
Article
Chenowethite, Mg(H2O)6[(UO2)2(SO4)2(OH)2]·5H2O, a New Mineral with Uranyl-Sulfate Sheets from Red Canyon, Utah, USA
by Anthony R. Kampf, Jakub Plášil, Travis A. Olds, Chi Ma and Joe Marty
Minerals 2022, 12(12), 1594; https://doi.org/10.3390/min12121594 - 12 Dec 2022
Cited by 1 | Viewed by 1577
Abstract
The new mineral chenowethite, Mg(H2O)6[(UO2)2(SO4)2(OH)2]·5H2O, was found in efflorescence crusts on tunnel walls at the Blue Lizard, Green Lizard and Markey uranium mines in Red Canyon, San [...] Read more.
The new mineral chenowethite, Mg(H2O)6[(UO2)2(SO4)2(OH)2]·5H2O, was found in efflorescence crusts on tunnel walls at the Blue Lizard, Green Lizard and Markey uranium mines in Red Canyon, San Juan County, Utah, USA. The crystals are long, thin blades up to about 0.5 mm long, occurring in irregular sprays and subparallel groups. Chenowethite is pale green yellow. It has white streak, vitreous to silky luster, brittle tenacity, splintery and stepped fracture and two cleavages: {010} perfect and {001} good. It has a hardness (Mohs) of about 2 and is nonfluorescent in both long- and short-wave ultraviolet illumination. The density is 3.05(2) g/cm3. Optically, crystals are biaxial (−) with α = 1.530(2), β = 1.553(2) and γ = 1.565(2) (white light). The 2V is 72(2)° and dispersion is r > v (slight). The optical orientation is X = b, Y = a, Z = c and the mineral exhibits weak pleochroism in shades of pale green yellow: X < Y < Z. The Raman spectrum is consistent with the presence of UO22+, SO42− and OH/H2O. The empirical formula from electron microprobe analysis and arranged in accordance with the structure is (Mg0.71Fe2+0.09Co0.05Ni0.04)∑0.89(H2O)6[(UO2)2(SO4)2(OH)2]·[(H2O)4.78(NH4)0.22]∑5.00. Chenowethite is orthorhombic, space group Cmcm; the unit-cell parameters are a = 6.951(2), b = 19.053(6), c = 16.372(5) Å, V = 2168.19(7) Å3 and Z = 4. The crystal structure of chenowethite (R1 = 0.0396 for 912 I > 2σI reflections) contains [(UO2)2(SO4)2(OH)2]2− sheets that are topologically equivalent to those in deliensite, feynmanite, greenlizardite, johannite, meitnerite and plášilite. Full article
(This article belongs to the Special Issue The Crystal Chemistry and Mineralogy of Critical Metals)
Show Figures

Figure 1

15 pages, 5848 KiB  
Article
Interaction between PEO and Kaolinite in Flocculating: An Experimental and Molecular-Simulation Study
by Xin Tian, Xiaomin Ma, Xianshu Dong, Yuping Fan, Ming Chang and Na Li
Minerals 2022, 12(12), 1585; https://doi.org/10.3390/min12121585 - 10 Dec 2022
Viewed by 1253
Abstract
In this paper, the flocculation properties of polyethylene oxide (PEO) on kaolinite and the mechanism of adsorption on kaolinite anisotropic substrates were explored. As revealed by the experimental results, the settling rate and removal rate of kaolinite increased with increasing PEO concentration, but [...] Read more.
In this paper, the flocculation properties of polyethylene oxide (PEO) on kaolinite and the mechanism of adsorption on kaolinite anisotropic substrates were explored. As revealed by the experimental results, the settling rate and removal rate of kaolinite increased with increasing PEO concentration, but too high PEO concentration would cause the small particles to stabilize and become difficult to settle. Furthermore, to probe deep into the interactions between PEO and kaolinite anisotropic substrates, the morphology of adsorbed PEO, interfacial adsorption structure, and dynamic behavior of water molecules were determined by quartz crystal microbalance with dissipation (QCM-D) and molecular dynamics (MD) simulations. The adsorption amount of PEO on different mineral surfaces is in the order of kaolinite > alumina > silica, and the thickness of the adsorption structure formed by alumina is greater than that of silica. As illustrated by the MD simulation results, the adsorption of PEO reduces the concentration of water molecules attached to the kaolinite surface. The PEO forms a double-layer adsorption structure on the 001 surface, while forming a tight monolayer adsorption structure on the 001¯ surface, weakening the interaction between the surface and the water molecules. The above results demonstrate that the adsorption of PEO effectively weakened the hydration dispersion of kaolinite and promoted the agglomeration of kaolinite particles. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

19 pages, 9012 KiB  
Article
Fusion of Multispectral Remote-Sensing Data through GIS-Based Overlay Method for Revealing Potential Areas of Hydrothermal Mineral Resources
by Saad S. Alarifi, Mohamed Abdelkareem, Fathy Abdalla, Ismail S. Abdelsadek, Hisham Gahlan, Ahmad. M. Al-Saleh and Mislat Alotaibi
Minerals 2022, 12(12), 1577; https://doi.org/10.3390/min12121577 - 9 Dec 2022
Cited by 11 | Viewed by 2538
Abstract
Revealing prospective locations of hydrothermal alteration zones (HAZs) is an important technique for mineral prospecting. In this study, we used multiple criteria inferred from Landsat-8 OLI, Sentinel-2, and ASTER data using a GIS-based weighted overlay multi-criteria decision analysis approach to build a model [...] Read more.
Revealing prospective locations of hydrothermal alteration zones (HAZs) is an important technique for mineral prospecting. In this study, we used multiple criteria inferred from Landsat-8 OLI, Sentinel-2, and ASTER data using a GIS-based weighted overlay multi-criteria decision analysis approach to build a model for the delineating of hydrothermal mineral deposits in the Khnaiguiyah district, Saudi Arabia. The utilized algorithms revealed argillic, phyllic, and propylitic alteration characteristics. The HAZs map resulted in the identification of six zones based on their mineralization potential, providing a basis for potential hydrothermal mineral deposit assessment exploration, which was created by the fusion of mineral bands indicators designated very low, low, moderate, good, very good, and excellent and covers 31.36, 28.22, 20.49, 10.99, 6.35, and 2.59%. Based on their potential for hydrothermal mineral potentiality, the discovered zones match gossans related to sulfide mineral alteration zones, as demonstrated by previous studies. Full article
Show Figures

Figure 1

37 pages, 2914 KiB  
Review
The Role of Microorganisms in the Nucleation of Carbonates, Environmental Implications and Applications
by Ana Robles-Fernández, Camila Areias, Daniele Daffonchio, Volker C. Vahrenkamp and Mónica Sánchez-Román
Minerals 2022, 12(12), 1562; https://doi.org/10.3390/min12121562 - 3 Dec 2022
Cited by 15 | Viewed by 3646
Abstract
Microbially induced carbonate precipitation (MICP) is an important process in the synthesis of carbonate minerals, and thus, it is widely explored as a novel approach with potential for many technological applications. However, the processes and mechanisms involved in carbonate mineral formation in the [...] Read more.
Microbially induced carbonate precipitation (MICP) is an important process in the synthesis of carbonate minerals, and thus, it is widely explored as a novel approach with potential for many technological applications. However, the processes and mechanisms involved in carbonate mineral formation in the presence of microbes are not yet fully understood. This review covers the current knowledge regarding the role of microbial cells and metabolic products (e.g., extracellular polymeric substances, proteins and amino acids) on the adsorption of divalent metals, adsorption of ionic species and as templates for crystal nucleation. Moreover, they can play a role in the mineral precipitation, size, morphology and lattice. By understanding how microbes and their metabolic products promote suitable physicochemical conditions (pH, Mg/Ca ratio and free CO32− ions) to induce carbonate nucleation and precipitation, the manipulation of the final mineral precipitates could be a reality for (geo)biotechnological approaches. The applications and implications of biogenic carbonates in areas such as geology and engineering are presented and discussed in this review, with a major focus on biotechnology. Full article
Show Figures

Figure 1

16 pages, 4766 KiB  
Article
Crystal Engineering in Antisolvent Crystallization of Rare Earth Elements (REEs)
by Jonathan Sibanda, Jemitias Chivavava and Alison Emslie Lewis
Minerals 2022, 12(12), 1554; https://doi.org/10.3390/min12121554 - 1 Dec 2022
Cited by 3 | Viewed by 2130
Abstract
Antisolvent crystallization is a separation technology that separates the solute from the solvent by the addition of another solvent, in which the solute is sparingly soluble. High yields are achieved by using higher antisolvent-to-aqueous ratios, but this generates higher supersaturation, which causes excessive [...] Read more.
Antisolvent crystallization is a separation technology that separates the solute from the solvent by the addition of another solvent, in which the solute is sparingly soluble. High yields are achieved by using higher antisolvent-to-aqueous ratios, but this generates higher supersaturation, which causes excessive nucleation. This results in the production of smaller particles, which are difficult to handle in downstream processes. In this work, the effect of varying the organic (antisolvent)-to-aqueous (O/A) ratio and seed loading on the yield, particle size distribution, and morphology of neodymium sulphate product, during its recovery from an aqueous leach solution using antisolvent crystallization, was investigated. A batch crystallizer was used for the experiments, while ethanol was used as an antisolvent. Neodymium sulphate octahydrate [Nd2(SO4)3.8H2O] seeds were used to investigate the effect of seed loading. It was found that particle sizes increased as the O/A ratio increased. This was attributed to the agglomeration of smaller particles that formed at high supersaturation. An O/A ratio of 1.4 resulted in higher yields and particles with a plate-like morphology. The increase in yield was attributed to the increased interaction of ethanol molecules with the solvent, which reduced the solubility of neodymium sulphate. Increasing the seed loading resulted in smaller particle sizes with narrow particle size distribution and improved filtration performance. This was attributed to the promotion of crystal growth and suppression of agglomeration in the presence of seeds. Full article
(This article belongs to the Special Issue Recent Developments in Mineral Processing at University of Cape Town)
Show Figures

Figure 1

22 pages, 2710 KiB  
Article
Impacts of Crystalline Host Rock on Repository Barrier Materials at 250 °C: Hydrothermal Co-Alteration of Wyoming Bentonite and Steel in the Presence of Grimsel Granodiorite
by Amber Zandanel, Kirsten B. Sauer, Marlena Rock, Florie A. Caporuscio, Katherine Telfeyan and Edward N. Matteo
Minerals 2022, 12(12), 1556; https://doi.org/10.3390/min12121556 - 1 Dec 2022
Cited by 2 | Viewed by 2604
Abstract
Direct disposal of dual-purpose canisters (DPC) has been proposed to streamline the disposal of spent nuclear fuel. However, there are scenarios where direct disposal of DPCs may result in temperatures in excess of the specified upper temperature limits for some engineered barrier system [...] Read more.
Direct disposal of dual-purpose canisters (DPC) has been proposed to streamline the disposal of spent nuclear fuel. However, there are scenarios where direct disposal of DPCs may result in temperatures in excess of the specified upper temperature limits for some engineered barrier system (EBS) materials, which may cause alteration within EBS materials dependent on local conditions such as host rock composition, chemistry of the saturating groundwaters, and interactions between barrier materials themselves. Here we report the results of hydrothermal experiments reacting EBS materials—bentonite buffer and steel—with an analogue crystalline host rock and groundwater at 250 °C. Experiment series explored the effect of reaction time on the final products and the effects of the mineral and fluid reactants on different steel types. Post-mortem X-ray diffraction, electron microprobe, and scanning electron microscopy analyses showed characteristic alteration of both bentonite and steel, including the formation of secondary zeolite and calcium silicate hydrate minerals within the bentonite matrix and the formation of iron-bearing clays and metal oxides at the steel surfaces. Swelling clays in the bentonite matrix were not quantitatively altered to non-swelling clay species by the hydrothermal conditions. The combined results of the solution chemistry over time and post-mortem mineralogy suggest that EBS alteration is more sensitive to initial groundwater chemistry than the presence of host rock, where limited potassium concentration in the solution prohibits conversion of the smectite minerals in the bentonite matrix to non-swelling clay species. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

