Recent Trends in Polymer Membranes: Fabrication Technique, Characterization, Functionalization, and Applications in Environmental Science, 2nd Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Membranes and Films".

Deadline for manuscript submissions: 30 November 2024 | Viewed by 475

Special Issue Editors

College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
Interests: novel separation techniques; polymer membrane; functional nanomaterials; wastewater treatment; environmental remediation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
Interests: biomimetic synthesis; biomaterials; self-assembly; hydrogels; biomedicine
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues, 

More than 90% of the water in the world is comprised of salty water, and only about 2.5% can be used for human consumption. Among this proportion, most water resources are polluted by various industrial dyes, toxic metallic ions, drugs, pesticides, bacteria, and other aromatic organic chemicals. Polymer membranes with 3D networks and nanoporous structures provide a potential way to treat these pollutants in wastewater in order to obtain cleaning drinking water. Traditional polymer membranes have been widely used for water purification, but they are mostly limited by low selectivity, solution fluxes, and fouling issues. In addition, some impurities and biological materials would aggregate on the surface or in the pores of the fabricated membranes, causing very poor selectivity, low water purification ability, reduced resilience, and increased energy consumption. The functionalization of polymer membranes with suitable chemicals, nanoparticles, and 2D graphene-like materials exhibits the possibility to create functional antifouling and antibacterial membrane materials. To promote the application of polymer membranes in environmental science, other relevant issues in membrane fabrication, characterization, physicochemical properties, processability, reliability, sustainability, and other factors must be more deeply understood. 

Therefore, in this Special Issue of Polymers, we would like to collect contributions that focus on (but are not limited to) the design, fabrication, structural and functional regulation, and application of various polymeric membranes in boosting the utilization of membrane materials in environmental science. Submissions in the form of full-length articles, communications, and reviews are invited.

Dr. Yan Wang
Prof. Dr. Gang Wei
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • functional polymers
  • fabrication technique
  • nanoparticles
  • 2D materials
  • functionalization
  • hybridization
  • biomimetic synthesis
  • characterization techniques
  • membrane filtration
  • wastewater treatment
  • desalination
  • environment remediation
  • drug
  • pesticides
  • virus
  • antifouling
  • antibacterial
  • sustainability

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 7199 KiB  
Article
Plasma Surface Treatment and Application of Polyvinyl Alcohol/Polylactic Acid Electrospun Fibrous Hemostatic Membrane
by Xiaotian Ge, Li Zhang, Xuanhe Wei, Xi Long and Yingchao Han
Polymers 2024, 16(12), 1635; https://doi.org/10.3390/polym16121635 - 9 Jun 2024
Viewed by 351
Abstract
In this study, an improved PVA/PLA fibrous hemostatic membrane was prepared by electrospinning technology combined with air plasma modification. The plasma treatment was used to modify PLA to enhance the interlayer bonding between the PVA and PLA fibrous membranes first, then modify the [...] Read more.
In this study, an improved PVA/PLA fibrous hemostatic membrane was prepared by electrospinning technology combined with air plasma modification. The plasma treatment was used to modify PLA to enhance the interlayer bonding between the PVA and PLA fibrous membranes first, then modify the PVA to improve the hemostatic capacity. The surfaces of the PLA and PVA were oxidized after air plasma treatment, the fibrous diameter was reduced, and roughness was increased. Plasma treatment enhanced the interfacial bond strength of PLA/PVA composite fibrous membrane, and PLA acted as a good mechanical support. Plasma-treated PVA/PLA composite membranes showed an increasing liquid-enrichment capacity of 350% and shortened the coagulation time to 258 s. The hemostatic model of the liver showed that the hemostatic ability of plasma-treated PVA/PLA composite membranes was enhanced by 79% compared to untreated PVA membranes, with a slight improvement over commercially available collagen. The results showed that the plasma-treated PVA/PLA fibers were able to achieve more effective hemostasis, which provides a new strategy for improving the hemostatic performance of hemostatic materials. Full article
Back to TopTop