Genetics and Molecular Breeding in Fisheries and Aquaculture

A special issue of Genes (ISSN 2073-4425). This special issue belongs to the section "Animal Genetics and Genomics".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 684

Special Issue Editors

School of Marine Sciences, Ningbo University, Ningbo 315832, China
Interests: aquaculture; genetic diversity; molecular breeding; regeneration regulation; behavioral genetics; genome; GWAS

E-Mail Website
Guest Editor Assistant
College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
Interests: molecular biology; fish breeding; genetics; genome; aquatic economic animals
Special Issues, Collections and Topics in MDPI journals
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
Interests: fish genetics; fish morphology evolution; aquatic animals; fish physiology

Special Issue Information

Dear Colleagues,

With decades of efforts, scientists have made remarkable achievements in characterizing genomic structure, genomic variations, and the genetic basis of economically important traits of aquaculture species, which is helpful to improve production efficiency in order to satisfy consumer demands and improve the commercial profits of fisheries and aquaculture. Genetic dissection of important economic traits, including growth rate, disease resistance, sexual determination, and tolerance of various environmental stressors in aquaculture animals, has become the focus of basic research. Moreover, advanced molecular biology technologies such as genome wide selective breeding, gene editing, and cell transplantation have been extensively applied to genetics and breeding in the aquaculture industry. Whereas in most fish and other aquatic animals, major genes related to economic traits have not been identified, and the understandings of regulatory mechanisms for sex determination, disease resistance, stress resistance, environmental adaptation, reproduction, and development are quite limited. In this Special Issue, we are interested in publishing research articles and reviews on genetics and molecular breeding in fisheries and aquaculture, including WGS and fine mapping, the construction of high-density genetic maps, trait-related markers, sex control, genome editing, multi-omics combinations of genome, transcriptome, proteome, metabolome, and epigenome, and other molecular breeding technologies application in aquatic genetics and breeding.

Dr. Lei Liu
Guest Editor

Dr. Kai Zhang
Dr. Xuedi Du
Guest Editor Assistants

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aquaculture species
  • molecular breeding
  • genomic
  • economic traits
  • sex determination
  • disease resistance
  • stress resistance
  • reproduction and development
  • genome editing
  • multi-omics

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4078 KiB  
Article
Establishment of Parentage Identification Method for Sea Urchin Strongylocentrotus intermedius Based on SSR-seq Technology
by Xuechun Jiang, Lei Liu, Hao Guo, Peng Liu, Wenzhuo Tian, Fanjiang Ou, Jun Ding, Weijie Zhang and Yaqing Chang
Genes 2024, 15(5), 630; https://doi.org/10.3390/genes15050630 - 16 May 2024
Viewed by 428
Abstract
To establish a parentage identification method for Strongylocentrotus intermedius, 15 microsatellite loci and simple sequence repeat sequencing (SSR-seq) technology were used to perform SSR sequencing and typing of the validation population with known pedigree information and the simulation population. Cervus v3.0 was [...] Read more.
To establish a parentage identification method for Strongylocentrotus intermedius, 15 microsatellite loci and simple sequence repeat sequencing (SSR-seq) technology were used to perform SSR sequencing and typing of the validation population with known pedigree information and the simulation population. Cervus v3.0 was used for gene frequency statistics, simulated analysis, and parentage identification analysis. The results showed that, in validation population, using 15 microsatellite loci, the highest success rate of parent pairs identification was 86%, the highest success rate of female parent identification was 93%, and the highest success rate of male parent identification was 90%. The simulated population was analyzed using 12–15 loci, and the identification rate was up to 90%. In cases where accurate parentage was not achieved, individuals could exhibit genetic similarities with 1–3 male or female parents. Individuals identified as lacking a genetic relationship can be selected as parents to prevent inbreeding. This study shows that parent pairs or single parents of most offspring can be identified successfully using these 15 selected loci. The results lay a foundation for the establishment of a parentage identification method for S. intermedius. Full article
(This article belongs to the Special Issue Genetics and Molecular Breeding in Fisheries and Aquaculture)
Show Figures

Figure 1

Back to TopTop