14 pages, 528 KiB  
Article
On the Sorption Mode of U(IV) at Calcium Silicate Hydrate: A Comparison of Adsorption, Absorption in the Interlayer, and Incorporation by Means of Density Functional Calculations
by Ion Chiorescu, Alena Kremleva and Sven Krüger
Minerals 2022, 12(12), 1541; https://doi.org/10.3390/min12121541 - 30 Nov 2022
Cited by 5 | Viewed by 1753
Abstract
Calcium silicate hydrate (C-S-H) is the main product of cement hydration and has also been shown to be the main sorbing phase of actinide ions interacting with cement. U(IV) has been chosen as an exemplary actinide ion to study actinide sorption at C-S-H [...] Read more.
Calcium silicate hydrate (C-S-H) is the main product of cement hydration and has also been shown to be the main sorbing phase of actinide ions interacting with cement. U(IV) has been chosen as an exemplary actinide ion to study actinide sorption at C-S-H as U is the main element in highly active radioactive waste and because reducing conditions are foreseen in a deep geological repository for such waste. U(IV) surface adsorption, absorption in the interlayer, and incorporation into the calcium oxide layer of C-S-H has been modeled quantum mechanically, applying a density functional approach. For each sorption mode various sites have been considered and a combined dynamic equilibration and optimization approach has been applied to generate a set of representative stable sorption complexes. At the surface and in the interlayer similar U(IV) hydroxo complexes stabilized by Ca2+ ions have been determined as sorbates. Surface adsorption tends to be preferred over absorption in the interlayer for the same type of sites. Incorporation of U(IV) in the CaO layer yields the most favorable sorption site. This result is supported by good qualitative agreement of structures with EXAFS results for other actinides in the oxidation state IV, leading to a new interpretation of the experimental results. Full article
Show Figures

Figure 1

13 pages, 2912 KiB  
Article
Global Trend for Waste Lithium-Ion Battery Recycling from 1984 to 2021: A Bibliometric Analysis
by Yaoguang Guo, Yujing Liu, Jie Guan, Qianqian Chen, Xiaohu Sun, Nuo Liu, Li Zhang, Xiaojiao Zhang, Xiaoyi Lou and Yingshun Li
Minerals 2022, 12(12), 1514; https://doi.org/10.3390/min12121514 - 27 Nov 2022
Cited by 4 | Viewed by 2906
Abstract
With the massive use of lithium-ion batteries in electric vehicles and energy storage, the environmental and resource problems faced by used lithium-ion batteries are becoming more and more prominent. In order to better resource utilization and environmental protection, this paper employs bibliometric and [...] Read more.
With the massive use of lithium-ion batteries in electric vehicles and energy storage, the environmental and resource problems faced by used lithium-ion batteries are becoming more and more prominent. In order to better resource utilization and environmental protection, this paper employs bibliometric and data analysis methods to explore publications related to waste lithium-ion battery recycling from 1984 to 2021. The Web of Science core set from the SCIE online database was used for this article. These findings demonstrate a considerable increase trend in the number of publications published in the subject of recycling used lithium-ion batteries, with a natural-sciences-centric focus. Argonne National Lab, Chinese Academy of Sciences, and China Academic and Scientific Research Center are the top three institutions in terms of quantity of papers published. The affiliated journals corresponding to these three institutions also have high impact factors, which are 106.47, 44.85, and 58.69, respectively. In comparison to comparable institutes in other nations, the American Argonne National Laboratory supports 223 research articles in this area. China and the US make up the majority of the research’s funding. The two key aspects of current lithium-ion battery recycling research are material structure research and environmentally friendly recycling. Nevertheless, high-capacity lithium-ion batteries, waste lithium-ion integrated structures, and gentle recycling of spent lithium-ion batteries will be the major aspects of study in the future. It is hoped that the above analysis can bring new ideas and methods to the field of waste lithium-ion battery recycling and provide a basis for the subsequent research and application of waste lithium-ion battery recycling. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

13 pages, 7078 KiB  
Article
Estimation of Final Product Concentration in Metalic Ores Using Convolutional Neural Networks
by Jakub Progorowicz, Artur Skoczylas, Sergii Anufriiev, Marek Dudzik and Paweł Stefaniak
Minerals 2022, 12(12), 1480; https://doi.org/10.3390/min12121480 - 22 Nov 2022
Cited by 1 | Viewed by 1271
Abstract
Although artificial neural networks are widely used in various fields, including mining and mineral processing, they can be problematic for appropriately choosing the model architecture and parameters. In this article, we describe a procedure for the optimization of the structure of a convolutional [...] Read more.
Although artificial neural networks are widely used in various fields, including mining and mineral processing, they can be problematic for appropriately choosing the model architecture and parameters. In this article, we describe a procedure for the optimization of the structure of a convolutional neural network model developed for the purposes of metallic ore pre-concentration. The developed model takes as an input two-band X-ray scans of ore grains, and for each scan two values corresponding to concentrations of zinc and lead are returned by the model. The whole process of sample preparation and data augmentation, optimization of the model hyperparameters and training of selected models is described. The ten best models were trained ten times each in order to select the best possible one. We were able to achieve a Pearson coefficient of R = 0.944 for the best model. The detailed results of this model are shown, and finally, its applicability and limitations in real-world scenarios are discussed. Full article
Show Figures

Figure 1

16 pages, 5484 KiB  
Article
Magnetic Nanosorbents Based on Bentonite and CoFe2O4 Spinel
by Nataliya Khodosova, Lyudmila Novikova, Elena Tomina, Larisa Belchinskaya, Alexander Zhabin, Nikolay Kurkin, Victoria Krupskaya, Olga Zakusina, Tatiana Koroleva, Ekaterina Tyupina, Alexander Vasiliev and Pavel Kazin
Minerals 2022, 12(11), 1474; https://doi.org/10.3390/min12111474 - 21 Nov 2022
Cited by 4 | Viewed by 1854
Abstract
New magnetic nanocomposite sorbents were obtained by doping natural bentonite with nanosized CoFe2O4 spinel (10 and 20 wt.%). Nanocrystals of cobalt ferrite were synthesized by a citrate burning method. The structure and physical-chemical properties of the composites were characterized by [...] Read more.
New magnetic nanocomposite sorbents were obtained by doping natural bentonite with nanosized CoFe2O4 spinel (10 and 20 wt.%). Nanocrystals of cobalt ferrite were synthesized by a citrate burning method. The structure and physical-chemical properties of the composites were characterized by XRD, XRF, TEM, BET, FTIR and Faraday balance magnetometry. During the formation of nanocomposites, 10–30 nm particles of cobalt ferrite occupied mainly the interparticle space of Fe-aluminosilicate that significantly changed the particle morphology and composite porosity, but at the same time retained the structure of the 2:1 smectite layer. A combination of two functional properties of composites, adsorption and magnetism has been found. The adsorption capacity of magnetic nanosorbents exceeded this parameter for bentonite and spinel. Despite the decrease in the adsorption volume, pore size and specific surface area of the composite material relative to bentonite, the sorption activity of the composite increases by 12%, which indicated the influence of the magnetic component on the sorption process. FTIR data confirmed the mechanism of formaldehyde sorption by the composite sorbent. The production of a magnetic nanosorbent opens up new possibilities for controlling the sorption processes and makes it possible to selectively separate the sorbent from the adsorption medium by the action of a magnetic field. Full article
Show Figures

Graphical abstract

32 pages, 6210 KiB  
Article
Prospectivity Mapping of Heavy Mineral Ore Deposits Based upon Machine-Learning Algorithms: Columbite-Tantalite Deposits in West- Central Côte d’Ivoire
by Kassi Olivier Shaw, Kalifa Goïta and Mickaël Germain
Minerals 2022, 12(11), 1453; https://doi.org/10.3390/min12111453 - 17 Nov 2022
Cited by 1 | Viewed by 3408
Abstract
This study aimed to model the prospectivity for placer deposits using geomorphic and landscape parameters. Within a geographic information system (GIS), spatial autocorrelation analysis of 3709 geochemical samples was used to identify prospective and non-prospective targets for columbite-tantalite (Nb-Ta) placer deposits of Hana-Lobo [...] Read more.
This study aimed to model the prospectivity for placer deposits using geomorphic and landscape parameters. Within a geographic information system (GIS), spatial autocorrelation analysis of 3709 geochemical samples was used to identify prospective and non-prospective targets for columbite-tantalite (Nb-Ta) placer deposits of Hana-Lobo (H-L) Geological Complex (West- Central Côte d’Ivoire, West Africa). Based on mineralization system analysis, hydrologic, geomorphologic and landscape parameters were extracted at the locations of the identified targets. Supervised automatic classification approaches were applied, including Random Forest (RF), K-Nearest Neighbors (KNN) and Support Vector Machines (SVM) to find a prospectivity model complex enough to capture the nature of the data. Metrics such as cross-validation accuracy (CVA), Receiver Operating Characteristic (ROC) curves, Area Under Curve (AUC) values and F-score values were used to evaluate the performance and robustness of output models. Results of applying machine-learning algorithms demonstrated that predictions provided by the final RF and KNN models were very close (κ = 0.56 and CVA = 0.69; κ = 0.54 and CVA = 0.68, respectively) and those provided by the SVM models were slightly lower with κ = 0.46 and CVA = 0.63. Independent validation results confirmed the slightly higher performance of both KNN and RF prospectivity models, compared to final SVM. Sensitivity analyses of both KNN and RF prospectivity models for medium and high-grade Nb-Ta deposits show a prediction rate of up to 90%. Full article
(This article belongs to the Special Issue AI-Based GIS for Pinpointing Mineral Deposits)
Show Figures

Figure 1

21 pages, 7728 KiB  
Article
Mineralogical and Geochemical Characteristics of the H-Pit of the Chatree Gold Deposit, Central Thailand: A Case Study for Assessment of Acid Rock Drainage and Heavy Metal Sources
by Sirawit Kaewpaluk, Abhisit Salam, Thitiphan Assawincharoenkij, Takayuki Manaka, Sopit Poompuang and Surachat Munsamai
Minerals 2022, 12(11), 1446; https://doi.org/10.3390/min12111446 - 15 Nov 2022
Cited by 1 | Viewed by 2069
Abstract
H-pit is one of the significant ore lenses of the Chatree mine in Thailand. Au-Ag mineralization mainly occurs as veins, stockworks, and minor breccias hosted by volcanic and volcaniclastic rocks. Disseminated pyrites are commonly present near mineralized veins in the hanging wall zone. [...] Read more.
H-pit is one of the significant ore lenses of the Chatree mine in Thailand. Au-Ag mineralization mainly occurs as veins, stockworks, and minor breccias hosted by volcanic and volcaniclastic rocks. Disseminated pyrites are commonly present near mineralized veins in the hanging wall zone. This study aims to assess the acid rock drainage (ARD) potential and heavy metal content from the H-pit area. The results indicate that hanging wall rock is a potential acid-forming (PAF) material related to disseminated pyrite formed by hydrothermal alteration. In contrast, the footwall and ore zone materials are classified as non-acid forming (NAF). Because the ore zone has calcite in the veins, it may help buffer the material’s acidity. The results of heavy metal analysis reveal that the ore zone has significantly higher contents of As, Cd, Cu, Pb, and Zn than those in the hanging wall and footwall zones. Moreover, the hanging wall and footwall materials have exceeding values for As, Cd, and Zn compared to those in typical igneous rocks. These heavy metals are interpreted to be sourced from (1) the primary composition in base metal sulfides (e.g., Cu, Pb, and Zn), (2) the substitution of trace elements in sulfides (e.g., As and Cd), and (3) the substitution of trace elements in calcite (e.g., Mn), as evidenced in the EPMA results. In conclusion, the hanging wall rocks in this study containing high sulfur in proximity to the ore zone are a PAF material with heavy metal contaminant sources, whereas the footwall and ore zone materials have a lower potential to be such sources at the Chatree mine. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

