Vehicle Design Processes, 2nd Edition

A special issue of Vehicles (ISSN 2624-8921).

Deadline for manuscript submissions: 31 December 2024 | Viewed by 1604

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Mechanical Engineering, Ravensburg-Weingarten University of Applied Sciences, 88250 Weingarten, Germany
Interests: autonomous vehicles; vehicle interior; vehicle ergonomics; vehicle seating systems; vehicle design processes; fault-tolerant control and design
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Mechanical Engineering and Production Management, Hamburg University of Applied Sciences, 20099 Hamburg, Germany
Interests: system theory; technical ethics; interdisciplinary design processes; functional modelling; environmental protection; digitalisation and artificial intelligence
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Mechanical Engineering, Ravensburg-Weingarten University of Applied Sciences, 88250 Weingarten, Germany
Interests: simulation; digital design processes; vehicle design processes; mechanisms for convertibles; multi-body analysis; finite lement analysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The design processes of vehicles are a promising research topic. The design of vehicles is one of the most challenging tasks in engineering because of several reasons. The enormous consumer expectations as well as the intensive global competition aggravates vehicle design. Cost-driven design is a necessity and vehicles need to be economical in production, operation, and recycling; in fact, sustainable design is also imperative for ecological vehicles. The dynamics of vehicles have to be considered in the design of all components and light-weight design is of fundamental importance. Consumers expect convincing functional performance, high product quality, appealing appearance, high reliability, interconnected functionality as well as comprehensible and appealing user interfaces. More and more, additional services are connected with vehicles. These enormous requirements lead to complex multi-domain design processes of vehicles, because most of the important decisions are made in the design phase. Production optimization and intelligent operation are important topics, but flaws and insufficiencies in the design stage lead to enormous expenditures in later stages and less-than-perfect products. The design processes of vehicles involve thousands of engineers are spread globally and need to consider multiple product versions and variants as well as multi-company product platforms. Very often, testing necessities and legal issues play an important role in these processes and the economic and ecological quality of the product has to be monitored throughout the processes. Even in early stages, vehicle safety and ergonomic quality need to be considered. Needless to say, only digital support makes these processes feasible. For all domains, powerful computer tools for synthesis, analysis, evaluation, and optimization were created and numerous attempts try to sensibly link the data used in all these tools. However, many domain specific and generic data formats as well as the sheer size of the data still create serious problems. It is important to note that design is also connected with scheduling and project management, because certain design decisions can lead to long-term testing and production preparation processes. The listed challenges concerning the multi-domain design processes of vehicles lead to a prominent need for research activities aimed at supporting the designers in this endeavor. This Special Issue intends to present the current status of these research activities. They will range from application-oriented attempts to improve certain design tools over process improvement attempts to fully integrated digital processes as well as novel approaches in this field such as big data and artificial intelligence. We are looking forward for your excellent research papers.

Prof. Dr. Ralf Stetter
Prof. Dr. Udo Pulm
Prof. Dr. Markus Till
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Vehicles is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • design processes
  • vehicle design
  • design engineering
  • digital design
  • robotics
  • product data management
  • multi-domain design processes
  • vehicle dynamics
  • vehicle safety
  • vehicle ergonomics

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

29 pages, 2311 KiB  
Article
Evaluation of SiL Testing Potential—Shifting from HiL by Identifying Compatible Requirements with vECUs
by Rudolf Keil, Jan Alexander Tschorn, Johannes Tümler and Mehmet Ercan Altinsoy
Vehicles 2024, 6(2), 920-948; https://doi.org/10.3390/vehicles6020044 (registering DOI) - 29 May 2024
Viewed by 134
Abstract
Due to the increasing complexity of vehicle software, it is becoming increasingly difficult to comprehensively test all requirements. This inevitably means that alternative test methods, e.g., simulation-based methods, must be used more frequently. However, the challenge involves identifying appropriate requirements that can be [...] Read more.
Due to the increasing complexity of vehicle software, it is becoming increasingly difficult to comprehensively test all requirements. This inevitably means that alternative test methods, e.g., simulation-based methods, must be used more frequently. However, the challenge involves identifying appropriate requirements that can be technically tested in a simulation environment initially. The present work is aimed at evaluation and optimization of the effectiveness of software-in-the-loop (SiL) simulations in the testing process of vehicle software. The focus is on supporting the testing process by shifting specific test cases from hardware-in-the-loop (HiL) test benches to SiL-based simulations. For this purpose, a systematic approach was developed to analyze and categorize requirements, enabling precise and efficient allocation of test cases. Furthermore, a detailed review and recommendation for improving the ProSTEP iViP standard for virtual electronic control units (vECU) was carried out. The developed matrix associates the defined requirement clusters with different classifications of vECUs, facilitating the identification of suitable test environment types for conducting specific test cases. By assigning test cases to appropriate vECU levels, the testing processes can be targeted and cost-optimized. Finally, the theoretical results were evaluated in an SiL simulation environment. It was observed that a significant part of the requirements could effectively be tested using a vECU. These findings confirmed the potential of SiL simulation environments to not only support, but also enhance, the testing process for vehicle software by providing a cost-effective and flexible complement to traditional HiL test benches. Full article
(This article belongs to the Special Issue Vehicle Design Processes, 2nd Edition)
Show Figures