22 pages, 5301 KiB  
Article
Evaluation of Different Dispersants on the Dispersion/Sedimentation Behavior of Halloysite, Kaolinite, and Quartz Suspensions in the Enrichment of Halloysite Ore by Mechanical Dispersion
by Emrah Durgut, Mustafa Cinar, Mert Terzi, Ilgin Kursun Unver, Yildiz Yildirim and Orhan Ozdemir
Minerals 2022, 12(11), 1426; https://doi.org/10.3390/min12111426 - 10 Nov 2022
Cited by 5 | Viewed by 1930
Abstract
In this study, the dispersion properties of pure halloysite, kaolinite, and quartz minerals in halloysite ore were determined in the absence and presence of dispersants (sodium silicate, STPP, SHMP). First of all, the samples were characterized by chemical, mineralogical, BET, FTIR, and TEM [...] Read more.
In this study, the dispersion properties of pure halloysite, kaolinite, and quartz minerals in halloysite ore were determined in the absence and presence of dispersants (sodium silicate, STPP, SHMP). First of all, the samples were characterized by chemical, mineralogical, BET, FTIR, and TEM analyses. Afterward, the physico-chemical properties of these minerals were investigated by zeta potential measurements and dispersion/sedimentation experiments in the absence and presence of the dispersants. The zeta potential measurements showed that the surface charges of all minerals changed from negative to positive as the PH changed from basic to acidic. The presence of dispersants at natural pHs indicated that the mineral surface charges tended to become more negative as the concentration increased in the zeta potential measurements. SHMP showed the most effect on the zeta potential. In the dispersion/sedimentation experiments, settling was slowed down with the use of dispersants. Finally, the dispersion properties of halloysite ore in the presence of dispersants were explored using mechanical dispersion and pulp viscosity experiments based on the amount of material passing to <38 μm size and the chemical changes in the materials. As a result of the mechanical dispersion tests carried out in the presence of dispersants (sodium silicate, STPP, SHMP), 71.3% of the material with 30.8% Al2O3 and 50.5% SiO2 content passed to <38 μm size without using dispersant, and 73.2% of <38 μm sized material with 35.5% Al2O3 and 46.1% SiO2 content was gained in the use of 7.5 kg/ton SHMP, which was determined as the optimum within the scope of the study. In conclusion, dispersant use enhanced the mechanical dispersion effect for plastic clay mineral separation from hard minerals in an aqueous medium. Full article
(This article belongs to the Special Issue Nanotubular and Nanofibrous Clay Minerals)
Show Figures

Figure 1

14 pages, 5179 KiB  
Article
Microbial Mat Stratification in Travertine Depositions of Greek Hot Springs and Biomineralization Processes
by Christos Kanellopoulos, Vasiliki Lamprinou, Artemis Politi, Panagiotis Voudouris, Ioannis Iliopoulos, Maria Kokkaliari, Leonidas Moforis and Athena Economou-Amilli
Minerals 2022, 12(11), 1408; https://doi.org/10.3390/min12111408 - 4 Nov 2022
Cited by 4 | Viewed by 2717
Abstract
The study of microbial mats in extreme environments is of high scientific interest from geological, ecological, and geomicrobiological aspects. These mats represent multilayer bio-structures where each taxonomic group dominates a specific vertical layering distribution resulting from its growth and metabolic activity. In the [...] Read more.
The study of microbial mats in extreme environments is of high scientific interest from geological, ecological, and geomicrobiological aspects. These mats represent multilayer bio-structures where each taxonomic group dominates a specific vertical layering distribution resulting from its growth and metabolic activity. In the present study, microbial mats in a hot spring environment from Aedipsos (Euboea Island, Greece) resulting in the creation of thermogenic travertine, were studied through an interdisciplinary approach. The mineralogical composition was determined by optical microscopy, XRD, and SEM-EDS microanalysis, and the identification of Cyanobacteria was made primarily on morphological characteristics. The main mineral phase in the studied samples is calcite and, to a less extent, aragonite, with several trace elements in the mineral-chemistry composition, i.e., up to 1.93 wt. % MgO, up to 0.52 wt. % SrO, up to 0.44 wt. % Na2O, up to 0.17 wt. % K2O, and up to 3.99 wt. % SO3. The dominant facies are lamination and shrubs, which are the most common among the facies of thermogenic travertines of the area. Several layers were identified, (i) a top mainly abiotic layer consisting of calcium carbonate micritic crystals, (ii) a second biotic layer–the Cyanobacteria layer, dominated by the species Leptolyngbya perforans, (iii) a third biotic layer where Leptolyngbya perforans, Chloroflexus and other bacteria occur, and (iv) a deeper abiotic part with several layers where no photosynthetic microorganisms occur. In the upper layers, nineteen (19) species of Cyanobacteria were identified, classified in the orders Chroococcales (37%), Synechococcales (31%), Oscillatoriales (16%), and Spirulinales (6%). Among the identified Cyanobacteria, there are typical thermophilic and limestone substrate species. These Cyanobacteria are found to participate in the biomineralization and biologically-influenced processes, i.e., (i) filamentous Cyanobacteria are trapping calcium carbonate crystals, and diatoms, (ii) extracellular polymeric substances (EPS) create crystal retention lattice contributing to the biomineralization process, and (iii) filamentous sheaths of Cyanobacteria are calcified, resulting in the creation of calcium carbonate tubes. Full article
(This article belongs to the Special Issue Bio-Geochemistry of Heavy Metals/Metalloids)
Show Figures

Graphical abstract

17 pages, 2088 KiB  
Article
Oxidative Dissolution of Low-Grade Ni-Cu Ore and Impact on Flotation of Pentlandite
by Benjamin Musuku, Eija Saari and Olli Dahl
Minerals 2022, 12(11), 1406; https://doi.org/10.3390/min12111406 - 3 Nov 2022
Cited by 2 | Viewed by 1787
Abstract
This paper investigated the effect of mineral surface oxidation on the floatability of Kevitsa low-grade Ni-Cu ore. Physicochemical measurements, ethylene diamine tetra acetic acid (EDTA) extraction, and oxygen uptake experiments were carried out with slurry and recycled process water samples obtained from the [...] Read more.
This paper investigated the effect of mineral surface oxidation on the floatability of Kevitsa low-grade Ni-Cu ore. Physicochemical measurements, ethylene diamine tetra acetic acid (EDTA) extraction, and oxygen uptake experiments were carried out with slurry and recycled process water samples obtained from the Kevitsa Cu-Ni sequential concentrator plant. The pH of recycled process water, copper flotation feed, and nickel flotation feed dropped by 0.7, 0.4, and 0.7 points, respectively, from May to July. The oxygen demand increased from recycled process water to the copper flotation feed, then dropped for the nickel flotation feed. The nickel flotation feed Redox potential (ORP) was lowest for July, while EDTA extractable metals increased from May to July. There was a 20% drop in nickel recoveries from May to July. Based on ORP measurements of the nickel flotation feed, good nickel flotation takes place in a moderately oxidizing (75–170 mV) and alkaline (9.2–9.7 pH) environment. Therefore, the ORP/pH of the nickel flotation feed is important to the nickel flotation. The results showed that at the Kevitsa plant, the grinding process is an electrochemically active environment, which, together with the incoming recycled process water quality, defines the degree of mineral surface oxidation for flotation. The increasing corrosiveness of the recycled process water increased mineral surface oxidation and depressed pentlandite flotation. Laboratory flotation experiments confirmed the observed poor plant flotation response when the corrosiveness of recycled process water increased. Total dissolved solids (TDS) was proven to be a reliable online parameter for the corrosiveness of the recycled process water and was inversely proportional to the pentlandite recovery. The findings of this study may help the plant develop ways to enable a timely response to changes in recycled process water quality to prevent harmful impacts on pentlandite flotation. Full article
(This article belongs to the Special Issue Water within Minerals Processing, Volume II)
Show Figures

Figure 1

11 pages, 10332 KiB  
Article
Methodology and Model to Predict HPGR Throughput Based on Piston Press Testing
by Giovanni Pamparana, Bern Klein and Mauricio Guimaraes Bergerman
Minerals 2022, 12(11), 1377; https://doi.org/10.3390/min12111377 - 29 Oct 2022
Cited by 3 | Viewed by 2409
Abstract
Sizing High-Pressure Grinding Rolls (HPGR) requires a large quantity of material, making it not attractive and costly to be considered for new mining projects regardless of their energy consumption reduction benefits. Ongoing efforts are being made at the University of British Columbia to [...] Read more.
Sizing High-Pressure Grinding Rolls (HPGR) requires a large quantity of material, making it not attractive and costly to be considered for new mining projects regardless of their energy consumption reduction benefits. Ongoing efforts are being made at the University of British Columbia to predict the behaviour of the HPGR using a low quantity of material on a piston-and-die press apparatus. Although the energy requirements and size reduction predictive models are already developed, there is still a need to predict the HPGR throughput on a small-scale test. This paper presents a new model to predict the HPGR throughput based on the previously developed model to predict the operational gap by using less than 2 kg of sample. The throughput model was developed using machine learning techniques and calibrated using pilot-scale HPGR tests and piston press tests. The resulting model has an R2 of 0.91 with an average prediction error of ±4.2%. The developed methodology has the potential to fill the gap of the missing throughput model. Further pilot-scale HPGR testing is required to continue validating the model. Full article
(This article belongs to the Special Issue Experimental and Numerical Studies of Mineral Comminution)
Show Figures

Figure 1

18 pages, 2428 KiB  
Article
A Combined Extended X-ray Absorption Fine Structure Spectroscopy and Density Functional Theory Study of Americium vs. Yttrium Adsorption on Corundum (α–Al2O3)
by Nina Huittinen, Sinikka Virtanen, André Rossberg, Manuel Eibl, Satu Lönnrot and Robert Polly
Minerals 2022, 12(11), 1380; https://doi.org/10.3390/min12111380 - 29 Oct 2022
Viewed by 1601
Abstract
Adsorption reactions on mineral surfaces are influenced by the overall concentration of the adsorbing metal cation. Different site types (strong vs. weak ones) are often included to describe the complexation reactions in the various concentration regimes. More specifically, strong sites are presumed to [...] Read more.
Adsorption reactions on mineral surfaces are influenced by the overall concentration of the adsorbing metal cation. Different site types (strong vs. weak ones) are often included to describe the complexation reactions in the various concentration regimes. More specifically, strong sites are presumed to retain metal ions at low sorbate concentrations, while weak sites contribute to metal ion retention when the sorbate concentration increases. The involvement of different sites in the sorption reaction may, thereby, also be influenced by competing cations, which increase the overall metal ion concentration in the system. To date, very little is known about the complex structures and metal ion speciation in these hypothetical strong- and weak-site regimes, especially in competing scenarios. In the present study, we have investigated the uptake of the actinide americium on corundum (α–Al2O3) in the absence and presence of yttrium as competing metal by combining extended X-ray absorption fine structure spectroscopy (EXAFS) with density functional theory (DFT) calculations. Isotherm studies using the radioactive 152Eu tracer were used to identify the sorption regimes where strong sites and weak sites contribute to the sorption reaction. The overall americium concentration, as well as the presence of yttrium could be seen to influence both the amount of americium uptake by corundum, but also the speciation at the surface. More specifically, increasing the Am3+ or Y3+ concentrations from the strong site to the weak site concentration regimes in the mineral suspensions resulted in a decrease in the overall Am–O coordination number from nine to eight, with a subsequent shortening of the average Am–O bond length. DFT calculations suggest a reduction of the surface coordination with increasing metal–ion loading, postulating the formation of tetradentate and tridentate Am3+ complexes at low and high surface coverages, respectively. Full article
Show Figures

Figure 1

60 pages, 13465 KiB  
Review
Order–Disorder Diversity of the Solid State by NMR: The Role of Electrical Charges
by Luis Sánchez-Muñoz, Pierre Florian, Zhehong Gan and Francisco Muñoz
Minerals 2022, 12(11), 1375; https://doi.org/10.3390/min12111375 - 29 Oct 2022
Cited by 1 | Viewed by 1904
Abstract
The physical explanations and understanding of the order–disorder phenomena in the solid state are commonly inferred from the experimental capabilities of the characterization techniques. Periodicity is recorded according to the averaging procedure of the conventional reciprocal-space techniques (RSTs) in many solids. This approach [...] Read more.
The physical explanations and understanding of the order–disorder phenomena in the solid state are commonly inferred from the experimental capabilities of the characterization techniques. Periodicity is recorded according to the averaging procedure of the conventional reciprocal-space techniques (RSTs) in many solids. This approach gives rise to a sharp trimodal view including non-crystalline or amorphous compounds, aperiodic crystals and periodic crystals. However, nuclear magnetic resonance (NMR) spectroscopy offers an alternative approach that is derived from the distinct character of the measurements involved at the local scale. Here, we present a sequence of progressive order–disorder states, from amorphous structures up to fully ordered mineral structures, showing the great diversity existing in the solid state using multinuclear NMR spectroscopy. Some examples in glasses and products of their crystallization are used, as well as several minerals (including beryl-group and feldspar-group minerals) at magnetic fields up to 35.2 T, and some examples from literature. This approach suggests that the solid state is a dynamic medium, whose behavior is due to atomic adjustments from local compensation of electrical charges between similar structural states, which explains Ostwald’s step rule of successive reactions. In fully ordered feldspar minerals, we propose that the electronic structure of the elements of the cavity site is involved in bonding, site morphology and feldspar topology. Furthermore, some implications are derived about what is a mineral structure from the point of view of the NMR experiments. They open the possibility for the development of the science of NMR Mineralogy. Full article
(This article belongs to the Special Issue NMR Spectroscopy in Mineralogy and Crystal Structures)
Show Figures

Figure 1

18 pages, 3742 KiB  
Article
Alkali-Activated Metakaolins: Mineral Chemistry and Quantitative Mineral Composition
by Marta Valášková, Zdeněk Klika, Jozef Vlček, Lenka Matějová, Michaela Topinková, Helena Pálková and Jana Madejová
Minerals 2022, 12(11), 1342; https://doi.org/10.3390/min12111342 - 23 Oct 2022
Cited by 3 | Viewed by 1790
Abstract
The reaction products resulting from the alkali-activation of metakaolin are impacted by the composition of the initial kaolin, and amount of alkali-activated kaolinite and water. The present study focused on analyzing these parameters on the metakaolins calcined at 800 °C from three kaolins, [...] Read more.
The reaction products resulting from the alkali-activation of metakaolin are impacted by the composition of the initial kaolin, and amount of alkali-activated kaolinite and water. The present study focused on analyzing these parameters on the metakaolins calcined at 800 °C from three kaolins, and the metakaolins’ alkali activation for 2, 3 and 28 days. The first objective was to evaluate the mineral chemistry and quantitative mineral phase composition from the bulk chemical analysis using the chemical quantitative mineral analysis (CQMA) procedure and conduct a comparison of the chemistry of the metakaolins after alkali activation for 28 days according to the elements Al, Si, Na and K, using the leaching test in distilled water. The second task was to search for possible relationships between the quantitative number of phases in alkali-activated metakaolins and compressive strength. The main methods used for the characterization of material were X-ray fluorescence, X-ray diffraction, thermal TG/DTA and infrared spectroscopy. Metakaolins alkali activated for 28 days contained crystalline quartz, muscovite, orthoclase, and unreacted metakaolinite contained zeolite A (Z-A), hydrosodalite (HS) and thermonatrite (TN) in the amorphous/weakly crystalline phase. The compressive strengths (CS) from 6.42 ± 0.33 to 9.97 ± 0.50 MPa are related positively to H2O+ and H2O bound in HS and TN. Full article
(This article belongs to the Special Issue Development in Geopolymer Materials and Applications)
Show Figures

Figure 1

15 pages, 2863 KiB  
Article
Structural and Elastic Behaviour of Sodalite Na8(Al6Si6O24)Cl2 at High-Pressure by First-Principle Simulations
by Gianfranco Ulian and Giovanni Valdrè
Minerals 2022, 12(10), 1323; https://doi.org/10.3390/min12101323 - 20 Oct 2022
Cited by 2 | Viewed by 2200
Abstract
Sodalite Na8(Al6Si6O24)Cl2 (space group P4¯3n) is an important mineral belonging to the zeolite group, with several and manyfold fundamental and technological applications. Despite the interest in this mineral from [...] Read more.
Sodalite Na8(Al6Si6O24)Cl2 (space group P4¯3n) is an important mineral belonging to the zeolite group, with several and manyfold fundamental and technological applications. Despite the interest in this mineral from different disciplines, very little is known regarding its high-pressure elastic properties. The present study aims at filling this knowledge gap, reporting the equation of state and the elastic moduli of sodalite calculated in a wide pressure range, from −6 GPa to 22 GPa. The results were obtained from Density Functional Theory simulations carried out with Gaussian-type basis sets and the well-known hybrid functional B3LYP. The DFT-D3 a posteriori correction to include the van der Waals interactions in the physical treatment of the mineral was also applied. The calculated equation of state parameters at 0 GPa and absolute zero (0 K), i.e., K0 = 70.15(7) GPa, K’ = 4.46(2) and V0 = 676.85(3) Å3 are in line with the properties derived from the stiffness tensor, and in agreement with the few experimental data reported in the literature. Sodalite was found mechanically unstable when compressed above 15.6 GPa. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

15 pages, 2058 KiB  
Article
Chemical and Mineralogical Characterization of Montevive Celestine Mineral
by Noemi Ariza-Rodríguez, Alejandro B. Rodríguez-Navarro, Mónica Calero de Hoces, Jose Manuel Martin and Mario J. Muñoz-Batista
Minerals 2022, 12(10), 1261; https://doi.org/10.3390/min12101261 - 5 Oct 2022
Cited by 5 | Viewed by 2604
Abstract
The Montevive celestine mineral deposit, set in the Granada Basin in a marine evaporitic uppermost Tortonian–lowermost Messinian sequence, is the largest reserve in Europe of this economically important strontium ore. Currently, the mine has a large amount of tailings resulting from the rejection [...] Read more.
The Montevive celestine mineral deposit, set in the Granada Basin in a marine evaporitic uppermost Tortonian–lowermost Messinian sequence, is the largest reserve in Europe of this economically important strontium ore. Currently, the mine has a large amount of tailings resulting from the rejection of a manual dry screening of high-grade celestine mineral. This visual and density screening was carried out in the early days of mining (1954–1973). Concentrating the celestine mineral and increasing the ore recovery rate would reduce mine operation costs and the generation of new tailings, reducing the impact on the environment. In order to define more adequate concentration methods, we have used complementary analytical techniques such as optical (OM) and scanning and transmission electron microscopy (SEM and TEM), energy-dispersive X-rays (EDXs), X-ray fluorescence (XRF), and X-ray diffraction (XRD) to fully characterize the morphology, microstructure, chemistry, and mineralogy of the celestine mineral. The low-grade mineral is made of prismatic celestine crystals that are replacing a matrix of micro sparry calcite. Other minority minerals are strontianite, dolomite, quartz, and clays (kaolinite, paragonite, and illite). There is also a certain amount of iron oxides and hydroxides (mainly magnetite) associated with clays. We showed that the concentration of low-grade celestine mineral can be achieved through a low-cost and eco-friendly method based on grinding and size separation. The coarser fractions (>5 mm) have more celestine (up to 12 percent units higher than the starting unprocessed mineral) due to the selective loss of calcite and minority minerals (quartz, clays, and iron oxides) that are mainly found in the finer fraction (<1 mm). This process can make mine exploitation more sustainable, reducing the generation of residues that negatively impact the environment. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

34 pages, 31457 KiB  
Article
Coastal Environment Impact on the Construction Materials of Anfushi’s Necropolis (Pharos’s Island) in Alexandria, Egypt
by Abdelrhman Fahmy, Eduardo Molina-Piernas, Javier Martínez-López, Philip Machev and Salvador Domínguez-Bella
Minerals 2022, 12(10), 1235; https://doi.org/10.3390/min12101235 - 28 Sep 2022
Cited by 1 | Viewed by 3301
Abstract
The only example and reference of Ptolemaic Alexandrian tombs, with clear integrations of Egyptian-style scenes and decorations, is considered an endangered archaeological site due to different coastal environmental risks in Alexandria and the absence of maintenance. Anfushi’s Necropolis is located near the western [...] Read more.
The only example and reference of Ptolemaic Alexandrian tombs, with clear integrations of Egyptian-style scenes and decorations, is considered an endangered archaeological site due to different coastal environmental risks in Alexandria and the absence of maintenance. Anfushi’s Necropolis is located near the western harbour (Island of Pharos) and dates back to the 2nd century BC. Sea level rises, earthquakes, flooding, storminess, variations in temperature, rainfall, and wind are the factors that have the largest effect on the destruction and decay of Anfushi’s Necropolis building materials. This paper’s main objectives were to characterize this necropolis’s building materials and assess its durability problems and risks regarding the coastal environment. Additionally, the vector mapping of its architectural and structural elements was applied for documentation and recording purposes for the necropolis. To achieve these aims, field (recording and photographs), desk (engineering drawing and mapping), and laboratory works (X-ray diffraction, X-ray fluorescence, binocular microscopy, polarizing microscopy, and scanning electron microscopy) were carried out. The results confirmed the probabilistic risk of sea level rises and its impact on the submergence of Anfushi’s Necropolis. The structural deficiencies of the tombs were caused by the effect of earthquake tremors along with anthropogenic factors. In addition, chemical and microscopic investigations showed that salt weathering (halite and gypsum) induced the decay of the building materials. Full article
Show Figures

Figure 1

23 pages, 6309 KiB  
Article
Paleoenvironmental Conditions and Factors Controlling Organic Carbon Accumulation during the Jurassic–Early Cretaceous, Egypt: Organic and Inorganic Geochemical Approach
by Ahmed Mansour, Thomas Gentzis, Ibrahim M. Ied, Mohamed S. Ahmed and Michael Wagreich
Minerals 2022, 12(10), 1213; https://doi.org/10.3390/min12101213 - 26 Sep 2022
Cited by 2 | Viewed by 1835
Abstract
The Jurassic–Early Cretaceous was a time of variable organic carbon burial associated with fluctuations of marine primary productivity, weathering intensity, and redox conditions in the pore and bottom water at paleo-shelf areas in north Egypt. This time interval characterized the deposition of, from [...] Read more.
The Jurassic–Early Cretaceous was a time of variable organic carbon burial associated with fluctuations of marine primary productivity, weathering intensity, and redox conditions in the pore and bottom water at paleo-shelf areas in north Egypt. This time interval characterized the deposition of, from old to young, the Bahrein, Khatatba, Masajid, and Alam El Bueib Formations in the north Western Desert. Although several studies have been devoted to the excellent source rock units, such as the Khatatba and Alam El Bueib Formations, studies on paleoenvironmental changes in redox conditions, paleoproductivity, and continental weathering and their impact on organic carbon exports and their preservation for this interval are lacking. This study presents organic and inorganic geochemical data for the Jurassic–Lower Cretaceous sediments from the Almaz-1 well in the Shushan Basin, north Western Desert. A total of 32 cuttings samples were analyzed for their major and trace elements, carbonates, and total organic carbon (TOC) contents. Data allowed the reconstruction of paleoenvironmental conditions in the southern Tethys Ocean and assessment of the changes in paleo-redox, paleo-weathering, and marine primary productivity, and the role of sediment supply. Additionally, factors that governed the accumulation of organic matter in the sediment were interpreted. Results showed that the Khatatba Formation was deposited during a phase of enhanced marine primary productivity under prevalent anoxia, which triggered enhanced organic matter production and preservation. During the deposition of the Khatatba Formation, significant terrigenous sediment supply and continental weathering were followed by a limited contribution of coarse clastic sediment fluxes due to weak continental weathering and enhanced carbonate production. The Bahrein, Masajid, and Alam El Bueib Formations were deposited during low marine primary productivity and prevalent oxygenation conditions that led to poor organic matter production and preservation, respectively. A strong terrigenous sediment supply and continental weathering predominated during the deposition of the Bahrein Formation and the lower part of the Alam El Bueib Formation compared to the limited coarse clastic supply and continental weathering during the deposition of the carbonate Masajid Formation and the upper part of the Alam El Bueib Formation. Such conditions resulted in the enhanced dilution and decomposition of labile organic matter, and, thus, organic carbon-lean accumulation in these sediments. Full article
Show Figures