Figure 1

24 pages, 17633 KiB  
Article
Optimization, Design, and Manufacturing of New Steel-FRP Automotive Fuel Cell Medium Pressure Plate Using Compression Molding
by Sharath Christy Anand, Florian Mielke, Daniel Heidrich and Xiangfan Fang
Vehicles 2024, 6(2), 850-873; https://doi.org/10.3390/vehicles6020041 - 25 May 2024
Viewed by 261
Abstract
In this work, a new plastic-intensive medium-pressure plate (MPP), which is part of a fuel-cell system, has been developed together with a steel plate meeting all mechanical and chemical requirements. This newly developed MPP had to achieve the objective of saving weight and [...] Read more.
In this work, a new plastic-intensive medium-pressure plate (MPP), which is part of a fuel-cell system, has been developed together with a steel plate meeting all mechanical and chemical requirements. This newly developed MPP had to achieve the objective of saving weight and package space. The use of compression molding as a manufacturing technique facilitated the use of glass mat thermoplastics (GMT) which has higher E-modules and strength compared to most of the injection molded materials. A steel plate was placed as an insert to help achieve the stiffness requirements. For the development, the existing MPP was benchmarked for its structural capabilities and its underlying functional features. Four different FRP materials were investigated in terms of their chemical and mechanical properties. PP-GMT material, which has both high mechanical performance and resistance against chemicals in the fuel cell fluid, had been chosen. Using the properties of the chosen PP-GMT material, topology optimization was carried out based on the quasi-static load case and manufacturing constraints, which gave a load-conforming rib structure. The obtained rib structure was utilized to develop the final MPP with adherence to the functional requirements of MPP. The developed plastic-intensive MPP exhibits a 3-in-1 component feature with a 55% reduction in package space and an 8% weight reduction. The MPP was virtually analyzed for its mechanical strength and compared with the existing benchmark values. Finally, a press tool was conceptualized and manufactured to fabricate the new plastic-intensive MPP, which was tested in a rig and validated in the FE model. Full article
(This article belongs to the Special Issue Vehicle Design Processes, 2nd Edition)
Show Figures

Figure 1

12 pages, 1135 KiB  
Article
Comparative Assessment for Holistic Evaluation of Drive Systems
by Raphael Mieth and Frank Gauterin
Vehicles 2024, 6(1), 403-414; https://doi.org/10.3390/vehicles6010017 - 13 Feb 2024
Viewed by 794
Abstract
The development of vehicle drive systems targets different goals, which are partly contradictory. While the focus is often on increasing efficiency and—depending on the type of drive system—performance, the aim is to simultaneously reduce costs, weight, and volume as much as possible. This [...] Read more.
The development of vehicle drive systems targets different goals, which are partly contradictory. While the focus is often on increasing efficiency and—depending on the type of drive system—performance, the aim is to simultaneously reduce costs, weight, and volume as much as possible. This goal generally presents a conflict of objectives; for example, a gain in efficiency usually correlates with higher costs, or an increase in performance reduces the maximum achievable efficiency. Therefore, each drive system represents a compromise among these goals, and depending on the main focus, the development can be influenced. The methods presented in this work serve as a methodological framework for the evaluation of vehicle drive systems. The procedure involves evaluating different drive concepts based on defined criteria and comparing these evaluations with one another. These criteria can be selected freely and weighted differently, depending on the individual focus. In the sense of a holistic assessment, a system evaluation factor ultimately serves as an indicator, which is composed of the rating values of the individual criteria, taking into account their specific weightings. With the help of the novel method presented in this paper, the complexity of comparing differently designed powertrains is reduced, and a holistic assessment covering relevant viewpoints is possible. Such an all-encompassing view is helpful in the early development phase and is required as an evaluation basis for further, groundbreaking decisions in concept development. Full article
(This article belongs to the Special Issue Vehicle Design Processes, 2nd Edition)
Show Figures

Figure 1

Back to TopTop