Figure 1

15 pages, 7043 KiB  
Review
On the Origin of New and Rare Minerals Discovered in the Othrys and Vermion Ophiolites, Greece: An Overview
by Maria Economou-Eliopoulos and Federica Zaccarini
Minerals 2022, 12(10), 1214; https://doi.org/10.3390/min12101214 - 26 Sep 2022
Viewed by 1462
Abstract
In this contribution we review the mineralogical characteristics of five new and rare minerals discovered in the Othrys and Vermion ophiolites located in Greece, with the aim to better understand their origin. Three new minerals, namely tsikourasite Mo3Ni2P(1+x) [...] Read more.
In this contribution we review the mineralogical characteristics of five new and rare minerals discovered in the Othrys and Vermion ophiolites located in Greece, with the aim to better understand their origin. Three new minerals, namely tsikourasite Mo3Ni2P(1+x) (x < 0.25), grammatikopoulosite NiVP and eliopoulosite V7S8, were found in the chromitite from the Agios Stefanos deposit, whereas arsenotučekite Ni18Sb3AsS16 was discovered in the Eretria (Tsangli) chromium mine, located in the Othrys ophiolite complex. The formation of the new phosphides tsikourasite and grammatikopoulosite and the sulfide eliopoulosite from Agios Stefanos took place after the precipitation of the host chromitite. Very likely, they formed at lower pressure in an extremely low fO2 and reducing environment during the serpentinization that affected the host ophiolite. The origin of arsenotučekite in chromitites coexisting with Fe–Ni–Cu-sulfide mineralization and magnetite at the Eretria (Tsangli) mine, is believed to be related to a circulating hydrothermal system. The most salient feature of theophrastite Ni(OH)2 and associated unnamed (Ni,Co,Mn)(OH)2 with a varying compositional range and a concentrating development, as successive thin layers, composed by fine fibrous crystals. The extremely tiny crystals of these hydroxides and the spatial association of mixed layers of Ni-silicides with theophrastite may reflect the significant role of the interaction process between adjacent layers on the observed structural features. The scarcity in nature of the new minerals reviewed in this paper is probably due to the required extreme physical-chemical conditions, which are rarely precipitated. Full article
Show Figures

Figure 1

12 pages, 2454 KiB  
Article
Prediction of the Adsorption Behaviors of Radionuclides onto Bentonites Using a Machine Learning Method
by Do-Hyeon Kim and Jun-Yeop Lee
Minerals 2022, 12(10), 1207; https://doi.org/10.3390/min12101207 - 25 Sep 2022
Cited by 2 | Viewed by 1910
Abstract
This study builds a model to predict distribution coefficients (Kd) using the random forest (RF) method and a machine learning model based on the Japan Atomic Energy Agency Sorption Database (JAEA-SDB). A database of ten input variables, including the distribution coefficient, [...] Read more.
This study builds a model to predict distribution coefficients (Kd) using the random forest (RF) method and a machine learning model based on the Japan Atomic Energy Agency Sorption Database (JAEA-SDB). A database of ten input variables, including the distribution coefficient, pH, initial radionuclide concentrations, solid–liquid ratio, ionic strength, oxidation number, cation exchange capacity, surface area, electronegativity, and ionic radius, was constructed and used for the RF model calculation. The calculation parameters employed in this work included two different hyperparameters, the number of decision trees and the maximum number of variables to divide each node, together with the random seeds inside the RF model. The coefficients of determination were derived with various combinations of hyperparameters and random seeds, and were employed to assess the RF model calculation result. Based on the results of the RF model, the distribution coefficients of 22 target nuclides (Am, Ac, Co, Cm, Cd, Cs, Cu, Na, Np, Ni, Nb, U, Sr, Sn, Pb, Pa, Pu, Po, I, Tc, Th, and Zr) were predicted successfully. Among the various input variables, pH was found to make the highest contribution to determining the distribution coefficient. The novelty of this study lies in the first application of the machine learning method for predicting the Kd value of bentonites, using JAEA-SDB. This study has established a model for reliably predicting the distribution coefficient for various radionuclides that is intended for use in evaluating the Kd value in arbitrary aqueous conditions. Full article
(This article belongs to the Special Issue The Role of Clays in Geological Disposal of Radioactive Waste)
Show Figures

Figure 1

17 pages, 3760 KiB  
Article
Geochemical and Sr-Isotopic Study of Clinopyroxenes from Somma-Vesuvius Lavas: Inferences for Magmatic Processes and Eruptive Behavior
by Valeria Di Renzo, Carlo Pelullo, Ilenia Arienzo, Lucia Civetta, Paola Petrosino and Massimo D’Antonio
Minerals 2022, 12(9), 1114; https://doi.org/10.3390/min12091114 - 31 Aug 2022
Cited by 3 | Viewed by 2272
Abstract
Somma-Vesuvius is one of the most dangerous active Italian volcanoes, due to the explosive character of its activity and because it is surrounded by an intensely urbanized area. For mitigating the volcanic risks, it is important to define how the Somma-Vesuvius magmatic system [...] Read more.
Somma-Vesuvius is one of the most dangerous active Italian volcanoes, due to the explosive character of its activity and because it is surrounded by an intensely urbanized area. For mitigating the volcanic risks, it is important to define how the Somma-Vesuvius magmatic system worked during the past activity and what processes took place. A continuous coring borehole drilled at Camaldoli della Torre, along the southern slopes of Somma-Vesuvius, allowed reconstructing its volcanic and magmatic history in a previous study. In this work, the wide range of chemical (Mg# = 92–69) and isotopic (87Sr/86Sr = 0.70781–0.70681) compositions, collected on single clinopyroxene crystals separated from selected lava flow units of the Camaldoli della Torre sequence, have been integrated with the already available bulk geochemical and Sr-isotopic data. The detected chemical and isotopic signatures and their variation through time allow us to better constrain the behavior of the volcano magmatic feeding system, highlighting that mixing and/or assimilation processes occurred before a significant change in the eruptive dynamics at Somma-Vesuvius during a period of polycyclic caldera formation, starting with the Pomici di Base Plinian eruption (ca. 22 ka). Full article
Show Figures

Figure 1

22 pages, 10057 KiB  
Article
Geochemical Indication of Functional Zones at the Archaeological Sites of Eastern Europe
by Marianna Kulkova
Minerals 2022, 12(9), 1075; https://doi.org/10.3390/min12091075 - 25 Aug 2022
Cited by 4 | Viewed by 1527
Abstract
The article considers a new approach for determining the functional zones of the prehistoric archaeological sites in Eastern Europe by the method of geochemical indication: the use of mathematical statistics for processing the geochemical data of cultural deposits at archaeological sites, and the [...] Read more.
The article considers a new approach for determining the functional zones of the prehistoric archaeological sites in Eastern Europe by the method of geochemical indication: the use of mathematical statistics for processing the geochemical data of cultural deposits at archaeological sites, and the identification of groups of interrelated chemical elements and compounds that reflects the processes of natural sedimentation and anthropogenic activity. It makes it possible to separate the lithological and anthropogenic components. This approach is important for the identification of geochemical element groups associated with different functional zones. The reconstructions were conducted at the Neolithic, Early Metal Age, and the Bronze-Early Iron Age sites in Eastern Europe. Abnormal concentrations of the association (P2O5antr, CaOantr and Srantr) in sediments are attributed to zones of accumulation of bone remains. Anomalous concentrations of a group of elements (K2Oantr, Rbantr) in deposits are associated with wood ash and fireplaces, ash residues from ritual activities, and fires. The group of elements (Ba, MnO, Corg) reflects the accumulation of humus and organic remains, and can characterize areas with food residues, skins, and rotten wood. With the help of the distribution of the main lithological elements (SiO2, Al2O3) in sediments, it is possible to reconstruct the paleorelief at the sites. Full article
(This article belongs to the Special Issue Environment and Geochemistry of Sediments)
Show Figures

Figure 1

14 pages, 1481 KiB  
Article
Coal Feed-Dependent Variation in Fly Ash Chemistry in a Single Pulverized-Combustion Unit
by James C. Hower, John G. Groppo, Shelley D. Hopps, Tonya D. Morgan, Heileen Hsu-Kim and Ross K. Taggart
Minerals 2022, 12(9), 1071; https://doi.org/10.3390/min12091071 - 24 Aug 2022
Cited by 3 | Viewed by 1548
Abstract
Four suites of fly ash, all generated at the same power plant, were selected for the study of the distribution of rare earth elements (REE). The fly ashes represented two runs of single-seam/single-mine coals and two runs of run-of-mine coals representing several coal [...] Read more.
Four suites of fly ash, all generated at the same power plant, were selected for the study of the distribution of rare earth elements (REE). The fly ashes represented two runs of single-seam/single-mine coals and two runs of run-of-mine coals representing several coal seams from several mines. Plots of the upper continental crust-normalized REE, other parameters derived from the normalization, and the principal components analysis of the derived REE parameters (including the sum of the lanthanides plus yttrium and the ratio of the light to heavy REE) all demonstrated that the relatively rare earth-rich Fire Clay coal-derived fly ashes have a different REE distribution, with a greater concentration of REE with a relative dominance of the heavy REE, than the other fly ashes. Particularly with the Fire Clay coal-derived fly ashes, there is a systematic partitioning of the overall amount and distribution of the REE in the passage from the mechanical fly ash collection through to the last row of the electrostatic precipitator hoppers. Full article
Show Figures

Figure 1

22 pages, 7810 KiB  
Article
Deep Learning Optimized Dictionary Learning and Its Application in Eliminating Strong Magnetotelluric Noise
by Guang Li, Xianjie Gu, Zhengyong Ren, Qihong Wu, Xiaoqiong Liu, Liang Zhang, Donghan Xiao and Cong Zhou
Minerals 2022, 12(8), 1012; https://doi.org/10.3390/min12081012 - 12 Aug 2022
Cited by 10 | Viewed by 3026
Abstract
The noise suppression method based on dictionary learning has shown great potential in magnetotelluric (MT) data processing. However, the constraints used in the existing algorithm’s method need to set manually, which significantly limits its application. To solve this problem, we propose a deep [...] Read more.
The noise suppression method based on dictionary learning has shown great potential in magnetotelluric (MT) data processing. However, the constraints used in the existing algorithm’s method need to set manually, which significantly limits its application. To solve this problem, we propose a deep learning optimized dictionary learning denoising method. We use a deep convolutional network to learn the characteristic parameters of high-quality MT data independently and then use them as the constraints for dictionary learning so as to achieve fully adaptive sparse decomposition. The method uses unified parameters for all data and completely eliminates subjective bias, which makes it possible to batch-process MT data using sparse decomposition. The processing results of simulated and field data examples show that the new method has good adaptability and can achieve recognition with high accuracy. After processing with our method, the apparent resistivity and phase curves became smoother and more continuous, and the results were validated by the remote reference method. Our method can be an effective alternative method when no remote reference station is set up or the remote reference processing is not effective. Full article
(This article belongs to the Special Issue Electromagnetic Exploration: Theory, Methods and Applications)
Show Figures

Figure 1

18 pages, 2080 KiB  
Review
Data Quality in Geochemical Elemental and Isotopic Analysis
by V. Balaram and M. Satyanarayanan
Minerals 2022, 12(8), 999; https://doi.org/10.3390/min12080999 - 8 Aug 2022
Cited by 11 | Viewed by 2746
Abstract
Appropriate sampling, sample preparation, choosing the right analytical instrument, analytical methodology, and adopting proper data generation protocols are essential for generating data of the required quality for both basic and applied geochemical research studies. During the last decade, instrumental advancements, in particular further [...] Read more.
Appropriate sampling, sample preparation, choosing the right analytical instrument, analytical methodology, and adopting proper data generation protocols are essential for generating data of the required quality for both basic and applied geochemical research studies. During the last decade, instrumental advancements, in particular further developments in ICP-MS, such as the use of tandem ICP-MS, high-resolution mass spectrometry to resolve several interferences, and the use of the second path with a collision/reaction cell in multi-collector ICP-MS (MC-ICP-MS) to effectively resolve interferences, have brought in remarkable improvements in accuracy and precision in both elemental and isotopic analyses. The availability of a number of well-characterized geological certified reference samples having both elemental and isotopic data-enabled matrix-matching calibrations and contributed to the quality and traceability of the geochemical data in several cases. There have been some developments in the sample dissolution methods also. A range of quality issues related to sampling, packaging and transport, powdering, dissolution, the application of suitable instrumental analytical techniques, calibration methods, accuracy, and precision are addressed which are helpful in geochemical studies. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

25 pages, 5971 KiB  
Article
Origin of Historical Ba-Rich Slags Related to Pb-Ag Production from Jihlava Ore District (Czech Republic)
by Jaroslav Kapusta, Zdeněk Dolníček, Ondra Sracek and Karel Malý
Minerals 2022, 12(8), 985; https://doi.org/10.3390/min12080985 - 2 Aug 2022
Cited by 2 | Viewed by 2033
Abstract
The aim of this study was to characterize historical slags which originated during silver production from the Jihlava ore district, Czech Republic. The area was among the head producers of silver within the Lands of the Czech Crown in 13th–14th centuries. The mined [...] Read more.
The aim of this study was to characterize historical slags which originated during silver production from the Jihlava ore district, Czech Republic. The area was among the head producers of silver within the Lands of the Czech Crown in 13th–14th centuries. The mined ores had complex composition, being formed mostly by pyrite, sphalerite, galena, chalcopyrite, and accessory silver-rich minerals such as silver-bearing tetrahedrite (freibergite) or pyrargyrite, with gangue represented by quartz and Mn-rich carbonates or baryte. Large volumes of slags with contrasting composition were generated during the Pb-Ag production. Altogether, two main types of slags were identified in the district. The first type is characterized by high BaO contents (up to 34.5 wt.%) and dominancy of glass, minor quartz, and accessory amounts of Ba-rich feldspar (up to 93 mol.% of Cls), metal-rich inclusions, Ba-Pb sulphates and only rare pyroxene, wollastonite and melilite. The composition of the second group belongs to fayalitic slags containing glass, Fe-rich olivine, accessory pyroxene, feldspar, quartz, and inclusions of various metallic phases. Fluxes were derived from gangue (quartz, carbonates, baryte) or local host rocks for both types of slag. The calculated viscosity indexes reflect (with minor exceptions) medium-to-high effectivity of metal separation. Smelting temperatures were estimated from a series of ternary plots; however, more reliable estimates for both types of slags were obtained only from experimental determination of melting temperature and calculations using bulk/glass compositions (~1100–1200 °C). Full article
(This article belongs to the Special Issue Applications of Geochemistry in Archaeology)
Show Figures

Figure 1

23 pages, 2489 KiB  
Review
Application of Raman Spectroscopy for Studying Shocked Zircon from Terrestrial and Lunar Impactites: A Systematic Review
by Dmitry A. Zamyatin
Minerals 2022, 12(8), 969; https://doi.org/10.3390/min12080969 - 29 Jul 2022
Cited by 4 | Viewed by 2337
Abstract
A highly resistant mineral, zircon is capable of preserving information about impact processes. The present review paper is aimed at determining the extent to which Raman spectroscopy can be applied to studying shocked zircons from impactites to identify issues and gaps in the [...] Read more.
A highly resistant mineral, zircon is capable of preserving information about impact processes. The present review paper is aimed at determining the extent to which Raman spectroscopy can be applied to studying shocked zircons from impactites to identify issues and gaps in the usage of Raman spectroscopy, both in order to highlight recent achievements, and to identify the most effective applications. Method: Following PRISMA guidelines, the review is based on peer-reviewed papers indexed in Google Scholar, Scopus and Web of Science databases up to 5 April 2022. Inclusion criteria: application of Raman spectroscopy to the study of shocked zircon from terrestrial and lunar impactites. Results: A total of 25 research papers were selected. Of these, 18 publications studied terrestrial impact craters, while 7 publications focused on lunar breccia samples. Nineteen of the studies were focused on the acquisition of new data on geological structures, while six examined zircon microstructures, their textural and spectroscopic features. Conclusions: The application of Raman spectroscopy to impactite zircons is linked with its application to zircon grains of various terrestrial rocks and the progress of the electron backscatter diffraction (EBSD) technique in the early 2000s. Raman spectroscopy was concluded to be most effective when applied to examining the degree of damage, as well as identifying phases and misorientation in zircon. Full article
Show Figures

Figure 1

20 pages, 5195 KiB  
Article
Recovery of Rare Earth Elements from Mining Tailings: A Case Study for Generating Wealth from Waste
by Luver Echeverry-Vargas and Luz Marina Ocampo-Carmona
Minerals 2022, 12(8), 948; https://doi.org/10.3390/min12080948 - 28 Jul 2022
Cited by 18 | Viewed by 5077
Abstract
The growing demand for rare earth elements (REE) driven by their applications in modern technologies has caused the need to search for alternative sources of these elements as their extraction from traditional deposits is limited. A potential source of light rare earth elements [...] Read more.
The growing demand for rare earth elements (REE) driven by their applications in modern technologies has caused the need to search for alternative sources of these elements as their extraction from traditional deposits is limited. A potential source of light rare earth elements (LREE) may be the monazite present in the mining waste generated in the Bagre-Nechí mining district in Colombia due to the processing of sands containing alluvial gold. Consequently, in this research, a systematic evaluation has been carried out for the extraction of Ce, La, and Nd from a leach liquor obtained from monazite present in alluvial gold mining tailings. The leaching process carried out with HCl indicated the recovery of approximately 90% of La and Nd and 60% of Ce; the solvent extraction tests of these elements showed that increasing the contact time and pH of the leaching liquor positively affects the extraction of lanthanum, cerium, and neodymium, achieving extractions close to 100% with D2EHPA and to a lesser extent with Cyanex572. McCabe–Thiele diagrams for extraction with D2EHPA indicated the requirement of three stages for the extraction of Ce, La and Nd. Full article
Show Figures

Figure 1

13 pages, 3764 KiB  
Article
The Heavy Mineral Map of Australia: Vision and Pilot Project
by Patrice de Caritat, Brent I. A. McInnes, Alexander T. Walker, Evgeniy Bastrakov, Stephen M. Rowins and Alexander M. Prent
Minerals 2022, 12(8), 961; https://doi.org/10.3390/min12080961 - 28 Jul 2022
Cited by 3 | Viewed by 3859
Abstract
We describe a vision for a national-scale heavy mineral (HM) map generated through automated mineralogical identification and quantification of HMs contained in floodplain sediments from large catchments covering most of Australia. The composition of the sediments reflects the dominant rock types in each [...] Read more.
We describe a vision for a national-scale heavy mineral (HM) map generated through automated mineralogical identification and quantification of HMs contained in floodplain sediments from large catchments covering most of Australia. The composition of the sediments reflects the dominant rock types in each catchment, with the generally resistant HMs largely preserving the mineralogical fingerprint of their host protoliths through the weathering-transport-deposition cycle. Heavy mineral presence/absence, absolute and relative abundance, and co-occurrence are metrics useful to map, discover and interpret catchment lithotype(s), geodynamic setting, magmatism, metamorphic grade, alteration and/or mineralization. Underpinning this vision is a pilot project, focusing on a subset from the national sediment sample archive, which is used to demonstrate the feasibility of the larger, national-scale project. We preview a bespoke, cloud-based mineral network analysis (MNA) tool to visualize, explore and discover relationships between HMs as well as between them and geological settings or mineral deposits. We envisage that the Heavy Mineral Map of Australia and MNA tool will contribute significantly to mineral prospectivity analysis and modeling, particularly for technology critical elements and their host minerals, which are central to the global economy transitioning to a more sustainable, lower carbon energy model. Full article
(This article belongs to the Special Issue Feature Papers in Mineral Exploration Methods and Applications 2022)
Show Figures

Figure 1

15 pages, 5399 KiB  
Article
An Assessment of the Role of Combined Bulk Micro- and Nano-Bubbles in Quartz Flotation
by Shaoqi Zhou, Yang Li, Sabereh Nazari, Xiangning Bu, Ahmad Hassanzadeh, Chao Ni, Yaqun He and Guangyuan Xie
Minerals 2022, 12(8), 944; https://doi.org/10.3390/min12080944 - 27 Jul 2022
Cited by 15 | Viewed by 2332
Abstract
Bulk micro-nano-bubbles (BMNBs) have been proven to be effective at improving the flotation recovery and kinetics of fine-grained minerals. However, there is currently no research reported on the correlation between the properties of BMNBs and flotation performance. For this purpose, aqueous dispersions with [...] Read more.
Bulk micro-nano-bubbles (BMNBs) have been proven to be effective at improving the flotation recovery and kinetics of fine-grained minerals. However, there is currently no research reported on the correlation between the properties of BMNBs and flotation performance. For this purpose, aqueous dispersions with diverse properties were created by altering preparation time (0, 1, 2, 3, 5, and 7 min), aeration rate (0, 0.5, 1, 1.5, and 2 L/min) and aging time (0, 0.5, 1, and >3 min). Micro- and nano-bubbles were characterized using focused beam reflection measurements (FBRM) and nanoparticle tracking analysis (NTA), respectively. The micro-flotation of quartz particles was performed using an XFG-cell in the presence and absence of BMNBs with Cetyltrimethylammonium bromide (CTAB) as a collector. The characterization of bubble sizes showed that the bulk micro-bubble (BMB) and bulk nanobubble (BNB) diameters ranged from 1–10 μm and 50–400 nm, respectively. It was found that the preparation parameters and aging time considerably affected the number of generated bubbles. When BNBs and BMBs coexisted, the recovery of fine quartz particles significantly improved (about 7%), while in the presence of only BNBs the promotion of flotation recovery was not significant (2%). This was mainly related to the aggregate via bridging, which was an advantage for quartz flotation. In comparison, no aggregates were detected when only nano-bubbles were present in the bulk solution. Full article
(This article belongs to the Special Issue Hydrodynamics and Gas Dispersion in Flotation)
Show Figures

Figure 1

21 pages, 6107 KiB  
Article
Charge Distribution and Bond Valence Sum Analysis of Sulfosalts—The ECoN21 Computer Program
by Gheorghe Ilinca
Minerals 2022, 12(8), 924; https://doi.org/10.3390/min12080924 - 22 Jul 2022
Cited by 3 | Viewed by 1732
Abstract
The charge distribution (CD) and the bond valence sum (BVS) methods are used to calculate the charges assignable to atomic positions in crystal structures, based on the distribution of bond lengths. Discrepancies between calculated and formal charges may point to errors in the [...] Read more.
The charge distribution (CD) and the bond valence sum (BVS) methods are used to calculate the charges assignable to atomic positions in crystal structures, based on the distribution of bond lengths. Discrepancies between calculated and formal charges may point to errors in the determination of atomic coordinates, in the initial allocation of oxidation numbers, occupancies, or site populations. Unlike the BVS method, which has been frequently used for the validation and interpretation of sulfosalt crystal structures, the CD method has been scarcely and limitedly employed for this group of minerals. In this paper, the applicability of the CD method to sulfosalts is practically tested for the first time. The calculation is made using ECoN21—a novel software tool designed for CD, BVS, and general coordination geometry analysis of crystal structures. The program addresses normal valence compounds with distorted homoligand or heteroligand polyhedra in both cation- and anion-centered descriptions. The program is also able to calculate a comprehensive set of parameters describing the internal and external distortion of coordination polyhedra. The paper presents the background of the CD, BVS, and coordination geometry calculations, as well as several case studies focusing on various applications of these methods to sulfosalts. Full article
Show Figures

Figure 1

19 pages, 11716 KiB  
Article
Ion and Particle Size Effects on the Surface Reactivity of Anatase Nanoparticle–Aqueous Electrolyte Interfaces: Experimental, Density Functional Theory, and Surface Complexation Modeling Studies
by Moira K. Ridley, Michael L. Machesky and James D. Kubicki
Minerals 2022, 12(7), 907; https://doi.org/10.3390/min12070907 - 20 Jul 2022
Cited by 1 | Viewed by 1785
Abstract
At the nanoscale, particle size affects the surface reactivity of anatase–water interfaces. Here, we investigate the effect of electrolyte media and particle size on the primary charging behavior of anatase nanoparticles. Macroscopic experiments, potentiometric titrations, were used to quantitatively evaluate surface charge of [...] Read more.
At the nanoscale, particle size affects the surface reactivity of anatase–water interfaces. Here, we investigate the effect of electrolyte media and particle size on the primary charging behavior of anatase nanoparticles. Macroscopic experiments, potentiometric titrations, were used to quantitatively evaluate surface charge of a suite of monodisperse nanometer sized (4, 20, and 40 nm) anatase samples in five aqueous electrolyte solutions. The electrolyte media included alkaline chloride solutions (LiCl, NaCl, KCl, and RCl) and Na-Trifluoromethanesulfonate (NaTr). Titrations were completed at 25 °C, as a function of pH (3–11) and ionic strength (from 0.005 to 0.3 m). At the molecular scale, density functional theory (DFT) simulations were used to evaluate the most stable cation surface species on the predominant (101) anatase surface. In all electrolyte media, primary charging increased with increasing particle size. At high ionic strength, the development of negative surface charge followed reverse lyotropic behavior: charge density increased in the order RbCl < KCl < NaCl < LiCl. Positive surface charge was greater in NaCl than in NaTr media. From the DFT simulations, all cations formed inner-sphere surface species, but the most stable coordination geometry varied. The specific inner-sphere adsorption geometries are dependent on the ionic radius. The experimental data were described using surface complexation modeling (SCM), constrained by the DFT results. The SCM used the charge distribution (CD) and multisite (MUSIC) models, with a two-layer (inner- and outer-Helmholtz planes) description of the electric double layer. Subtle charging differences between the smallest and larger anatase particles were the same in each electrolyte media. These results further our understanding of solid–aqueous solution interface reactivity of nanoparticles. Full article
Show Figures

Figure 1

27 pages, 4870 KiB  
Article
Quaternary Glauconitization on Gulf of Guinea, Glauconite Factory: Overview of and New Data on Tropical Atlantic Continental Shelves and Deep Slopes
by Pierre Giresse
Minerals 2022, 12(7), 908; https://doi.org/10.3390/min12070908 - 20 Jul 2022
Cited by 10 | Viewed by 2649
Abstract
For a long time, particular attention was paid to glauconitization in the surficial sediments lying on the outer continental shelves of present oceans. Subsequently, the processes observed and analyzed may have served as models for studies of glauconite in Cenozoic or even Mesozoic [...] Read more.
For a long time, particular attention was paid to glauconitization in the surficial sediments lying on the outer continental shelves of present oceans. Subsequently, the processes observed and analyzed may have served as models for studies of glauconite in Cenozoic or even Mesozoic shelf deposits. Access to the sedimentary domains of deep oceans, particularly those of contouritic accumulation fields, has made it possible to discover unexpected processes of glauconitization. Thus, the long-term prevalence of control using fairly high-temperature water has become obsolete, and the prerequisite influence of continental flows has come to be considered on a new scale. Frequently, sediments from contouritic accumulation provide a condensed and undisturbed sedimentary record without periods of sediment erosion. Glauconitic grains could possibly integrate the signatures of bottom-water masses over prolonged periods of time, which, while preventing their use in high-resolution studies, would provide an effective means of yielding reliable average estimates on past εNd signatures of bottom-water masses. In this regard, glauconitic grains are probably better-suited to paleoceanographic reconstructions than foraminifera and leached Fe-oxyhydroxide fractions, which appear to be influenced by sediment redistribution and the presence of terrestrial continental Fe-oxides, respectively. Direct methodological access to the compositions of the semi-confined microenvironments of neoformation has largely renewed the information, chemical or crystallographic, that was previously, and for a long time, restricted to macromeasurements. The various granular supports (mudclasts, fecal pellets, and foraminifera infillings) include inherited 1:1 clays (or Te-Oc; i.e., clay minerals consisting of one tetrahedral sheet and one octahedral sheet, such as kaolinite) that are gradually replaced by 2:1 clays (Te-Oc-Te) dominated first by smectite, and then by glauconite. In small pores, the water’s activity is diminished; as a consequence, the precipitation of a great number of mineral species is thereby made easier, and their stability domains are changed. A specific methodological approach allows the study of the mineralogy and chemistry of the fine-scale mineral phases and to avoid the global aspect of the analytical methods previously used in the initial studies. Wide-field micrographs taken at a mean direct magnification of 100.000 show the intimate and characteristic organization of the main phases that occur in a single grain. One or several “fine” (about 10 nanometers in scale) microchemical analyses can be recorded, and directly coupled with each interesting and well-identified structure image observed in HRTEM. Full article
(This article belongs to the Special Issue Formation and Evolution of Glauconite. New Scale Approach)
Show Figures

Graphical abstract

20 pages, 5942 KiB  
Article
Evolution of the Reaction and Alteration of Granite with Ordinary Portland Cement Leachates: Sequential Flow Experiments and Reactive Transport Modelling
by Keith Bateman, Shota Murayama, Yuji Hanamachi, James Wilson, Takamasa Seta, Yuki Amano, Mitsuru Kubota, Yuji Ohuchi and Yukio Tachi
Minerals 2022, 12(7), 883; https://doi.org/10.3390/min12070883 - 13 Jul 2022
Cited by 2 | Viewed by 1538
Abstract
The construction of a repository for the geological disposal of radioactive waste will include the use of cement-based materials. Following closure, groundwater will saturate the repository, and the extensive use of cement will result in the development of a highly alkaline porewater, pH [...] Read more.
The construction of a repository for the geological disposal of radioactive waste will include the use of cement-based materials. Following closure, groundwater will saturate the repository, and the extensive use of cement will result in the development of a highly alkaline porewater, pH > 12.5; this fluid will migrate into and react with the host rock. The chemistry of the fluid will evolve over time, initially with high Na and K concentrations, evolving to a Ca-rich fluid, and finally returning to the natural background groundwater composition. This evolving chemistry will affect the long-term performance of the repository, altering the physical and chemical properties, including radionuclide behaviour. Understanding these changes forms the basis for predicting the long-term evolution of the repository. This study focused on the determination of the nature and extent of the chemical reaction, as well as the formation and persistence of secondary mineral phases within a granite, comparing data from sequential flow experiments with the results of reactive transport modelling. The reaction of the granite with the cement leachates resulted in small changes in pH and the precipitation of calcium aluminium silicate hydrate (C-(A-)S-H) phases of varying compositions, of greatest abundance with the Ca-rich fluid. As the system evolved, secondary C-(A-)S-H phases redissolved, partly replaced by zeolites. This general sequence was successfully simulated using reactive transport modelling. Full article
Show Figures

Figure 1

23 pages, 11379 KiB  
Article
Assessment of the Effect of Organic Matter on Rare Earth Elements and Yttrium Using the Zhijin Early Cambrian Phosphorite as an Example
by Shengwei Wu, Haiying Yang, Haifeng Fan, Yong Xia, Qingtian Meng, Shan He and Xingxiang Gong
Minerals 2022, 12(7), 876; https://doi.org/10.3390/min12070876 - 12 Jul 2022
Cited by 6 | Viewed by 1753
Abstract
The geochemistry of rare earth elements and yttrium (REY) in phosphorite has been widely studied. However, the effect of organic matter on REY enrichment has not been well determined. We utilized paired inorganic (δ13Ccarb) and organic (δ13C [...] Read more.
The geochemistry of rare earth elements and yttrium (REY) in phosphorite has been widely studied. However, the effect of organic matter on REY enrichment has not been well determined. We utilized paired inorganic (δ13Ccarb) and organic (δ13Ccarb) carbon isotopes, total organic carbon (TOC), and REY content (∑REY) of the Zhijin Motianchong (MTC) phosphorite and compared them with those of Meishucun (MSC) phosphorite to reveal the effect of organic matter on REY. The δ13Ccarb of the MTC area (≈0‰) is heavier than that of the MSC area (−5.23‰ to −1.13‰), whereas δ13Corg is lighter (−33.85‰ to −26.34‰) in MTC than in MSC (−32.95‰ to −25.50‰). Decoupled δ13Ccarb and δ13Corg in MTC indicate the contribution of chemoautotrophic organisms or methanotrophic bacteria. Compared to the MSC phosphorite, the MTC phosphorite has higher ∑REY and TOC, and these parameters have a positive relationship. MTC phosphorite has REY patterns resembling those of contemporary organic matter. Furthermore, dolomite cement has a higher ∑REY than dolomite in the phosphorus-bearing dolostone. Additionally, pyrites are located on the surface of fluorapatite in the Zhijin phosphorites. It is reasonable to suggest that the REY was released into the pore water owing to the anaerobic oxidation of organic matter at the interface between seawater and sediment, resulting in the REY enrichment of Zhijin phosphorites. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

14 pages, 3730 KiB  
Article
Fe(III)–Chitosan Microbeads for Adsorptive Removal of Cr(VI) and Phosphate Ions
by Swati A. Tandekar, Manoj A. Pande, Anita Shekhawat, Elvis Fosso-Kankeu, Sadanand Pandey and Ravin M. Jugade
Minerals 2022, 12(7), 874; https://doi.org/10.3390/min12070874 - 11 Jul 2022
Cited by 12 | Viewed by 1843
Abstract
Fe(III)–chitosan microbeads (Fe–CTB) were prepared using a chemical coprecipitation method. SEM–EDX, FTIR, XRD, TGA, BET, and pH pzc were performed for the characterization of the adsorbent. Various parameters were optimized as pH, adsorption time, adsorbent dose, initial Cr(VI), and PO43− ion [...] Read more.
Fe(III)–chitosan microbeads (Fe–CTB) were prepared using a chemical coprecipitation method. SEM–EDX, FTIR, XRD, TGA, BET, and pH pzc were performed for the characterization of the adsorbent. Various parameters were optimized as pH, adsorption time, adsorbent dose, initial Cr(VI), and PO43− ion concentration and the effect of assorted ions for adsorption studies. Fe–CTB microbeads revealed more than 80% detoxification for a 100 mg L−1 initial concentration at pH 3 with 60 min stirring of Cr(VI) and PO43− ion having adsorption capacities of 34.15 and 32.27 mg g−1, respectively. The adsorption process for Cr(VI) and PO43− ion followed the monolayer adsorption as they favored the Langmuir isotherm model. Kinetic and thermodynamic studies’ emphasis on the adsorption process was spontaneous and exothermic with pseudo-second-order kinetics for both adsorbates. The microbeads were found to be reusable in multiple cycles. Full article
Show Figures

Figure 1

15 pages, 2214 KiB  
Article
Adsorption of Cs(I) and Sr(II) on Bentonites with Different Compositions at Different pH
by Yulia Izosimova, Irina Gurova, Inna Tolpeshta, Michail Karpukhin, Sergey Zakusin, Olga Zakusina, Alexey Samburskiy and Victoria Krupskaya
Minerals 2022, 12(7), 862; https://doi.org/10.3390/min12070862 - 7 Jul 2022
Cited by 7 | Viewed by 2203
Abstract
This paper deals with adsorption regularities and mechanisms of nonradioactive Cs(I) and Sr(II) analogs on bentonites of different chemical and mineral composition from solutions of Cs and Sr nitrates with pH 3, 7, and 10 units at constant ionic strength. The bentonites were [...] Read more.
This paper deals with adsorption regularities and mechanisms of nonradioactive Cs(I) and Sr(II) analogs on bentonites of different chemical and mineral composition from solutions of Cs and Sr nitrates with pH 3, 7, and 10 units at constant ionic strength. The bentonites were taken from the deposits Taganskoe (T), Dash-Salakhlinskoe (DS), Zyryanskoe (Z), and 10th Khutor (10H). The pH of bentonite aqueous suspensions, T and DS, exceeded 9 units. A less alkaline reaction was observed in bentonite suspensions Z and T with pH 8.94 and 7.70, respectively. Bentonites T and DS contained significant amounts of nonsilicate iron compounds, 1.0 and 0.5%, respectively. The recovery rate of the studied clays from aqueous solutions of Cs(I) and Sr(II) ions in concentrations from 0.25 to 5 mmol/L varied from 50% to 90% and decreased in the following order: “Ta-ganskoe” > “Dash-Salakhlinskoe” > “Zyryanskoe” > “10th Khutor” in the studied pH range. The main mechanism of Cs(I) and Sr(II) sorption in the studied pH range was cation fixation in the form of outer-sphere complexes on planar surfaces resulting from ion exchange. Increasing pH (pH > 6) enhanced pH-dependent positions, which allowed Cs(I) and especially Sr(II) ions to fix on them more firmly as inner-sphere complexes. At pH 9–10, Sr(II) could precipitate in the form of carbonates. The sorption of Cs(I) + and Sr(II) was accompanied by competitive interactions with proton at pH < 6 and Na+, Ca2+, Mg2+, and K+ cations at higher pH values. This competition was more apparent at concentrations of Cs(I)and Sr(II) in initial solutions < 0.5 mmol/L. The ability of bentonite T to sorb Cs(I) and Sr(II) in large amounts compared to the other bentonites was determined by high CEC values and charge of smectite T. Full article
Show Figures

Figure 1

19 pages, 4187 KiB  
Review
Evolution of Sulfidic Legacy Mine Tailings: A Review of the Wheal Maid Site, UK
by Verity Fitch, Anita Parbhakar-Fox, Richard Crane and Laura Newsome
Minerals 2022, 12(7), 848; https://doi.org/10.3390/min12070848 - 1 Jul 2022
Cited by 2 | Viewed by 3114
Abstract
Historic tailings dams and their associated mine waste can pose a significant risk to human and environmental health. The Wheal Maid mine site, Cornwall, UK, serves as an example of the temporal evolution of a tailings storage facility after mining has ceased and [...] Read more.
Historic tailings dams and their associated mine waste can pose a significant risk to human and environmental health. The Wheal Maid mine site, Cornwall, UK, serves as an example of the temporal evolution of a tailings storage facility after mining has ceased and the acid-generating waste subjected to surficial processes. This paper discusses its designation as a contaminated land site and reviews our current understanding of the geochemistry, mineralogy, and microbiology of the Wheal Maid tailings, from both peer-reviewed journal articles and unpublished literature. We also present new data on waste characterisation and detailed mineral chemistry and data from laboratory oxidation experiments. Particularly of interest at Wheal Maid is the presence of pyrite-bearing “Grey Tailings”, which, under typical environmental conditions at the Earth’s surface, would be expected to have undergone oxidation and subsequently formed acidic and metalliferous mine drainage (AMD). The results identified a number of mechanisms that could explain the lack of pyrite oxidation in the Grey Tailings, including a lack of nutrients inhibiting microbial Fe(II) oxidation, passivation of pyrite mineral surfaces with tailings processing chemicals, and an abundance of euhedral pyrite grains. Such research areas need further scrutiny in order to inform the design of future tailings facilities and associated AMD management protocols. Full article
(This article belongs to the Special Issue Management of Abandoned Mine)
Show Figures

Graphical abstract

36 pages, 6206 KiB  
Article
Electron Probe Microanalysis and Microscopy of Polishing-Exposed Solid-Phase Mineral Inclusions in Fuxian Kimberlite Diamonds
by Donggao Zhao
Minerals 2022, 12(7), 844; https://doi.org/10.3390/min12070844 - 30 Jun 2022
Viewed by 2769
Abstract
Solid-phase mineral inclusions in diamond (1–3 mm in diameter) from the No. 50 kimberlite diatreme of Liaoning Province, China, were exposed by polishing. A variety of silicate, carbonate and sulfide inclusions were recovered in the diamond. The common solid-phase inclusions are olivine, chromite, [...] Read more.
Solid-phase mineral inclusions in diamond (1–3 mm in diameter) from the No. 50 kimberlite diatreme of Liaoning Province, China, were exposed by polishing. A variety of silicate, carbonate and sulfide inclusions were recovered in the diamond. The common solid-phase inclusions are olivine, chromite, garnet and orthopyroxene; the rare phases include Ca carbonate, magnesite, dolomite, norsethite, pyrrhotite, pentlandite, troilite, a member of the linnaeite group, an unknown hydrous magnesium silicate and an Fe-rich phase. Abundance and composition of the solid-phase inclusions in diamond indicate that they belong to the peridotitic suite and are mainly harzburgitic. No eclogitic mineral inclusions were found in the diamond. The slightly lower Mg # of the olivine inclusions (peak at 93) than that of harzburgitic olivine inclusions worldwide (Mg # peak at 94), the higher Ni content (0.25–0.45 wt. %) of the olivine inclusions than those of olivine inclusions worldwide (0.30–0.40 wt. %), the higher Ti contents (up to 0.79 wt. %) in some chromite inclusions in diamond than those in chromite inclusions worldwide, the existence of carbonate inclusions in diamond, and the possible presence of hydrous silicate phases in diamond all indicate a metasomatic enrichment event in the source region of diamond beneath the North China craton, suggesting that the diamond probably formed by solid-state growth under metasomatic conditions with the presence of a fluid. Solid-state growth of diamond is also supported by abundant graphite inclusions in the diamond. Sulfide inclusions in diamond often coexist with chromite and olivine or are rich in Ni content, indicating that the sulfide inclusions belong to the peridotitic suite. From the chemical compositions, most sulfide inclusions in diamond from the No. 50 kimberlite were probably trapped as monosulfide crystals, although some may have been entrapped as melts. Full article
(This article belongs to the Special Issue Electron Microbeam and X-ray Techniques: Advances and Applications)
Show Figures

Figure 1

13 pages, 33640 KiB  
Article
A New Approach Determining a Phase Transition Boundary Strictly Following a Definition of Phase Equilibrium: An Example of the Post-Spinel Transition in Mg2SiO4 System
by Takayuki Ishii, Artem Chanyshev and Tomoo Katsura
Minerals 2022, 12(7), 820; https://doi.org/10.3390/min12070820 - 28 Jun 2022
Cited by 4 | Viewed by 2007
Abstract
The Clapeyron slope is the slope of a phase boundary in P–T space and is essential for understanding mantle dynamics and evolution. The phase boundary is delineating instead of balancing a phase transition’s normal and reverse reactions. Many previous high pressure–temperature experiments determining [...] Read more.
The Clapeyron slope is the slope of a phase boundary in P–T space and is essential for understanding mantle dynamics and evolution. The phase boundary is delineating instead of balancing a phase transition’s normal and reverse reactions. Many previous high pressure–temperature experiments determining the phase boundaries of major mantle minerals experienced severe problems due to instantaneous pressure increase by thermal pressure, pressure drop during heating, and sluggish transition kinetics. These complex pressure changes underestimate the transition pressure, while the sluggish kinetics require excess pressures to initiate or proceed with the transition, misinterpreting the phase stability and preventing tight bracketing of the phase boundary. Our recent study developed a novel approach to strictly determine phase stability based on the phase equilibrium definition. Here, we explain the details of this technique, using the post-spinel transition in Mg2SiO4 determined by our recent work as an example. An essential technique is to observe the change in X-ray diffraction intensity between ringwoodite and bridgmanite + periclase during the spontaneous pressure drop at a constant temperature and press load with the coexistence of both phases. This observation removes the complicated pressure change upon heating and kinetic problem, providing an accurate and precise phase boundary. Full article
Show Figures

Figure 1

17 pages, 1176 KiB  
Review
Sustainable Production of Rare Earth Elements from Mine Waste and Geoethics
by Marouen Jouini, Alexandre Royer-Lavallée, Thomas Pabst, Eunhyea Chung, Rina Kim, Young-Wook Cheong and Carmen Mihaela Neculita
Minerals 2022, 12(7), 809; https://doi.org/10.3390/min12070809 - 25 Jun 2022
Cited by 10 | Viewed by 4471
Abstract
The vulnerability of the rare earth element (REE) supply in a global context of increasing demands entails important economic and political issues, and has encouraged several countries to develop their own REE production projects. This study comparatively evaluated the production of REEs from [...] Read more.
The vulnerability of the rare earth element (REE) supply in a global context of increasing demands entails important economic and political issues, and has encouraged several countries to develop their own REE production projects. This study comparatively evaluated the production of REEs from primary and secondary resources in terms of their sustainability and contribution to the achievement of the Geoethics concept as responsibility towards oneself, colleagues, society, and the Earth system. Twelve categories of potential environmental and social impacts were selected: human health toxicity, global warming or climate change, terrestrial and aquatic eutrophication, acidification potential, particulate matter, resource depletion, water consumption, fresh water ecotoxicity, ionizing radiation, fossil fuel consumption, and ozone depletion. The results showed that the environmental impact of REE production from secondary sources is much lower relative to primary sources. A comparison of conventional and non-conventional REE resources showed that significant impact categories were related to particulate matter formation, abiotic resource depletion, and fossil fuel depletion, which could result from avoiding the tailings disposal before reuse. Based on these findings, governments and stakeholders should be encouraged to increase the recycling of secondary REE sources with Geoethics in mind, in order to balance the high demand of REEs while minimizing the overexploitation of non-renewable resources. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 15762 KiB  
Article
Unravelling the Deformation of Paleoproterozoic Marbles and Zn-Pb Ore Bodies by Combining 3D-Photogeology and Hyperspectral Data (Black Angel Mine, Central West Greenland)
by Pierpaolo Guarnieri, Sam T. Thiele, Nigel Baker, Erik V. Sørensen, Moritz Kirsch, Sandra Lorenz, Diogo Rosa, Gabriel Unger and Robert Zimmermann
Minerals 2022, 12(7), 800; https://doi.org/10.3390/min12070800 - 23 Jun 2022
Cited by 5 | Viewed by 2671
Abstract
The Black Angel Zn-Pb ore deposit is hosted in folded Paleoproterozoic marbles of the Mârmorilik Formation. It is exposed in the southern part of the steep and inaccessible alpine terrain of the Rinkian Orogen, in central West Greenland. Drill-core data integrated with 3D-photogeology [...] Read more.
The Black Angel Zn-Pb ore deposit is hosted in folded Paleoproterozoic marbles of the Mârmorilik Formation. It is exposed in the southern part of the steep and inaccessible alpine terrain of the Rinkian Orogen, in central West Greenland. Drill-core data integrated with 3D-photogeology and hyperspectral imagery of the rock face allow us to identify stratigraphic units and extract structural information that contains the geological setting of this important deposit. The integrated stratigraphy distinguishes chemical/mineralogical contrast within lithologies dominated by minerals that are difficult to distinguish with the naked eye, with a similar color of dolomitic and scapolite-rich marbles and calcitic, graphite-rich marbles. These results strengthen our understanding of the deformation style in the marbles and allow a subdivision between evaporite-carbonate platform facies and carbonate slope facies. Ore formation appears to have been mainly controlled by stratigraphy, with mineralizing fluids accumulating within permeable carbonate platform facies underneath carbonate slope facies and shales as cap rock. Later, folding and shearing were responsible for the remobilization and improvement of ore grades along the axial planes of shear folds. The contact between dolomitic scapolite-rich and calcitic graphite-rich marbles probably represents a direct stratigraphic marker, recognizable in the drill-cores, to be addressed for further 3D-modeling and exploration in this area. Full article
(This article belongs to the Special Issue 3D-Modelling of Crustal Structures and Mineral Deposit Systems)
Show Figures

Figure 1

34 pages, 5813 KiB  
Review
Geoenvironmental Model for Roll-Type Uranium Deposits in the Texas Gulf Coast
by Katherine Walton-Day, Johanna Blake, Robert R. Seal II, Tanya J. Gallegos, Jean Dupree and Kent D. Becher
Minerals 2022, 12(6), 780; https://doi.org/10.3390/min12060780 - 20 Jun 2022
Cited by 5 | Viewed by 3182
Abstract
Geoenvironmental models were formulated by the U.S. Geological Survey in the 1990s to describe potential environmental effects of extracting different types of ore deposits in different geologic and climatic regions. This paper presents a geoenvironmental model for roll-front (roll-type) uranium deposits in the [...] Read more.
Geoenvironmental models were formulated by the U.S. Geological Survey in the 1990s to describe potential environmental effects of extracting different types of ore deposits in different geologic and climatic regions. This paper presents a geoenvironmental model for roll-front (roll-type) uranium deposits in the Texas Coastal Plain. The model reviews descriptive and quantitative information derived from environmental studies and existing databases to depict existing conditions and potential environmental concerns associated with mining this deposit type. This geoenvironmental model describes how features of the deposits including host rock; ore and gangue mineralogy; geologic, hydrologic, and climatic settings; and mining methods (legacy open-pit and in situ recovery [ISR]) influence potential environmental effects from mining. Element concentrations in soil and water are compared to regulatory thresholds to depict ambient surface water and groundwater conditions. Although most open-pit operations in this region have been reclaimed, concerns remain about groundwater quality at three of the four former mills that supported former open-pit mines and are undergoing closure activities. The primary environmental concerns with ISR mining are (1) radon gas at active ISR operations, (2) radiation or contaminant leakage during production and transport of ISR resin or yellowcake, (3) uranium excursions into groundwater surrounding active ISR operations, and (4) contamination of groundwater after ISR mining. Although existing regulations attempt to address these concerns, some problems remain. Researchers suggest that reactive transport modeling and a better understanding of geology, stratigraphy, and geochemistry of ISR production areas could minimize excursions into surrounding aquifers and improve results of groundwater restoration. Full article
(This article belongs to the Special Issue Environmentally Sound In-Situ Recovery Mining of Uranium)
Show Figures

Figure 1

Back to TopTop